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An anticline, known as a convex-upward fold in layers of rock, commonly is formed during lateral com-
pression, which may be elected as a potential site for carbon sequestration. A mathematical model is
developed in this study for describing the steady-state drawdown distribution in an anticline aquifer
in response to the constant-flux pumping. The topographical shape of the anticline is mimicked by three
successive blocks. The solution is obtained by applying the infinite Fourier transform and the finite Fou-
rier cosine transform in each blocks and acquiring the hydraulic continuities between the blocks. Simu-
lated results reveal that the introduction of a thin-limbs or narrow-ridged anticline would produce a
much greater head drop in the ridge zone. For a well of constant pumping rate, the dimensionless draw-
down around the well increases with decreasing well screen length or/and aquifer anisotropy ratio. An
examination of the effect of well location on the drawdown reveals that the partially penetrating well
located at the top-middle of the ridge zone produces the largest drawdown. The simulation of the flow
in an anticline aquifer based on MODFLOW results in slightly smaller drawdown values in most regions
when compared with those predicted by the present solution. The present solution can also be used to
simulate the flow in a slab-shaped aquifer or a hillslope aquifer. It can be applied to determine the aquifer
parameters if coupled with an optimization scheme and to provide the basis for selecting a potential site
for carbon sequestration in the future as well.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

An anticline, as a result of lateral compression in crustal defor-
mation, is a convex-upward fold in layers of rock. A well-struc-
tured anticline formation may be chosen as a candidate site for
carbon sequestration. The movement of groundwater may carry
the contaminants; therefore, explicit information such as geologi-
cal structure and hydrogeological data are necessary to assess
the applicability of the potential storage sites or to predict the
migration of the contaminant plume in the site. Ashjari and Raeisi
(2006) indicated that the anticline structure of aquifers and the
geometry of bedrocks primarily dominate the direction of regional
groundwater flow in an inquiry into the groundwater flow in
Zagros anticlines in Iran. In recent years, several articles (e.g., För-
ster et al., 2006; Bergmann et al., 2010) have been devoted to the
CO2SINK project at Ketzin site in Germany. The Ketzin site is situ-
ated in the eastern part of the Roskow–Ketzin double anticline and
selected to inject CO2 to investigate the in situ physical, chemical,
and biological process for geological carbon sequestration.
Recently, numerical or analytical solutions were developed to
investigate the head responses in anticline reservoirs due to the
well injection or pumping. Al-Mohannadi et al. (2007) used a fi-
ll rights reserved.
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nite-difference method to simulate the transient pressure re-
sponses to horizontal wells in anticline reservoirs and curved
wells in slab reservoirs. Yeh and Kuo (2010) proposed a steady-
state analytical solution for a constant-head injection at a fully pe-
netrating well into a heterogeneous, anisotropic, and dome-like
anticline reservoir.

In engineering practices, a constant-flux pumping test with-
draws water at a constant flow rate from the test well during the
test period and measures the drawdown responses in one or more
observation wells in the vicinity. Generally, a drawdown solution is
either incorporated with an optimization technique or applied to
generate the type curves for aquifer test interpretation to deter-
mine the best-fit aquifer parameters from the observed drawdown
data. The Theis equation (1935) is the most popular tool used to
estimate the drawdown distribution or to determine the aquifer
parameters in an inverse problem for a constant-flux pumping in
a confined aquifer. It would however not be appropriate to use
the well and aquifer assumptions inherent in developing these
equations to describe the flow in an anticline aquifer.

The integral transform method is used widely to deal with the
groundwater flow problems edged with peculiar boundaries. For
example, Chan et al. (1976) used the finite Fourier transform to
develop the transient and steady-state drawdown solutions for
pumping in a rectangular aquifer. Chan et al. (1978) and Yeh and
Chang (2006) applied the finite sine transform and Hankel
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Notation

ai distance from the origin to the outer boundary of zone i
in x-direction (L)

An function of xD defined by Eq. (23)
bi height of zone i (L)
Bk function of xD defined by Eq. (27)
C1m, C2m, C4m, C6m, C7m functions of xD defined by Eqs. (41), (42),

(44), (46), and (47), respectively
C3n, C5k, C8m, C9m constants defined by Eqs. (43), (45), (A22), and

(A23), respectively
D00, D0i, Dn0, Dni constants defined by Eqs. (A2), (A3), (A4), and

(A5), respectively
E00, E0j, En0, Enj constants defined by Eqs. (A6), (A7), (A8), and

(A9), respectively
F00, F0i, Fk0, Fki constants defined by Eqs. (A10), (A11), (A12), and

(A13), respectively
G00, G0j, Gk0, Gkj constants defined by Eqs. (A14), (A15), (A16), and

(A17), respectively
kx, ky, kz hydraulic conductivities in the x, y and z directions,

respectively (L/T)
l screen length (L)
q volumetric pumping rate per unit length of the pumping

well (L2/T)
qD dimensionless volumetric pumping rate per unit length

of the pumping well
QD dimensionless volumetric pumping rate of the pumping

well
rD dimensionless radial distance from the pumping well to

the observation well
RD relative difference calculated by Eq. (58)
si drawdown in zone i (L)
sDi dimensionless drawdown in zone i
�sDi dimensionless drawdown for zone i in Fourier domain
�̂sD1P ; �̂sD1N dimensionless drawdown for zones 1P and 1N in Fourier

and finite Fourier cosine domain, respectively
S storativity of the aquifer

S0, Sn constants defined by Eqs. (A18) and (A19)
tD dimensionless time defined by Eq. (57)
T transmissivity of the aquifer (L2/T)
T0, Tk constants defined by Eqs. (A20) and (A21)
up, uim, uin dimensionless variables in well functions, defined by

Eqs. (54), (55), and (56), respectively
U unit step function
Uc, Uc0, Ucm constants defined by Eq. (32)
V0, Vn coefficients in Eqs. (22), (38), and (39)
W0, Wk coefficients in Eqs. (26), (38), and (39)
W well function
x0, y0, z0 coordinate of the top point of the pumping well
x0D, y0D, z0D dimensionless coordinate of the top point of the

pumping well
xD, yD, zD dimensionless coordinate variables
xDai dimensionless x-direction distance from the origin to

the outer boundary of zone i
zDbi dimensionless height of zone i
zDl dimensionless screen length of the pumping well
an constant defined by Eq. (24)
bk constant defined by Eq. (28)
vyx, vzx anisotropy ratios
d Dirac delta function
e Fourier transform variable
/(m, n) constant defined by Eq. (48)
cm constant defined by Eq. (40)
km finite Fourier cosine transform variable used with re-

spect to Eq. (1) and defined by Eq. (31)
h angle between the positive xD-axis and the line connect-

ing the pumping and observation well
#(m, k) constant defined by Eq. (49)
xn finite Fourier cosine transform variable used with re-

spect to Eq. (10) and defined by Eq. (25)
fk finite Fourier cosine transform variable used with re-

spect to Eq. (16) and defined by Eq. (29)
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transform to develop the transient and steady-state analytical
solutions for head distribution in a wedge-shaped aquifer. On the
other hand, some drawdown solutions accounting for various
topography boundaries in flow systems are developed based on
the image-well method. The method removes aquifer boundaries
and place pumping or recharging image wells at judicious loca-
tions. The drawdown in an observation well is calculated by sum-
ming up the drawdown or buildup due to the real well and image
wells (Ferris et al., 1962; Streltsova, 1988; Chen et al., 2009).

The domain decomposition method (DDM) can be applied to
handle the problem with complex geometry or mix-typed bound-
ary by splitting the problem domain into several subdomains. The
solutions for each subdomain are developed to satisfy the corre-
sponding boundary conditions as well as the continuities of head
and flux at the interface between the connected elements. The con-
cept of DDM was first presented in Kirkham (1957) to calculate the
electrostatic potential between two concentric coaxial capped cyl-
inders. The procedure was further extended in Kirkham (1959) to
develop the hydraulic head solution for the flow toward a partially
penetrating well in a confined aquifer. Later, Javandel and Zaghi
(1975) used a similar procedure to obtain the potential distribution
in a confined aquifer due to the pumping at a well vertically and
fully penetrating the aquifer and of radially finite extension on
the bottom of the aquifer. A similar decomposition concept was
also applied by Connell et al. (1998) for solving the problem of
topographically driven flow in hillslope aquifers by dividing the
problem domain into several rectangular elements.

The objective of this study is to develop a mathematical model
for describing the steady-state drawdown distribution in response
to a constant-flux pumping in an anticline aquifer. A pumping well
of infinitesimal diameter partially or fully penetrates the aquifer.
The anticline aquifer is homogeneous, anisotropic and confined
by a curved layer on the top and a horizontal impermeable layer
at the bottom. Based on the DDM, the solution of the model is ob-
tained by applying the integral transform techniques including
Fourier transform (FT) and finite Fourier cosine transform (FFCT)
within each block. The solution is useful in predicting the spatial
drawdown distribution in a wide variety of anticline aquifer sys-
tems and investigating the influences of well location, screen
length, aquifer geometry and anisotropy on the groundwater flow
system. Moreover, the present solution may be applied to simulate
the flow in hillslope and slab-shaped aquifers by assuming some of
the adjacent blocks with the same heights. In addition to the ana-
lytical approach, the numerical model, MODFLOW, is used to per-
form simulations and the results are compared with those
predicted by the present solution. The present solution can serve
as an invaluable tool for gaining physical insight of the behavior
of groundwater flow affected by geologic and geometric settings
and for determining the aquifer parameters in an inverse problem
if integrated with an optimization algorithm.
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2. Methodology

2.1. Mathematical modeling of the flow problem

Fig. 1 sketches the configuration for a well in an anticline aqui-
fer. Assume that the line sink, i.e., the pumping well of an infinites-
imal radius, is extended along the z direction with length l from the
point (x0, y0, z0) = (0, 0, z0). The anticline aquifer is of a finite width
in the x direction, a finite thickness in the z direction, but infinite
extent in both ±y directions. In addition, the aquifer is confined,
homogeneous, and anisotropic with the hydraulic conductivities
of kx, ky and kz in the x, y and z directions, respectively. To simplify
the flow problem, three successive blocks with different heights
and widths are used to mimic the topographical shape of anticline
aquifer. The height of the middle block is determined by the acme
of the anticline structure, while those of the adjacent blocks are
designated by the corresponding margins of the limbs. The adopted
widths of the blocks should make the simulated aquifer have the
same volume as the original one as possible. Furthermore, the anti-
cline aquifer is decomposed into four subdomains, i.e., zones 1P,
1N, 2 and 3, according to the shapes of blocks and the well location.

The mathematical model is developed in a dimensionless form
to produce the simulated results in the most general way. The
height of the middle block, b1, is chosen as a reference length to
nondimensionalize other variables. The dimensionless variables
and parameters are defined as follows: xD = x/b1, yD = y/b1, and
zD = z/b1 denoting the dimensionless coordinate variables;
x0D = x0/b1, y0D = y0/b1, and z0D = z0/b1 representing the top point
of the pumping well in the dimensionless form; xDai = ai/b1 repre-
senting the dimensionless distance in x-direction of the outer
boundary from the origin in zone i; zDbi = bi/b1 defining the dimen-
sionless height of zone i, except that zDb1 = 1 standing for those in
zones 1P and 1N; sDi = si/b1 denoting the dimensionless drawdown
in zone i, where the notation si is the drawdown in zone i (L);
zDl = l/b1 representing the dimensionless screen length of the
pumping well; qD = q/kxb1 expressing the dimensionless volumet-
ric pumping rate per unit length of the pumping well, where the
notation q is the volumetric pumping rate per unit length
(L2 T�1); vyx = ky/kx and vzx = kz/kx representing the anisotropy
ratios.

2.1.1. Formulation for flow in zone 1
In the development of the mathematical model, the middle

block (shown in Fig. 1) is regarded as zone 1, which includes zones
Fig. 1. Schematic representation of a groundwater flow problem in an anticline aquifer w
into three blocks.
1P and 1N. The steady-state groundwater flow to the pumping well
in zone 1 is governed by

@2sD1

@x2
D

þ vyx
@2sD1

@y2
D

þ vzx
@2sD1

@z2
D

¼ �qDfU½zD � ðz0D � zDlÞ�

� UðzD � z0DÞgdðxD � x0DÞdðyD � y0DÞ; xDa1N 6 xD 6 xDa1P;

�1 6 yD 61; 0 6 zD 6 1 ð1Þ

where U and d are the unit step function and Dirac delta function,
respectively. The sink term in Eq. (1) implies that the flux through
the screen is of uniform strength. The boundary conditions at infin-
ity from the sink in the y direction are assumed to be

sD1ðxD;�1; zDÞ ¼ 0 ð2Þ

and

@sD1ðxD;�1; zDÞ
@yD

¼ 0 ð3Þ

For a confined aquifer, the conditions at the top and bottom imper-
meable boundaries are respectively written as

@sD1ðxD; yD;1Þ
@zD

¼ 0 ð4Þ

and

@sD1ðxD; yD;0Þ
@zD

¼ 0 ð5Þ

The continuities of flux and drawdown at the right-hand edge of
zone 1 are respectively given as

@sD1ðxDa1P; yD; zDÞ
@xD

¼ @sD2ðxDa1P; yD; zDÞ
@xD

; 0 6 zD < zDb2 ð6aÞ

@sD1ðxDa1P; yD; zDÞ
@xD

¼ 0; zDb2 6 zD 6 1 ð6bÞ

and

sD1ðxDa1P ; yD; zDÞ ¼ sD2ðxDa1P; yD; zDÞ; 0 6 zD < zDb2 ð7Þ

Similarly, for the left-hand edge of zone 1, the following conditions
should be satisfied:

@sD1ðxDa1N; yD; zDÞ
@xD

¼ @sD3ðxDa1N; yD; zDÞ
@xD

; 0 6 zD < zDb3 ð8aÞ

@sD1ðxDa1N; yD; zDÞ
@xD

¼ 0; zDb3 6 zD 6 1 ð8bÞ
ith a line sink located along the z axis. The anticline aquifer is approximately divided
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and

sD1ðxDa1N; yD; zDÞ ¼ sD3ðxDa1N ; yD; zDÞ; 0 6 zD < zDb3 ð9Þ
2.1.2. Formulation for flow in zone 2
The steady-state groundwater flow equation in zone 2 is ex-

pressed as:

@2sD2

@x2
D

þ vyx
@2sD2

@y2
D

þ vzx
@2sD2

@z2
D

¼ 0; xDa1P 6 xD 6 xDa2;

�1 6 yD 61; 0 6 zD 6 zDb2 ð10Þ

The boundary conditions at infinity in the ±y directions require that

sD2ðxD;�1; zDÞ ¼ 0 ð11Þ

and

@sD2ðxD;�1; zDÞ
@yD

¼ 0 ð12Þ

The no-flow conditions hold at the top and bottom boundaries
respectively as

@sD2ðxD; yD; zDb2Þ
@zD

¼ 0 ð13Þ

and

@sD2ðxD; yD;0Þ
@zD

¼ 0 ð14Þ

Assume a constant-head boundary located at the lateral distance of
xDa2 from the pumping well; that is,

sD2ðxDa2; yD; zDÞ ¼ 0 ð15Þ

Note that Eqs. (6a) and (7), representing the continuity conditions
of flux and drawdown at the interface between zones 1P and 2,
are the left-hand boundary conditions of zone 2.

2.1.3. Formulation for flow in zone 3
The steady-state groundwater flow equation in zone 3 is given

by

@2sD3

@x2
D

þ vyx
@2sD3

@y2
D

þ vzx
@2sD3

@z2
D

¼ 0; xDa3 6 xD 6 xDa1N;

�1 6 yD 61; 0 6 zD 6 zDb3 ð16Þ

The boundary conditions at infinite distance in the ± y directions re-
quire that

sD3ðxD;�1; zDÞ ¼ 0 ð17Þ

and

@sD3ðxD;�1; zDÞ
@yD

¼ 0 ð18Þ

The top and bottom conditions in zone 3 are respectively given as

@sD3ðxD; yD; zDb3Þ
@zD

¼ 0 ð19Þ

and

@sD3ðxD; yD;0Þ
@zD

¼ 0 ð20Þ

A constant-head condition is applied at the lateral distance of xDa3

from the pumping well, which is described as

sD3ðxDa3; yD; zDÞ ¼ 0 ð21Þ

Furthermore, Eqs. (8a) and (9) state the continuity requirements of
flux and drawdown at the interface between zones 1N and 3.
2.2. Analytical solutions

2.2.1. Dimensionless drawdown solutions in Fourier domain for zones
2 and 3

To solve the partial differential Eqs. (1), (10), and (16) with their
corresponding boundary conditions, the techniques of FT and FFCT
are applied to the variables yD and zD, respectively, to obtain the or-
dinary differential equations (ODEs) in terms of xD. Note that for-
mulas of FFCT applied to Eqs. (1), (10), and (16) are different
since the independent variable zD ranges over different intervals
in zones 1, 2, and 3, respectively. We first deal with the flow prob-
lem in zones 2 and 3 since their governing equations are simple
and of the same form. The dimensionless drawdown solution of
zone 2 in Fourier domain satisfying the conditions (10)–(15) is gi-
ven as:

�sD2ðxD; zDÞ ¼ V0A0ðxDÞ þ
X1
n¼1

VnAnðxDÞ cosðxnzDÞ ð22Þ

where

AnðxDÞ ¼
sinh½anðxDa2 � xDÞ�

sinh½anðxDa2 � xDa1PÞ�
; n ¼ 0;1;2;3; . . . ð23Þ

with

an ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2vyx þx2

nvzx

q
; n ¼ 0;1;2;3; . . . ð24Þ

In Eq. (24), e is the FT transform variable; xn, which is the transform
variable applied to Eq. (10) in the FFCT for the integral interval
[0, zDb2], is defined as

xn ¼
np
zDb2

; n ¼ 0;1;2;3; . . . ð25Þ

Note that the coefficients V0 and Vn are the constants needed to be
determined by the remaining boundary conditions (6a) and (7).

As for zone 3, the dimensionless drawdown solution of Eq. (16)
in Fourier domain satisfying conditions (17)–(21) is expressed in
the series form as:

�sD3ðxD; zDÞ ¼W0B0ðxDÞ þ
X1
k¼1

WkBkðxDÞ cosðfkzDÞ ð26Þ

where

BkðxDÞ ¼
sinh½bkðxDa3 � xDÞ�

sinh½bkðxDa3 � xDa1NÞ�
; k ¼ 0;1;2;3; . . . ð27Þ

with

bk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2vyx þ f2

kvzx

q
; k ¼ 0;1;2;3; . . . ð28Þ

and fk, the transform variable used in the FFCT to Eq. (16) for the
integral interval [0, zDb3], defined as

fk ¼
kp
zDb3

; k ¼ 0;1;2;3; . . . ð29Þ

The coefficients W0 and Wk in Eq. (26) are the remaining undeter-
mined constants.

2.2.2. Dimensionless drawdown solution in Fourier domain for zone 1
The FT with respect to yD and FFCT with respect to zD are ap-

plied to Eq. (1) and the result is

d2�̂sD1

dx2
D

� ðe2vyx þ k2
mvzxÞ�̂sD1 ¼ �qDUcdðxD � x0DÞ; xDa1N 6 xD

6 xDa1P ð30Þ



Þ

Fig. 2. The dimensionless drawdown distributions predicted by the present
solution and the image-well method (Ferris et al., 1962) for pumping at the middle
of a slab-shaped aquifer bounded by two parallel constant-head boundaries.
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where �̂sD1 is the dimensionless drawdown in Fourier and finite Fou-
rier cosine domain; km is the transform variable used in the FFCT to
Eq. (1) for the integral interval [0, 1], which is defined as

km ¼ mp; m ¼ 0;1;2;3; . . . ð31Þ

In addition,

Uc ¼
Z z0D

z0D�zDl

cosðkmzDÞdzD ð32Þ

which can be reduced to Uc = Uc0 = zDl when m = 0; otherwise,

Uc ¼ Ucm ¼
sinðkmz0DÞ � sin½kmðz0D � zDlÞ�

km
; m ¼ 1;2;3; . . . ð33Þ

To solve Eq. (30) with the term of Dirac delta function, we consider
the following sets of ODEs by dividing zone 1 into zones 1P and 1N
as:

d2�̂sD1P

dx2
D

� ðe2vyx þ k2
mvzxÞ�̂sD1P ¼ 0; 0 < xD 6 xDa1P ð34Þ

and

d2�̂sD1N

dx2
D

� ðe2vyx þ k2
mvzxÞ�̂sD1N ¼ 0; xDa1N 6 xD < 0 ð35Þ

The boundary condition at xD = 0 due to the continuity requirement,
which is expressed as

�̂sD1Pð0þÞ ¼ �̂sD1Nð0�Þ ð36Þ

Integration of Eq. (30) with respect to xD along 0� to 0+ yields the
second boundary condition as

d�̂sD1Pð0þÞ
dxD

� d�̂sD1Nð0�Þ
dxD

¼ �qDUc ð37Þ

The dimensionless drawdown solutions for zones 1P and 1N in Fou-
rier domain can be obtained by taking the inversion of FFCT to the
solutions of Eqs. (34) and (35) with conditions (36) and (37). Apply-
ing Eqs. (6) and (8) to the solutions of zones 1P and 1N, respectively,
yields dimensionless drawdowns as

�sD1PðxD;zDÞ¼
qDUc0

2c0
½C10ðxDÞþC20ðxDÞ��zDb2C30C40ðxDÞV0þzDb3C50C60ðxDÞW0

þ
X1
m¼1

qD Ucm
cm
½C1mðxDÞþC2mðxDÞ�

� 2
cm

sinðkm zDb2Þ
km

h i
a0C30V0þ

P1
n¼1

/ðm;nÞanC3nVn

� �
C4mðxDÞ

þ 2
cm

sinðkm zDb3Þ
km

h i
b0C50W0þ

P1
k¼1

#ðm;kÞbkC5kWk

� �
C6mðxDÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

cosðkmzDÞ

ð38Þ

in zone 1P and

�sD1NðxD;zDÞ¼
qDUc0

2c0
½C10ðxDÞþC70ðxDÞ��zDb2C30C40ðxDÞV0þzDb3C50C60ðxDÞW0

þ
X1
m¼1

qD Ucm
cm
½C1mðxDÞþC7mðxDÞ�

� 2
cm

sinðkm zDb2Þ
km

h i
a0C30V0þ

P1
n¼1

/ðm;nÞanC3nVn

� �
C4mðxDÞ

þ 2
cm

sinðkm zDb3Þ
km

h i
b0C50W0þ

P1
k¼1

#ðm;kÞbkC5kWk

� �
C6mðxDÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

cosðkmzD

ð39Þ

in zone 1N, where

cm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2vyx þ k2

mvzx

q
; m ¼ 0;1;2;3; . . . ð40Þ

C1mðxDÞ ¼
cosh½cmðxDa1P þ xDa1N � xDÞ�

sinh½cmðxDa1P � xDa1NÞ�
; m ¼ 0;1;2;3; . . . ð41Þ

C2mðxDÞ ¼
cosh½cmðxDa1P � xDa1N � xDÞ�

sinh½cmðxDa1P � xDa1NÞ�
; m ¼ 0;1;2;3; . . . ð42Þ

C3n ¼ coth½anðxDa2 � xDa1PÞ�; n ¼ 0;1;2;3; . . . ð43Þ
C4mðxDÞ ¼
cosh½cmðxDa1N � xDÞ�

sinh½cmðxDa1P � xDa1NÞ�
; m ¼ 0;1;2;3; . . . ð44Þ

C5k ¼ coth½bkðxDa3 � xDa1NÞ�; k ¼ 0;1;2;3; . . . ð45Þ

C6mðxDÞ ¼
cosh½cmðxDa1P � xDÞ�

sinh½cmðxDa1P � xDa1NÞ�
; m ¼ 0;1;2;3; . . . ð46Þ

C7mðxDÞ ¼
cosh½cmðxDa1P � xDa1N þ xDÞ�

sinh½cmðxDa1P � xDa1NÞ�
; m ¼ 0;1;2;3; . . . ð47Þ

/ðm; nÞ ¼

sin½ðkm þxnÞzDb2�
2ðkm þxnÞ

þ zDb2

2
; for km ¼ xn ð48aÞ

sin½ðkm þxnÞzDb2�
2ðkm þxnÞ

þ sin½ðkm �xnÞzDb2�
2ðkm �xnÞ

; for km – xn ð48bÞ

8>>><
>>>:

and

#ðm; kÞ ¼

sin½ðkm þ fkÞzDb3�
2ðkm þ fkÞ

þ zDb3

2
; for km ¼ fk ð49aÞ

sin½ðkm þ fkÞzDb3�
2ðkm þ fkÞ

þ sin½ðkm � fkÞzDb3�
2ðkm � fkÞ

; for km – fk ð49bÞ

8>>><
>>>:

Substituting Eqs. (22) and (38) into Eq. (7), the coefficients V0 and Vn

can be expressed in terms of the functions of V0, Vn, W0 and Wk via
the determination of the coefficients in the Fourier cosine series.
Similarly, the coefficients W0 and Wk are related to V0, Vn, W0 and
Wk by substituting Eqs. (26) and (39) into Eq. (9). The coefficients
V0, Vn, W0 and Wk can then be solved in the matrix form as pre-
sented in Appendix A (i.e., Eq. (A1)).

2.2.3. Inverse Fourier transform
The FT of function f(yD) with respect to the variable yD is defined

as (Jeffrey and Dai, 2008):

�f ðeÞ ¼
Z 1

�1
f ðyDÞe�ieyD dyD ð50Þ

where �f ðeÞ is the transformed function and its inversion is ex-
pressed as
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f ðyDÞ ¼
1

2p

Z 1

�1

�f ðeÞeieyD de ð51Þ

The function �f ðeÞ refers to the drawdown solutions, Eqs. (22), (26),
(38), and (39), in the Fourier domain for the flow in the anticline
aquifer. Since the drawdown solutions are even functions with re-
spect to the variable e, Eq. (51) can be reduced to

f ðyDÞ ¼
1
p

Z 1

0

�f ðeÞ cosðeyDÞde ð52Þ

The numerical calculation of Eq. (52) is achieved by the routine
DQDAWF of IMSL (2003), which has the ability to cope with inte-
grals of semi-infinite interval and of cosine or sine integrands.

3. Results and discussion

3.1. Special cases

3.1.1. Slab-shaped aquifer bounded by parallel recharge boundaries
The present solution can be simplified to describe the pumping

in an isotropic slab-shaped aquifer bounded by two parallel con-
stant-head boundaries along y-direction if the three blocks are of
the same height, i.e., zDb1 = zDb2 = zDb3 = 1. In this section, we as-
sume a fully penetrating well pumped at a dimensionless flow rate
of QD = qDzDl = 1 and located at the middle of the slab-shaped aqui-
fer with xDa2 = 1 and xDa3 = �1. The same problem refers to Ferris
Fig. 3. Plots for the pumping at a fully penetrating well in a hillslope aquifer. The simula
drawdown contours and (b) relative difference map in a step-like aquifer. In case (c), M
et al. (1962, Fig. 42), who illustrates the application of image-well
method for the pumping in an aquifer bounded by two parallel
boundaries. If an observation well is located at the dimensionless
distance of rD from the pumping well, the dimensionless draw-
down at the well can be formulated by superposition of Theis solu-
tion (1935) as

sDðrD; tDÞ ¼
Q D

4p
WðupÞ þ

X1
m¼1

ð�1ÞmWðuimÞ þ
X1
n¼1

ð�1ÞnWðuinÞ
" #

ð53Þ

where W is the well function; up, uim, and uin are the dimensionless
variables respectively defined as

up ¼
r2

D

4tD
ð54Þ

uim ¼
r2

D þ 4m2 � 4mrD cos h
4tD

ð55Þ

and

uin ¼
r2

D þ 4n2 � 4nrD cosðp� hÞ
4tD

ð56Þ

in which h is the angle between the positive xD-axis and the line
connecting the pumping and observation wells; tD is the dimension-
less time defined as
tions were carried out by the present solution and MODFLOW for (a) dimensionless
ODFLOW with multiple steps is used to approximate the inclined boundary.
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tD ¼
Tt

b2
1S

ð57Þ

with T and S representing the transmissivity and storativity of the
aquifer, respectively. Note that when tD is large enough so that
the flow system reaches the steady state, the dimensionless draw-
downs calculated by the image-well method can then be compared
to the simplified solution. Fig. 2 compares the dimensionless draw-
down calculated by the present solution and Eq. (53) for pumping at
the middle of the slab-shaped aquifer bounded by two parallel con-
stant-head boundaries. The dimensionless drawdown are calculated
along the radial direction for h = 0, p/4, and p/2. The dimensionless
drawdown distributions predicted by the present solution in this
special case match very well with those predicted by Eq. (53).

3.1.2. Hillslope aquifer
Fig. 3a shows the dimensionless drawdown distribution pre-

dicted by the present solution and MODFLOW for flow in a hill-
slope confined aquifer due to the pumping. The hillslope aquifer
is mimicked by setting two of the adjacent blocks with the same
height, which has the geometry of xDa1P = 0.5, xDa1N = �0.5,
xDa2 = 2, xDa3 = �1, zDb1 = zDb3 = 1, and zDb2 = 0.5. In addition, a fully
penetrating well pumped at a dimensionless pumping rate of
QD = 1. In the simulation achieved by MODFLOW, the aquifer is as-
sumed bounded by two parallel constant-head boundaries with
the distance of 30 m in width. The aquifer thickness varies from
10 m to 5 m in the hillslope. Note that the infinite boundaries in
the ±y-directions are replaced by two assigned constant-head
boundaries located at ±40 m from the pumping well. The hydraulic
conductivities are 10�4 m/s in the x-, y- and z-directions. The
Fig. 4. (a) Dimensionless drawdown contours and (b) relative difference map on xD–zD p
anticline aquifer from the simulations carried out by the present solution and MODFLO
pumping rate at the well is 10�2 m3/s so that the dimensionless
pumping rate will be QD = 1. The length of time is set to
9.46728 � 107 s (1095.75 day) for the steady-state simulation.
The model domain has been discretized using a uniform cubic grid
with a step of 0.5 m. That is, the aquifer is discretized with 21 lay-
ers, 61 columns, and 161 rows.

Fig. 3a shows that the dimensionless drawdown contours are
influenced by the inclination in the hillslope aquifer. The vertical
flow appears around the concave corner of the top boundary, while
the flow seems horizontal elsewhere. The figure indicates that a
slight difference in the drawdown distribution occurs near the con-
cave corner of the top boundary between the present solution and
MODFLOW. Fig. 3b is the relative difference map with the relative
difference values calculated by
RDð%Þ ¼ sD;MODFLOW � sD;present solution

sD;present solution
� 100 ð58Þ
In Fig. 3b, the relative difference contours with negative values rep-
resent that the drawdown predicted by MODFLOW is smaller than
that estimated by the present solution. The largest relative differ-
ence is up to 8% (absolute value) happening near the concave corner
of the top boundary. Fig. 3c presents the simulated results from
MODFLOW in a hillslope aquifer with more elaborate representa-
tion on the sloping boundary. The significant flexure contours be-
tween 0.2 and 0.6 reflect the influence of inclined top boundary
on the flow pattern.
lane with yD = 0 for pumping at a fully penetrating well in an isotropic and step-like
W.
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3.2. Effect of anticline aquifer geometry

3.2.1. Base case of anticline aquifer
To investigate the influence of aquifer geometry on the flow

pattern, we assume a simple case of a fully penetrating well lo-
cated at an isotropic anticline aquifer. The aquifer geometry is
characterized by xDa1P = 0.5, xDa1N = �0.5, xDa2 = 1, xDa3 = �1, and
zDb2 = zDb3 = 0.5. The well pumps at a dimensionless flow rate of
QD = 1. Fig. 4a depicts the dimensionless drawdown distribution
in the xD–zD plane for yD = 0 predicted by the present solution
and MODFLOW. In MODFLOW simulation, the anticline aquifer is
bounded by two parallel constant-head boundaries with a distance
of 20 m in width. The acme of the anticline structure is 10 m in
height; the limbs intersect with the two parallel constant-head
boundaries at 5 m in height. The settings of the y-direction bound-
aries, hydraulic conductivities, pumping rate and time length are
the same as those used in the simulation of the hillslope aquifer
flow. The aquifer is discretized into a mesh with 21 layers, 41 col-
umns and 161 rows.

Fig. 4a reveals that most of water flows horizontally around the
well screen and in the limbs; however, conspicuous vertical flow
appears around the concave corner of the top boundary. The
dimensionless drawdown contours intersect with the top and bot-
tom impervious boundaries at right angles. The drawdown con-
tours predicted by MODFLOW seem similar to those by the
present solution except that slight differences can be observed
near the concave corner of the top boundary and the pumping well.
In Fig. 4b, the relative difference map clearly indicates that MOD-
FLOW results in smaller dimensionless drawdown around the
Fig. 5. (a) Dimensionless drawdown contours and (b) relative difference map on xD–zD

aquifer. The simulations were carried out by the present solution in a step-like aquifer
upper part of the pumping well and limb zones than the present
solution. The drawdown predicted by MODFLOW is larger than
that estimated by the present solution around the bottom part of
the pumping well and near the concave corner of the top boundary.
The largest relative difference is up to 5 % occurring near the con-
cave corner of the top boundary.

Fig. 5a compares simulations of the dimensionless drawdown
contours carried out by the present solution in a step-like aquifer
(base case in Fig. 4a) and MODFLOW with multiple steps to
approximate the inclined boundary. The MODFLOW settings of
the x-direction and y-direction boundaries, hydraulic conductivi-
ties, pumping rate, time length, and grid discretization are the
same as those used in the simulation of Fig. 4a. Fig. 5a shows the
smooth and curved drawdown contours in the yD–zD profile for
xD = 0. The contours intersected with the top boundaries at bevel
angles due to the coarse discretization on the model grid. Fig. 5b
shows the relative difference map of dimensionless drawdowns
predicted by MODFLOW and the present solution on the over-
lapped region. The figure shows that MODFLOW gives smaller
dimensionless drawdown than the present solution for the most
part in the anticline and larger dimensionless drawdown at the
upper parts of the limbs, when the simulation is achieved by
approximating the top boundary of aquifer with multiple steps.
The difference in the approximations of aquifer geometry would
lead to the relative difference of the predicted dimensionless draw-
downs between MODFLOW and the present solution up to 30%
(absolute value). Overall, one may overestimate the dimensionless
drawdown in most regions when applying the simple one-step like
top boundary to simulate the anticlinal geometry.
plane with yD = 0 for pumping at a fully penetrating well in an isotropic anticline
and MODFLOW with multiple steps to approximate the inclined boundary.



Fig. 6. Plots of dimensionless drawdown contours and flow fields for pumping at a fully penetrating well in an isotropic aquifer of (a) thin limbs and (b) narrow ridge.

Fig. 7. A comparison of largest dimensionless drawdown at (xD, yD) = (0.001, 0) for
the cases of different screen lengths and aquifer anisotropy ratios. The wells are
screened from the top-middle of the anticline aquifer. The geometry of the aquifer
is the same as the base case shown in Fig. 4a.
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3.2.2. Anticline aquifers of thin limbs and narrow ridge
Fig. 6 examines results obtained from flow in two other aqui-

fers with different geometries by considering the aquifer por-
trayed in Fig. 4a as a base case. Fig. 6a illustrates the
dimensionless drawdown contours for an anticline aquifer of thin
limbs. The height of the limbs are reduced to half of that in the
base case, i.e., zDb2 = zDb3 = 0.25. Fig. 6b depicts the case of nar-
row-ridged anticline with xDa1P = 0.25 and xDa1N = �0.25. Both fig-
ures show that most of water flows horizontally around the well
and in the limbs. Significantly vertical flow appears around the
concave corner of the top boundary in the ridge zone due to
the geometric variation. In addition, the introduction of anticline
aquifers with thin limbs or narrow ridge both produces a sharp
head drop in the ridge zone in comparison with that of the base
case at steady state.
3.3. Effect of well partial penetration

3.3.1. Effect of screen length and aquifer anisotropy
Fig. 7 demonstrates the largest dimensionless drawdown at

(xD, yD) = (0.001, 0) along the z-direction for the cases of different
dimensionless screen length of zDl = 0.2, 0.4, 0.6, 0.8 and 1.0 and
various aquifer anisotropy ratios of vzx = 0.3, 1.0, and 3.0. The wells
are screened from the top of the aquifer with a constant dimen-
sionless pumping rate of QD = 1. Among these cases, the largest
dimensionless drawdown appears at the case of the smallest vzx

and zDl (vzx = 0.3 and zDl = 0.2) near the top of the aquifer. More-
over, the influence of aquifer anisotropy on the drawdown in-
creases with the decrease of screen length.

Figs. 8a and b display the dimensionless drawdown contours for
the anisotropic cases of vzx = 0.3 and 3, respectively. In Fig. 8a, sig-
nificant vertical flow can be observed in the ridge and limb zones.
The contours for sD = 0.3 to 0.8 are nearly horizontal, which reflect



Fig. 8. Plots of dimensionless drawdown contours and flow fields for pumping at a partially penetrating well in the aquifers with the anisotropy ratios of (a) vzx = 0.3 and (b)
vzx = 3. The dimensionless screen length of the pumping well is 0.2.
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apparent vertical flow cross this region. Because kx is greater than
kz in this case (vzx = 0.3), most of flow goes through the horizontal
path surrounding the well, leading to the larger drawdown in the
upper zone 1 (i.e., 0.8 6 zD < 1). The resultant hydraulic gradient
as well as the boundary restriction causes an obvious vertical flow
below this zone. On the other hand, Fig. 8b represents an uncom-
mon case of kz greater than kx (vzx = 3). In this case, the vertical
path for flow into the well is superior to the horizontal one, which
results in the contours around the well look like half ellipses. The
flow in the limbs is mainly horizontal. However, obviously vertical
flow can be observed in the central zone 1 below the well (zD < 0.8
and |xD| < 0.2) and around the concave corner of the top boundary
in the anticline.

3.3.2. Effect of well location
Fig. 9 illustrates the influence of well location on the flow pat-

tern. The dimensionless screen length of the partially penetrating
well is considered to be zDl = 0.2; additionally, the isotropic anti-
cline aquifer has the same geometry as the base case. Figs. 9a
and b display the dimensionless drawdown contours at yD = 0 for
the pumping at a partially penetrating well located at the top-mid-
dle and bottom-middle of the aquifer, respectively. The flow pat-
terns on the profile are symmetric to the midline of the aquifer.
Most of water flows horizontally in the limbs except in the zone
near the concave corner of the top boundary. Obviously vertical
flows occur upward and downward in the aquifer as shown in
Figs. 9a and b, respectively, especially in the zone toward the
extremity of the well. The present solution can simulate the
dimensionless drawdown for an arbitrarily located pumping well
in the ridge zone. In the case of Fig. 9c, the partially penetrating
well with the dimensionless screen length of 0.2 is located at a
dimensionless distance of 0.25 from the midline of the anticline
aquifer. The figure shows an asymmetrical flow pattern affected
by the well location and aquifer geometry. Considerable vertical
flow appears in the ridge zone and in the right limb, where
xD < 0.35. In addition, among these three cases, the well located
at the top-middle of the aquifer, as shown in Fig. 9a, has the largest
dimensionless drawdown around the well.
4. Conclusions

A mathematical model has been developed for describing the
steady-state flow caused by the constant-flux pumping in an anti-
cline aquifer. The proposed model accounts for the flow in re-
sponse to partially or fully penetrating wells of infinitesimal
diameter and with uniform inflow flux along the well screen. The
anticline aquifer is homogeneous, anisotropic and confined with
a shape mimicked by three consecutive blocks. The integral trans-
form techniques FT and FFCT are applied to develop the steady-
state solutions in transform space. The coefficients in the solutions
require solving a system of linear equations represented in a ma-
trix form. Finally, the Fourier inversion is applied to obtain the
drawdown solution in real space.

The present solution is applicable to simulate the flow in a slab-
shaped aquifer or a hillslope aquifer by assuming that two or three
successive blocks are of the same height. For a slab-shaped aquifer,
the simulated drawdown responses based on the present solution
are identical to those evaluated by the image-well method when
the well is fully penetrating and the aquifer is homogeneous, iso-



Fig. 9. Plots of dimensionless drawdown contours and flow fields for pumping at a partially penetrating well with the dimensionless screen length of 0.2. The wells are
located at (a) z0D = 1.0 and (b) z0D = 0.2 on the midline of the anticline aquifer and (c) z0D = 0.8 at a dimensionless xD distance of 0.25 from the midline of the anticline aquifer.
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tropic, confined and bounded by two parallel constant-head
boundaries. Both the present solution and the numerical model,
MODFLOW, are applied to simulate the case of flow in a hillslope
aquifer. The grid settings allow MODFLOW to simulate the sloping
boundary in a more realistic manner. Commonly, the dimension-
less drawdown predicted by MODFLOW is slightly smaller than
that by the present solution. In addition, the solution is used to
investigate the influences of the aquifer geometry and anisotropy
as well as the well partial penetration and location on the stea-
dy-state flow pattern. The results obtained from these cases exhibit
significant vertical flow around the concave corner of the top
boundary for a fully penetrating well or a partially penetrating well
located at the hump zone of the anticline. The constant-flux pump-
ing in a thin-limbs or narrow-ridged anticline would cause a much
sharper head drop in the ridge zone. The influence of aquifer
anisotropy on the observed drawdown cannot be ignored when
the pumping is carried out in a partially penetrating well, espe-
cially for the well of short open screen. When the screen length
or/and the anisotropy ratio decreases, the dimensionless draw-
down around the pumping well increases under the same constant
pumping rate. Finally, the present solution can simulate the flow
field for an arbitrarily located pumping well. In inspecting the ef-
fect of well location, we find that the well located at the top-middle
of the aquifer would produce larger drawdown around the well
due to the boundary restriction on the anticline shape. The model
MODFLOW, which can provide a better approximation on the
curved boundary, is employed to simulate the flow field of
the anticline aquifer. The simulated results are compared with
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the predicted results from the present solution for flow toward a
fully penetrating well in an anticline aquifer. MODFLOW gives
slightly smaller dimensionless drawdown than the present solu-
tion in most regions, while the simulation is achieved by approxi-
mating the top boundary of aquifer with multiple steps. The
drawdown solution developed in this study can be further applied
to identify the aquifer parameters if integrated with an optimiza-
tion algorithm and to perform preliminary assessment for the
selection of a potential carbon sequestration site.

Acknowledgements

The authors are grateful for support from Taiwan National Sci-
ence Council under the Projects NSC99-2221-E-009-062-MY3,
NSC98-3114-E-007-015, and NSC99-NU-E-009-001.

Appendix A

The coefficients V0, Vn, W0 and Wk in Eqs. (22), (26), (38), and
(39) construct a system of i + j + 2 linear equations, which can be
expressed in matrix form as
1þ D00 D01 D02 . . . D0i E00 E01 E02 . . . E0j

D10 1þ D11 D12 . . . D1i E10 E11 E12 . . . E1j

D20 D21 1þ D22 . . . D2i E20 E21 E22 . . . E2j

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

. . . ..
.

Dn0 Dn1 Dn2 . . . 1þ Dni En0 En1 En2 . . . Enj

F00 F01 F02 . . . F0i 1þ G00 G01 G02 . . . G0j

F10 F11 F12 . . . F1i G10 1þ G11 G12 . . . G1j

F20 F21 F22 . . . F2i G20 G21 1þ G22 . . . G2j

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

. . . ..
.

Fk0 Fk1 Fk2 . . . Fki Gk0 Gk1 Gk2 . . . 1þ Gkj

2
6666666666666666666664

3
7777777777777777777775

V0

V1

V2

..

.

Vi

W0

W1

W2

..

.

Wj

2
666666666666666666664

3
777777777777777777775

¼

S0

S1

S2

..

.

Sn

T0

T1

T2

..

.

Tk

2
666666666666666666664

3
777777777777777777775

ðA1Þ
with the elements

D00 ¼ zDb2a0C30
1
c0

C80 þ
X1
m¼1

2 sin2ðkmzDb2Þ
cmk2

mz2
Db2

C8m

" #
ðA2Þ

D0i ¼ aiC3i

X1
m¼1

2/ðm; iÞ sinðkmzDb2Þ
cmkmzDb2

C8m ðA3Þ

Dn0 ¼ a0C30

X1
m¼1

4/ðm;nÞ sinðkmzDb2Þ
cmkmzDb2

C8m ðA4Þ

Dni ¼ aiC3i

X1
m¼1

4/ðm;nÞ/ðm; iÞ
cmzDb2

C8m ðA5Þ

E00 ¼ �zDb3b0C50
1
c0

C90 þ
X1
m¼1

2 sinðkmzDb2Þ sinðkmzDb3Þ
cmk2

mzDb2zDb3
C9m

" #
ðA6Þ

E0j ¼ �bjC5j

X1
m¼1

2#ðm; jÞ sinðkmzDb2Þ
cmkmzDb2

C9m ðA7Þ

En0 ¼ �b0C50

X1
m¼1

4/ðm;nÞ sinðkmzDb3Þ
cmkmzDb2

C9m ðA8Þ

Enj ¼ �
X1
j¼1

bjC5j

X1
m¼1

4/ðm; nÞ#ðm; jÞ
cmzDb2

C9m ðA9Þ

F00 ¼ zDb2a0C30
1
c0

C90 þ
X1
m¼1

2 sinðkmzDb2Þ sinðkmzDb3Þ
cmk2

mzDb2zDb3
C9m

" #
ðA10Þ

F0i ¼ aiC3i

X1
m¼1

2/ðm; iÞ sinðkmzDb3Þ
cmkmzDb3

C9m ðA11Þ
Fk0 ¼ a0C30

X1
m¼1

4#ðm; kÞ sinðkmzDb2Þ
cmkmzDb3

C9m ðA12Þ

Fki ¼ aiC3i

X1
m¼1

4#ðm; kÞ/ðm; iÞ
cmzDb3

C9m ðA13Þ

G00 ¼ �zDb3b0C50
1
c0

C80 þ
X1
m¼1

2 sin2ðkmzDb3Þ
cmk2

mz2
Db3

C8m

" #
ðA14Þ

G0j ¼ �bjC5j

X1
m¼1

2#ðm; jÞ sinðkmzDb3Þ
cmkmzDb3

C8m ðA15Þ

Gk0 ¼ �b0C50

X1
m¼1

4#ðm; kÞ sinðkmzDb3Þ
cmkmzDb3

C8m ðA16Þ

Gkj ¼ �bjC5j

X1
m¼1

4#ðm; kÞ#ðm; jÞ
cmzDb3

C8m ðA17Þ

S0 ¼
qDUc0

c0
C10ðxDa1PÞ þ

X1
m¼1

2qDUcm sinðkmzDb2Þ
cmkmzDb2

C1mðxDa1PÞ ðA18Þ
Sn ¼
X1
m¼1

4qDUcm/ðm;nÞ
cmzDb2

C1mðxDa1PÞ ðA19Þ

T0 ¼
qDUc0

c0
C10ðxDa1NÞ þ

X1
m¼1

2qDUcm sinðkmzDb3Þ
cmkmzDb3

C1mðxDa1NÞ ðA20Þ

and

Tk ¼
X1
m¼1

4qDUcm#ðm; kÞ
cmzDb3

C1mðxDa1NÞ ðA21Þ

where

C8m ¼ coth½cmðxDa1P � xDa1NÞ�; m ¼ 0;1;2;3; . . . ðA22Þ

and

C9m ¼ csch½cmðxDa1P � xDa1NÞ�; m ¼ 0;1;2;3; . . . ðA23Þ

The subroutine DLSLRG of IMSL (2003) is used to solve Eq. (A1) by
setting i = j = k = n up to 100; accordingly, 202 linear equations
should be solved simultaneously.
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