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Abstract This paper presents an environment recognition
method for bipedal robots using a time-delay neural
network. For a robot to walk in a varying terrain, it is
desirable that the robot can adapt to any environment
encountered in real-time. This paper aims to develop a
sensory mapping unit to recognize environment types
from the input sensory data based on an artificial neural
network approach. With the proposed sensory mapping
design, a bipedal walking robot can obtain real-time
environment information and select an appropriate
walking pattern accordingly. Due to the time-dependent
property of sensory data, the sensory mapping is realized
by using a time-delay neural network. The sensory data
of earlier time sequences combined with current sensory
data are sent to the neural network. The proposed
method has been implemented on the humanoid robot
NAO for verification. Several interesting experiments
were carried out to verify the effectiveness of the sensory
mapping design. The mapping design is validated for the
uphill, downhill and flat surface cases, where three types
of environment can be recognized by the NAO robot
online.

Keywords bipedal walking, walking pattern generation,
adaptive behaviour, time-delay neural network
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1. Introduction

A humanoid robot with a bipedal walking gait can
behave more flexibly in various kinds of environments.
Bipedal walking robotics has gained much attention in
recent years. Many bipedal walking mechanisms, gait
pattern generation schemes and control laws have been
reported in the literature [1-5]. Numerous studies have
attempted to work out strategies for the stability, system
modelling and dynamics analysis of bipedal walking.
Because of the high degrees of freedom (DOF) in bipedal
walking, the control system design is complicated and
online gait balance control is a challenging topic. Kajita et
al. [6] used a three dimensional (3D) linear inverted
pendulum model to simplify the calculation of dynamics
in their real-time control method for a bipedal robot.
Huang et al. [7] presented a walking pattern planning
method, which can adapt to ground conditions with
different types of foot motion. In [8], an online walking
pattern generation method is proposed to consider the
trunk effect of a bipedal robot, for reducing the damping
effect during robot walking. Park et al. [9] proposed an
algorithm for the online trajectory generation of the
humanoid robot KHR-3. Wang et al. [10-11] developed a
motion planning method for a humanoid robot, which
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enabled users to generate various motion states without
using any reference motion data.

Many attempts have been made to design a robot to
adapt to appear
environments. When a bipedal robot walks in the real
world, it will face situations where it has to maintain

terrains that in human living

balance in an unknown environment. Kajita et al. [12]
proposed a zero moment point (ZMP) control law to
allow a robot to walk across an uneven surface. Piao et al.
[13] formulated the design of humanoid robot walking
movement into a second-order optimization problem and
stabilized the robot with ZMP criteria. In [14], a hybrid
evolutionary algorithm was proposed based on neural
networks to optimize a walking-up stairs movement. Fu
et al. [15] applied walking pattern synthesis and sensory
feedback control to a bipedal robot for climbing stairs.
Yussof et al. [16] presents a contact interaction-based
navigation strategy for a bipedal humanoid robot to
support visual-based navigation.

It is clear that for a humanoid robot to walk in varying
environments, different gait-control schemes are required
to adapt to the environment. A pre-assigned walking
pattern would not be satisfied for a changing
environment. Liu et al. [17] proposed an architecture to
generate adaptive workspace trajectories. With their
proposed adaptive joint control scheme, a quadruped
robot was demonstrated to walk through various terrains.
However, in their design the gait parameters for different
terrains are not given to the robot automatically. If the
environment can be recognized by the robot, it will be
able to adapt to the environment autonomously. It is of
prime importance that a robot should be able to estimate
its situated environment online in order to adapt to the
environment spontaneously.

This paper presents a novel design for sensory mapping,
which estimates the situated environment for bipedal
walking using on-board sensors. Based on the sensory
mapping scheme, a bipedal robot can understand the
type of environment and adapt to it without knowing it
in advance. The rest of this paper is organized as follows.
In Section 2, the system architecture of the proposed
bipedal walking system is presented. In Section 3, a
design for sensory mapping is described. In Section 4, an
implementation of the proposed system on the NAO
humanoid robot is presented. Interesting experiments
were conducted using the NAO robot. The experimental
results are presented in Section 5. In Section 6 we
conclude the contribution of this paper.

2. System Architecture

For a robot to walk in an unknown environment, the
interaction between robot and the environment provides
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useful information to the robot. The proposed control
architecture aims to recognize the situated environment
type using sensory information and then select a suitable
gait pattern. The situated environment type is recognized
by means of a relationship constructed between on-board
sensory data and the environment. Figure 1 illustrates the
proposed control architecture for bipedal walking using
the concept of sensory mapping.

Through its equipped sensors, the robot acquires
information from interactions with the environment. The
acquired sensory information can then be interpreted to
infer the current type of environment. Such an
environment recognition module is termed sensory
mapping. Based on the recognized environment, a suitable
walking pattern is then generated according to a
predefined database. The database stores a series of gait
patterns which are designed for different environments
respectively. In this way, the selected gait pattern will be
suitable for the current environment and allow the robot
to walk stably in an adaptive manner. The desired joint
commands are sent to the robot motion controller for
execution, from which updated sensory information is
continuously fed back so as to get new sensory mappings.

The purpose of sensory mapping is to estimate the type of
environment so that the robot can adjust its walking
pattern adaptively. In this scheme, a mechanism is
needed to map acquired sensor information to the
environment type. Figure 2 depicts the proposed sensory
mapping scheme. In general, various kinds of sensors can
be used for the desired sensory mapping. In this work,
gyroscopes and accelerometers onboard the robot are
adopted in the design. The sensory data is pre-processed
and then sent to an artificial neural network (ANN) to
classify the environment.

3. Proposed time-delay sensory mapping (TDSM)

Since the sensory data from multiple sensors of a bipedal
robot is conjunctive and very often coupled, it is a
challenge to model the environment using multiple
sensory data. In particular, the correlation between
sensory information and environment types may be even
complicated as the number of sensors and environment
types increases. As a result, neural network techniques
are adopted to design the desired sensory mapping.

Furthermore, with bipedal walking, the sensory data
varies dramatically during a gait motion cycle; one neural
network cannot fit every sample of the motion cycle.
However, we observed from experiments that the sensor
data in the same phase of a different motion cycles is
similar; we thus designed multiple classifiers to recognize
the environment for each phase of a bipedal gait motion
cycle.
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Input layer

In designing the sensory mapping, we first decided what
type of environment should be classified. Next, we chose
those sensors to be used for environment recognition.
Bipedal walking experiments would be set up and carried
out to obtain the sensory data for training the ANN. After
a successful training session, the weight and bias of the
ANN were stored for the robot as a database for online
use. In this way, the robot could estimate the
environment online with the designed sensory mapping
procedure.

Due to transient body shaking and the unstable ground
reaction forces during bipedal walking, the sensory data
is always fluctuating and is difficult to classify.
Furthermore, it is observed that the sensory data of
certain specific phases varies as well. To reduce the effect
of fluctuating sensor values, we propose a time-delay
sensory mapping scheme. in considering sensor signals
from a time-related sequence, we added some earlier
sensory data to the input of the ANN for environment
recognition. Such an ANN is termed a time-delay neural
network, whose primary purpose is to handle temporal
continuous data. In such a classifier, sensor signals from
time To-N+1 to time To form the input of the classifier. As
shown in Fig. 3, all of the sensor data from time step To—
N+1 to time step To is sent to the classifier at one time.
Thus, there are K*N signals as inputs of the classifier. This
scheme enhances the recognition rate by memorizing the
trend of sensory values.
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Figure 3. ANN for TDSM at time To
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4. Implementation in a NAO robot

To build up the TDSM, we took the following steps:

1. Select a series of target environments and choose the
appropriate sensor(s).

2. Generate the walking pattern.

3. Let the robot walk in each environment and record
the corresponding sensory data.

4. Decide the structure of the ANN.

5. Train the ANN offline and store the weight and bias
in the database.

In this work, uphill and downhill sloped environments
were chosen to be classified. We choose the appropriate
sensor signals for such environment reorganization tasks.
In the slope case, robot body angle, angular velocity and
acceleration are chosen as input of proposed TDSM. The
sensor data used can be different for different
environment types. Afterwards, experiments were setup
and carried out to obtain the sensory data for training the
ANN. The details of the training will be discussed in
section 4.4. After a successful training, the weight and
bias of the ANN is stored for the robot as a database. In
this way, the robot can estimate the environment online
with the sensory mapping.

4.1 Hardware of the NAO robot

The proposed method has been implemented on the
humanoid robot NAO so as to verify the effectiveness of
the proposed sensory mapping design. The NAO is a
bipedal robot of 57.32cm height and 4.7Kg weight [18]. It
has 11 motors on two feet, where the HipYawPitch of the
left and right use the same motor and is not orthogonal to
any other axes. The NAO can calculate its own ZMP
using 8 force sensors on the bottom of two feet. A two-
axis gyroscope and a three-axis accelerometer are
installed in its torso to measure the roll and pitch angles
of the robot.

4.2 Walking Pattern Generation

In order to simplify online calculation, we generate the
foot trajectory with pendulum functions [19]. The
pendulum function can be easily adjusted by changing
the two parameters shown in (1). The desired walking
pattern can be generated separately in two orthogonal
spaces, namely the X-Z and X-Y planes. While X is the
direction forwards and Z is the direction upwards, the
foot trajectory in the X-Z plane can be written as:

At =L et —sin2rly
& T 0<t<T, 1)
z(t)=-L(1- cos2ﬂi)
V4 T
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(b)

Figure 4. Simulation of robot walking in (a) the X-Z plane, (b) the
3D space

where on is the half length of the trajectory, hi is the
height of the trajectory, t is the sample time and T denotes
the time of half cycle. The two foot trajectories only differ
in their initial timing. Figure 4 shows the simulation
results of robot walking pattern, where the black lines
represent the waist and the other two colour lines are the
gait of the two legs. Since the trajectories in two
orthogonal planes are independent, the pendulum
functions in the X-Y plane of the waist trajectory are such
that:

Aty =220zt —sin2zt
& T T o<t<T, 2)
yt)=-=2(1 —COSZ?[i)
Vs T

where a is the half length of the trajectory and h: is the
height of the trajectory. The walking pattern can be easily
calculated and adjusted by a total of four length
parameters and one time parameter.

4.3 Inverse kinematics and control of the NAO

The Denavit-Hatenberg (D-H) model was applied to
calculate the inverse kinematics of the NAO. The
predefined parameters are listed in Table 1, where the
origin is at the bottom of foot and the endpoint is the
waist, in order to simplify the calculation. Because the
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HipYawPitch axes are not orthogonal to the other axes,
we define both angles of the left HipYawPitch and the
right HipYawPitch equal to zero. As a result, the coupling
effect of the HipYawPitch axes can be ignored when
calculating the inverse kinematics.

From the walking patterns shown in (1) and (2), the
desired joint angles can be obtained after the calculation
of the inverse kinematics. With the PC-based control
software, these commands are sent to the NAO via a
wireless network and then executed by motors so as to
move the feet to the desired positions.

0(°) d(mm) | a(mm) a(®)
Joint1 0 0 45.11 0
Joint2 01 0 0 -90
Joint3 02 0 102.75
Joint4 03 0 100 0
Joint5 04 0 0
Hip 05 0 0 90
Waist 0 0 85 -90

Table 1. D-H parameters from foot to waist on the NAO
4.4 Training of the ANN

The sensory data from a two-axis gyroscope and a three-
axis accelerometer is used for slope surface recognition.
Fig. 5 shows typical recorded sensory data sets for the
robot walking on a flat surface. In each figure, the sensory
data of one walking period is recorded and that of three
periods are presented in the figure for comparison. The
sensory data includes the X-direction rotation angle
(AngX), the Y-direction rotation angle (AngY), the X-
direction angular velocity (GyrX), the Y-direction angular
velocity (GyrY), the X-direction acceleration (AccX), the
Y-direction acceleration (AccY) and the Z-direction
acceleration (AccZ). In these figures, the units of the X-
axes are 0.1 seconds and units of the Y-axes are the radian
for the angle, the radian/s for the angular velocity and
m/s"2 for the acceleration.

The robot walked on each type of environment to record
the training data sets for the TDSM. Fig. 6 illustrates the
walking cycles to generate the training data sets for
bipedal walking. There are 10 periods for one recorded
data set. The first five periods are used as the training
data for the neural network; the other five periods are
used as offline testing data. For this work, one walking
period is 12.8 seconds, which is divided into 32 phases of
sensory mapping. In other words, we classify the
environment every 0.4 seconds in the experiment and
there are a total of 32 ANN classifiers for one period of
gait motion. The average executing time for one sensory
mapping phase is 6.06ms using the python program of
the NAO system with a 2.13GHz Intel processor.
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Figure 5. Recorded sensory data during bipedal walking: (a) X-
direction acceleration (AccX), (b) Y-direction acceleration (AccY),
(c) Z-direction acceleration (AccZ), (d) X-direction rotation angle
(AngX), (e) Y-direction rotation angle (AngY), (f) X-direction
angular velocity (GyrX), (g) Y-direction angular velocity (GyrY)

To fulfil the requirements for successful training, we set a
mean square errors (MSE) of 107-10 as the measure of
convergence. All 32 classifiers are trained to obtain the
sensory mapping of a complete cycle of bipedal walking.
Fig. 7 shows the convergence of the MSE of four
classifiers: the 1st, 16th, 17th and 32rd ANN. After 32
classifiers were successfully trained, we obtained 32 sets
of weights and biases which were used to estimate the
environment online for 32 different phases in one bipedal
walking period.
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5. Experimental results

The TDSM has been applied to the bipedal walking of the
NAO on a sloped surface to evaluate environment
recognition. In this case, five types of environment were
determined, namely 4° uphill, 5° uphill, 4° downhill, 5°
downhill and flat surface. Fig. 8 illustrates the system
block diagram of the experimental setup. For every
experiment, the robot is placed on the sloped surface and
walks for several periods. The recognition results within
these periods are recorded and the recognition rates are
calculated. Fig. 9 shows pictures of the robot during the
experiment. The parameters of the walking pattern
generation are listed in Table 2; the definitions of the
parameters are referred to by (1) and (2).

Ethernet connection
/ Lot ntertace en.\r/!i/rz?u?]fent \ c::gd[bxamkug 2-Axis —
Report [ Sensoy ] Gyroscope
dlalogue mapping 3 Adis
Weights & bias Accelerometer

ANN database Joint angular data)

Encoders

Commend Commend |  Trajectory Motor "
. otors
K window database controller -

Control Computer Desired angular values NAO g
«1
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Figure 8. Block diagram of the experimental setup

Parameter

ou 40mm

h: 40mm

y 50mm

oo 20mm

h2 65mm

T 64

Sample time 0.1s

Table 2. Parameters of the walking pattern

@)
Figure 9. The NAO robot walks on 3 surfaces: (a) downhill, (b) flat surface, (c) uphill
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5.1 Offline simulation results

For the ANN training data, there are 10 sets of training
data for three environment types, namely 4° uphill, 4°
downhill and flat surface. Each set of data contains 10
periods. Thus, there are a total of 300 periods such that
150 periods of data are used for the ANN training and
150 periods of data are used for the offline testing. Using
the training-data acquisition procedure described in
section 4.3, we first tested the proposed method offline.
We evaluated the sensory mapping design with a
conventional ANN and the proposed TDSM for
comparison. Without any pre-processing of the raw
sensory data, the average recognition rate of the three
environments was 91.35% for the conventional ANN.
Table 3 shows the experimental results of the
conventional ANN for the three types of environments. In
a total of 1600 test samples for uphill motion, the
recognition rate is 87.63%. Downhill motion gives a
recognition rate of 96.81% in this experiment.

On the other hand, in the offline simulation using the
proposed TDSM, the inputs of the neural network is the
sensory data at time t-2, t-1 and t. With 21 inputs to the
time-delay ANN, the average recognition rate of the
TDSM for the three environments is 93.69%. The result of
the environment recognition is presented in Table 4. It is
clear that the TDSM performs better than the
conventional ANN sensory mapping due to its time
dependent property. The number of consecutive sensory
inputs is a design parameter. It can be chosen according
to the varying nature of the signals. In our experiments, 3
consecutive sets of sample data are quiet enough for our
desired accuracy.

ctual Uphill Flat Downbhill Average
Estimation surface
Uphill 1402 115 1
Flat surface | 198 1434 50
Downbhill 0 51 1549
Recognition | 87.63 89.63 96.81 91.35
rate(%)

Table 3. Offline environment recognition results of a conventional
ANN

ctual Uphill Flat Downbhill Average
Estimation surface
Uphill 1479 113 0
Flat surface | 121 1451 33
Downhill 0 36 1567
Recognition | 92.44 90.69 97.94 93.69
rate (%)

Table 4. Offline environment recognition results of the TDSM
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5.2 Online experimental results using the NAO

After successful offline simulation, we tested the sensory
mapping online using the NAO. The recognition rates of
the online experiments are presented in Tables 5 and 6. In
1600 test samples for each environment, the average
recognition rate of the TDSM on 4° uphill, 4° uphill and
the flat surface is 98.02%, a dramatic improvement over
the 69.19% of the conventional ANN in the same
environments. With the same ANN database, the
recognition rate of a 5° uphill slope is 98.20% and the
recognition rate of a 5° downbhill slope is 99.56%, which
gives almost the same accuracy as those of the 4° slopes.
This result shows that the TDSM can estimate not only
those environments that have been trained but also
similar ones. In the current control structure, the robot
can only experiment with up to 5° slopes; the robot will
fall on slopes greater than 5° due to a balance problem.
However, if the dynamic control is able ensure the
mobility of the robot, it is possible that the TDSM could
work on other slope angles.

ctual Uphill Flat Downhill Average
Estimation’ surface
Uphill 1254 450 292
Flat surface | 271 987 228
Downhill 75 163 1080
Recognition | 78.38 61.69 67.50 69.19
rate (%)

Table 5. Online experimental results of the conventional ANN

Actual 4° Flat 4° 5° 5°
. Uphill [surface |Downhill | AY™8° |Uphill  |Downhill
Estimation
Uphill 1576 |55 0 1571 0
Flat surface (24 1538 9 29 7
Downbhill 0 7 1591 0 1593

Recognition  [98.50 [96.13 99.44 98.02 98.20 99.56
rate (%)

Table 6. Online experimental results of the TDSM

It is interesting to compare the recognition results of the
conventional ANN and the TDSM for each phase of
bipedal walking, as shown in Fig. 10. The recognition
rates of 32 ANNs for both sensory mappings are depicted
in Fig 10. The blue bars denote the conventional ANN
while the red ones denote that of the TDSM. It was
observed that the recognition rate in the swing phase of
the conventional ANN drops sharply due to the fast
changing sensory data, which causes estimation errors.
On the other hand, the TDSM gives high recognition
accuracy even during foot swing phases. As a result, the
advantages of the TDSM are validated in this experiment.
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Figure 10. Comparison between conventional sensory map and
proposed TDSM

It was observed that during the offline test the sensory
mapping results of the conventional ANN and the TSDM
were not too different. However, during the online
experiments, the TDSM outperformed the conventional
ANN a great deal. This was mainly due to the data
fluctuation in practical bipedal walking on sloped
surfaces. The TDSM has the advantage of predicting the
trends in the sensory information and thus it can record
the motion characteristics better than the conventional
ANN.

6. Conclusion

A design methodology to map the sensory data of a
bipedal robot into an environment type is presented in
this paper. The current sensory map design uses 7 kinds
of sensory information in 3 consecutive sample instants as
the input data of the time-delay neural network. The
TDSM records the trend of the sensor values of a bipedal
walking robot. Experimental results show that the TDSM
performs satisfactorily for the environment recognition in
bipedal walking with a recognition rate of 98.02%. This
design can be implemented for any bipedal robot without
advance knowledge of the kinematics. With the sensory
map, a bipedal robot can recognize the environment type
online, giving an opportunity to adapt to it.

The results of this study support the idea that adding
time delay data into the input of the classifier for
environment recognition can increase the recognition rate
due to the time-related property. The current study has
only examined three types of environment. However, it is
shown that the TDSM can estimate other similar
environments if proper sensory data can be provided. It is
also desirable to detect the transition of the slope in
bipedal walking. In the current design, the robot falls as it
walks to the transition slope. Since the timing of foot
contact with the ground is uncontrollable, there will be
situations for the transition and the
accompanying sensory data. The transition recognition
thus poses an important problem for future sensory

countless
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mapping design. Further research is being undertaken in
the design of a compensation method for adjusting such
dynamic walking based on the recognized environment.
With the corresponding walking pattern, a bipedal robot
will be able to adapt to unknown environments.
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