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Fuzzy-Based Self-Interactive Multiobjective
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Abstract—S-system modeling from time series datasets can pro-
vide us with an interactive network. However, system identifica-
tion is difficult since an S-system is described as highly nonlin-
ear differential equations. Much research adopts various evolution
computation technologies to identify system parameters, and some
further achieve skeletal-network structure identification. However,
the truncated redundant kinetic orders are not small enough as
compared with the preserved terms. In this paper, we integrate
quantitative genetics, bacterium movement, and fuzzy set theory
into evolution computation to develop a new genetic algorithm to
achieve convergence enhancement and diversity preservation. The
proposed exploration and exploitation genetic algorithm (EEGA)
can improve the best-so-far individual and ensure global optimal
search at the same time. The EEGA enhances evolution conver-
gence by golden section seed selection, normal-distribution repro-
duction, mixed inbreeding and backcrossing, competition elitism,
and acceleration operations. Search-then-conquer evolution direc-
tion operations, eugenics-based screen-sifting mutation, eugenic
self-mutation, and fuzzy-based tumble migration preserve popu-
lation diversity to avoid premature convergence. Furthermore, to
ensure that a reasonable gene regulation network is inferred, fuzzy
composition is introduced to derive a reconstruction index. This
performance index let EEGA possess self-interactive multiobjec-
tive learning. The proposed fuzzy-reconstruction-based multiob-
jective genetic algorithm is examined by three dry-lab biological
systems. Simulation results show that a safety pruning action is
guaranteed (the truncation threshold is set to be 10−15 ), and only
one- or two-step pruning action is taken.

Index Terms—Multiobjective, real-value coding, self-interactive,
structure identification.

I. INTRODUCTION

THE inverse problem of identifying the topology of a bio-
logical network from their time-course response is a cor-

nerstone challenge in systems biology [1]. Hill and Michaelis-
Menten’s [2] rate modeling is a forward approach and can
provide local kinetic information of components. However, re-
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peated modification and an undue amount of experiment data
are necessary in parameter identification, especially for a system
with many substances or reactions involved. S-system struc-
ture [3], [4] is another preferred nonlinear dynamic model.
This model can uniquely map dynamic interaction onto its
parameters and possesses good generalization characteristics.
Some researchers used gradient-based computation technolo-
gies to identify the parameters of an S-system model. Marino
and Voit [5] wrote an algorithm to gradually increase model
complexity. Chou et al. [6] adopted an alternating regression
(AR) method. Vilela et al. [1] further proposed an eigenvector
optimization method to solve the convergence issues of an AR
approach. Kutalik et al. [7] introduced the Newton flow analysis.

Recently, many researchers have tried to infer a gene regula-
tory network by stochastic search intelligent technologies such
as genetic programming [8]–[11], evolutionary algorithms [12],
evolution strategies [13], differential evolution [14]–[18], ge-
netic algorithms (GAs) [19]–[21], simulated annealing [22],
hybrid GA and simulated annealing [23], radial basis function
networks [24], and a neural network with particle swarm opti-
mization [25], [26]. However, as system states and parameters
increase, parameter estimation becomes difficult and the solu-
tions are problematic. Furthermore, pruning redundant kinetic
orders to infer a suitable network structure is a big challenge.
Based on the fact that a genetic network is connected sparsely
[27], various penalty terms are introduced [12], [14], [19], [28].
However, no matter what kinds of penalty terms are chosen,
the truncated redundant kinetic orders are not small enough to
guarantee that a safely pruning operation is taken.

Technological contributions of this paper can be described
as follows. A new GA with various advanced genetic op-
erators is proposed in Section II-A. The proposed GA pos-
sesses a tradeoff between exploration and exploitation. In
Section II-B, single-objective performance candidates for pa-
rameter identification are chosen from 28 indexes. These can-
didates are fuzzily integrated with a new kinetic order index
for multiobjective structure identification. In Section III, the
proposed fuzzy-reconstruction-based multiobjective genetic al-
gorithm (FRMOGA) is examined by three genetic networks.
Section IV is the conclusive remark.

II. FUZZY-BASED SELF-INTERACTIVE MULTIOBJECTIVE

EVOLUTION COMPUTATION

S-system is a well-known canonical nonlinear model to cap-
ture genetic interactions/transcriptional regulation. Based on

1063-6706/$31.00 © 2012 IEEE
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Fig. 1. Golden section.

biochemical system theory, the net influx (V +
i ) and efflux (V −

i )
of a system are approximated as power law functions. Each
individual metabolite, protein, or gene is described as

Ẋi = V +
i − V −

i = αi

n+m∏

j=1

X
gi j

j − βi

n+m∏

j=1

X
hi j

j

for i = 1, 2, . . . , n (1)

where n and m are the numbers of dependent and independent
variables, respectively; αi and βj are rate constants, gij and
hij are kinetic orders to denote the interaction from Xj to Xi ,
where a positive value denotes excitatory effect and negative
for inhibitory effect. Recently, various evolutionary optimiza-
tion technologies were used to infer S-type gene regulatory
networks (parameter estimation and structure identification of
an S-system). However, as system states increase, the inference
of a suitable network structure becomes a big challenge and
the solutions are problematic. Local minimum solutions will
generate an error structure. Avoiding from sticking into local
minima is very important to infer such a high dimensional and
nonlinear system by computation approach. Sometimes, in a bi-
ological system, an interaction order is small, but the interaction
effect cannot be neglected. Besides, noise and uncertainty exist
in a biological system, especially for dealing with microarray
data. To achieve correct structure, the gap between true and
redundant interactions should be increased. In other words, the
pruning threshold should be small enough to ensure safety prun-
ing. Furthermore, a wide searching space is necessary since no
prior information is provided. Therefore, the used technologies
should possess good search power and has the ability to escape
from local minima. It is hard for a state-of-the-art GA with sim-
plex crossover (SPXGA) to obtain a satisfactory solution in a
limited computation time [21]. Ho et al. proposed a GA with in-
telligent crossover and Cauchy–Lorentz probability-distribution
mutation to identify genetic networks [21]. We here propose
an exploration and exploitation genetic algorithm (EEGA) to
improve the best-so-far individual and to ensure global optimal
search at the same time. EEGA enhances evolution convergence
by golden section seeds selection, normal-distribution reproduc-
tion, mixed inbreeding and backcrossing, competition elitism,
and acceleration operations. Search-then-conquer evolution di-
rection (SCED) operation, eugenics-based screen-sifting mu-
tation, eugenic self-mutation, and fuzzy-based tumble migra-

tion are to preserve population diversity to avoid premature
convergence.

A. Exploration and Exploitation Genetic Algorithm

EEGA introduces seed group concept for selection (see
Sections II-A2–II-A4) and mixes backcrossing into general in-
breeding operations for crossover. Acceleration, eugenic self-
mutation, and fuzzy-based tumble migration are for the best-
so-far individual to further improve its local and global search
power.

1) Population Initialization: We adopt real coding to exploit
the gradualness of continuous variables. Each parameter is ini-
tialized to cover an entire search space. Therefore, an initial
population with NP individuals is chosen as

I0
i = Imin + r(Imax − Imin), i = 1, ..., NP (2)

where r is a real number from an uniform distribution [0,1], Imin
and Imax are the lower and upper bounds of individual Ii .

2) Golden Section Seeds Selection: Individuals in a popula-
tion are arranged according to their fitness values in a descending
order. Then, a golden section method in Fig. 1 is used as follows
to choose three Elitism-seeds groups, i.e., n1S , n2S , n3S :

n1S = [τ · nS ] for the first seeds group

n2S = [τ · (nS − n1S )] for the second seeds group

n3S = nS − n1S − n2S for the third seeds group (3)

where [•] is a Gauss mark, and τ is the golden section con-
stant; the number of selected seeds is nS = [τ ·NP ] for a small
population (NP < 10) and nS = [(1 − τ)·NP ] for NP ≥ 10.

3) Search-Then-Conquer Evolution Direction: We then
choose three preferable individuals (Ib , Is , and It) from these
three seeds groups; one individual from each group. Fb , Fs ,
and Ft are the associated fitness. These three individuals are
used in SCED operation to determine the evolutionary direction
of a population. SCED proceeds a three-phase search. In the
early-evolution phase, a random walk search is taken for wider
searching

Isced = Ib + r1 ∗ D1 ∗ (Ib − Ir1 ) + r2 ∗ D2 ∗ (Ib − Ir2 ).
(4)

In the middle-evolution phase, a directed-walk search is taken
to provide a good searching direction

Isced = Ib + r1 ∗ D1 ∗ (Ib − Is) + r2 ∗ D2 ∗ (Ib − It). (5)

Then, a conquer strategy is used to achieve fast convergence for
the final phase

Isced = Ib + r1 ∗ D1 ∗ (Ib − Ib1) + r2 ∗ D2 ∗ (Ib − Ib2) (6)

where r1 and r2 are random factors; D1 and D2 denote evo-
lutionary directions; Ir1 and Ir2 are two randomly selected
individuals; and Ib1 and Ib2 are the perturbed values of Ib .
The associated fitness value Fsced is estimated. If Fsced is
better than one of the three preferable fitness values, the in-
dividual is replaced. Fig. 2 describes the SCED operation.
SCED has the ability for local and global search synchronously.
We can use this operator to achieve widely searching and
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Fig. 2. SCED.

then quickly converging toward a global optimal solution. The
operator helps us from bogging down into a local optimal
solution.

4) Normal-Distribution Reproduction: Let the fitness of off-
spring be a Gaussian distribution. [0.5σNp ] individuals are re-
lated to the first seeds group only, [σNp ] individuals are related
to the first two seeds groups only, and [1.5σNp ] individuals
are related to these three seeds groups only. For diversity, the
residue individuals are chosen from those eliminated individ-
uals only. σ is the standard deviation of a normal distribution.
Fig. 3 describes a parent distribution for crossover. During a
crossover operation, if the same individual is chosen for a father
and a mother, the individual is perturbed with a Gaussian/normal
function N(0, σ). Therefore, we denote the groups in Fig. 3 by

Fig. 3. Normal-distribution reproduction.

perturbed groups, where Iis denotes the individuals from the ith
seeds group

Ĩis = {Iis + N(0, σ)} , i = 1, 2, 3. (7)
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Fig. 4. Mixed inbreeding and backcrossing operation.

5) Competition Elitism: Competition carries on in each ge-
netic operation. Soft competition is used for evolution direction
operation and mutation. Three seeds groups, i.e., I1s , I2s , I3s ,
take over the most responsibility; the more highly fit strings
have a higher number of offspring. Only the mutated genes
with better fitness values than their precursors can be accepted.
Winner-take-all is adopted for acceleration, self-mutation, and
migration. Only the best gene is chosen to participate in these
operations. Competition also occurs between generations; only
the winner can survive to the succeeding generation.

6) Mixed Inbreeding and Backcrossing: Randomly choose
two points in parent strings (A and B) for two-point crossover
to generate children C and D. These two children or just one is
selected to replace the father or the mother for further crossover.
In other words, the selected candidates are two children (C and
D) for close inbreeding, or a parent and a child (A and D or B
and C) for backcrossing. Then, a two-point crossover operation
is used again to generate offspring E and F. Fig. 4 describes the
proposed mixed inbreeding and backcrossing operation.

The inbreeding coefficient of offspring X1 from two children
(C and D) is denoted by fx1 , and that of offspring X2 from
backcrossing between parent and children (A and D or B and C)
is denoted by fx2 [29]

fx1 = fC D =
1
4
(fAA + 2fAB + fBB )

=
1
4

(
1 +

1
2
(FA + FB ) + 2fAB

)

fx2 = fAD =
1
2
(fAA + fAB ) =

1
2

(
1
2
(1 + FA ) + fAB

)
(8)

where FA and FB are the inbreeding coefficient of individuals,
A and B, respectively. The average relative coefficient fav with
backcrossing probability rb is defined as

fav = rb ·
1
4
(fAD + fAC + fBC + fBD ) + (1 − rb) · fC D .

(9)
Therefore, fav = fav ,max for parent coming from the same seeds
group and fav = fav ,min for no blood relationship parent. Based
on the average relative coefficient, we set the selected candidates

Fig. 5. Eugenics-based screen-sifting mutation.

for further crossover to be B and C in case of rb ≤ fav ,min , to be
A and D for fav ,min < rb ≤ fav ,max , and to be C and D for rb >
fav ,max .

7) Eugenics-Based Screen-Sifting Mutation: In order to en-
sure global search and improve convergence, we here propose
a mutation-then-eugenics operation. In stead of adopting only
one gene (one-point mutation), two genes (two-point mutation),
or some fixed-genes (mask mutation) for mutation, we let all
genes or randomly choose some genes to mutate with mutation
probability assigned by a designer. Those genes with qualified
mutation rate will mutate (screen sifting). After this kind of mu-
tation, a variety population is generated. We wish the mutated
population distributes over a wide but not an entire space. A
deviation threshold is then defined as

TA =
|Fmut − Fb |

Fb
(10)

where Fmut is the fitness value of the mutated individual. Then,
the mutated individuals compete with their source individuals.
Those winners or losers with acceptable deviation (TA < 10)
can pass down. In engineering, a ratio 3 or 5 means much far
away or apart in space. Here, we use 10 to denote that mutated
individuals distribute widely. The proposed eugenics-based mu-
tation in Fig. 5 can not only increase population diversity but
can guarantee fine offspring as well.

8) Acceleration: A steepest descent method or simplex
method is used to enhance convergence. After acceleration, the
best individual is

Ib =
{

Īb , if f(Īb) < f(I0
b )

Īb − α∇f , otherwise
(11)

where I0
b and Īb are the best individuals before and after both

mutation and crossover operations, α is the size of a step to
determine the descent rate, and∇f is the gradient of an objective
function. In other words, an acceleration operation starts when
both crossover and mutation operations can no longer increase
fitness.

9) Eugenic Self-Mutation: Inherent premature convergence
and leak mountain climbing are two weak points of real-coding
GA. Acceleration operations can compensate for the latter. We
here propose eugenic self-mutation to avoid premature con-
vergence. The mutation is applied to the best individual only.
Each gene in the best individual is chosen and assigned a mu-
tation probability. Competition carries on between the original
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individual and the mutated individual. The winner will pass
down to the next operation.

10) Fuzzy-Based Tumble Migration: We here integrate
fuzzy concept and the movement of an E.coli bacterium into
a migration operation. A population P is composed of Np in-
dividuals (I1 , I2 ,. . ., INP

). An individual Ii is composed of n
chromosomes (xi1 , xi2 , . . ., xin ):

P = {Ii}i=1,...,NP
=

⎡

⎢⎢⎣

I1
I2
...

INP

⎤

⎥⎥⎦

=

⎡

⎢⎢⎣

x11 x12 . . . x1n

x21 x22 . . . x2n
...
xNP ,1 xNP ,2 . . . xNP ,n

⎤

⎥⎥⎦

Ii = {xij}j=1,...,n = [xi1 xi2 . . . xin ] . (12)

Define fuzzy sets Ĩi , i = 1, . . . , n, to represent individuals not
close to Ib . The relative cardinality of Ĩi describes the degree of
the deviation of Ii from Ib :

|Ĩi |rel =
|Ĩi |
|Ui |

Ĩi =
{
(xij , μĨi

(xij ))∀j = 1, . . . , n
}

= [μi1 μi2 . . . μin ]

μij = μĨi
(xij ) =

∣∣∣∣
xij − xbj

xbj

∣∣∣∣ (13)

where Ui are the universal set of Ii . Therefore, the following
fuzzy set P̃ denotes the deviation tendency of a population to the
best individual Ib , and its α level cut P̃α contains the elements
of a universal set U with membership grades greater than or
equal to α (closeness tolerance). In other words, P̃α contains
the elements in P̃ far enough to Ib . Therefore, we define the
population diversity of P as η:

η
Δ=

∣∣∣P̃α

∣∣∣
|U |

P̃ =

⎡

⎢⎢⎢⎣

Ĩ1

Ĩ2
...

ĨN P

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎣

μ11 μ12 . . . μ1n

μ21 μ22 . . . μ2n
...
μNP ,1 μNP ,2 . . . μNP ,n

⎤

⎥⎥⎦ . (14)

If the population diversity η is smaller than a diversity threshold
ξ, then migration starts. The tumble movement of an E.Coli cell
is adopted for migration operation: After a tumble migration, a
new individual is generated as

Inew = Ib + c ·
[

Δ√
ΔT Δ

]
(15)

where c is the size of the step taken in a random direction, and
Δ indicates a vector in a random direction.

B. Preference-Based Self-Interactive
Multiobjective Optimization

To infer a physically realizable skeletal-network structure,
various pruning-penalty performance indexes are proposed. On
the basis of that a genetic network is connected sparsely [27],
Kikuchi et al. [19] introduced kinetic orders as the pruning
(penalty) terms of a fitness function. Kimura et al. [12] replaced
kinetic orders by their descending orders and introduced a maxi-
mum in degree I to determine the maximum number of genes that
affect the ith gene. Norman and Iba [14] modified penalty terms
by the sorted orders of both excitatory and inhibitory terms.
Liu and Wang [28] introduced ε-constrain weighted sum. Ko
et al. [30] considered a flux connectivity relationship and in-
troduced a sensitivity term. However, no matter what kinds of
penalty terms are used, pruning approaches face a challenge:
Weighting coefficients need to be carefully tuned, and there are
no clear guidelines for setting suitable penalty weights [31].
Furthermore, even if so much effort has been done, the pruned
criteria in Table V, shown in the Appendix, are not small enough
as compared with the preserved terms. In other words, a safely
pruning action is not guaranteed. In the previous section, we
integrate quantitative genetics, bacterium movement, and fuzzy
set theory into evolution computation to develop a new GA to
achieve convergence enhancement and diversity preservation.
However, a performance index that is defined on various errors
is a criterion to show how closing the estimated data to a real
profile. This index determines both search directions and com-
putation time. Therefore, the choice of a performance index is
a key point for computation optimization. In this section, we
shall get single-objective performance index candidates first.
Those candidates are further integrated into a self-interactive
multiobjective function.

1) Single-Objective Performance Index Candidates: The
proposed EEGA algorithm with 28 performance indexes in
Table VI, shown in the Appendix, is used to identify the pa-
rameters of S-systems for two dry-lab experiments in Figs. 6(a)
and 6(b). Those well-performance indexes are chosen as candi-
dates, and are further integrated into a multiobjective function.
All computation is performed on an Intel core duo 3.16-GHz
computer using Microsoft Windows XP. Parameter ranges are
[0, 30] for rate constants and [–4, 4] for kinetic orders. 250 000
maximum iterations are performed to minimize those error cri-
teria. Eight sets of experiment data xi

exp and the corresponding
slope information ẋi

exp are generated from the dynamic system
in [20] for a genetic branch pathway, and in [15] for a cascade
pathway. The simulation time of an experiment is from t = 0 s
to t = 8 s, and sample time is set to be 0.02.

The genetic branch pathway in Fig. 6(a) has four dependent
constituents, i.e., x1 , x2 , x3 , and x4 , and one constant source,
i.e., x0 . The results in Table VII, shown in the Appendix, give us
some information. First, summation operations perform much
better than the corresponding maximum operations except for
Jl

5 , Jl
7 , and Jl

14 . Second, Jl
1 , Jl

2 , and Jl
3 are, respectively, better

than Jl
4 , Jl

5 , and Jl
6 ; Jl

7 is better than Jl
13 ; and Jl

10 is bet-
ter than Jl

14 . Those results show that even if errors are al-
ways less than one and a error-squaring operation can scale
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Fig. 6. Three gene regulation systems and their S-type Models. (a) Genetic branch pathway with two regulatory signals [20]. (b) Cascade pathway with three
steps and two feedback signals [15]. (c) Small-scale genetic network [32], [19].

Fig. 7. Block diagram of an artificial system for structure identification.

down errors to generate a small-quantity criterion for updat-
ing, this operation still improves performance. Third, indexes
with normalization have better performance (Jl

10 , Jl
11 , and Jl

12
are, respectively, better than Jl

7 , Jl
8 , and Jl

9). Fourth, among
summation operations, the performance of those weighting-
related indexes is always ta > 1 > ts (“>“ denotes better).
However, if slope normalization is taken (Jl

10 , J
l
11 , J

l
12), then

it becomes 1 > ta > ts . Based on these four phenomena, we
suggest to choose JS

1 , JS
2 , JS

3 , JS
9 , JS

10 , J
S
12 , J

M
3 , and JM

10 as
learning-criterion candidates.

We now consider another biological system. The cascade
pathway in Fig. 6(b) has three dependent constituents x1 , x2 ,
and x3 , and one constant sourcex4 . Table VIII in the Appendix
has similar results as in Table VII except the third phenomenon.
This is due to a dramatically sharp-slope point in x2 profile.
Therefore, slope normalization is not suitable. Based on Ta-
ble VIII, shown in the Appendix, we know that JS

1 , JS
3 , JS

6 , JS
7 ,

JS
9 , JS

13 , JM
1 , JM

3 , and JM
9 are all suitable for learning indexes.

In the following section, we shall use JS
3 and JS

10as our error-
and slope-performance candidates to develop a multiobjective
optimization technology.

2) Fuzzy-Reconstruction-Based Multiobjective Genetic Al-
gorithm: In the previous section, we examine parameter iden-

tification performance under 28 criteria. The results give us a
very important concept. Except normalization operation, the
dynamic behavior of a system is an important factor. We now
extent the results to define a realizable learning index for the
skeletal-structure identification of a biological system. Concen-
tration error Je and kinetic order Jo are two key penalties to
examine fitness between measured data and estimated data, and
to ensure that a genetic network is sparsely connected. Besides
these two, we also introduce a slope error penalty Jd to achieve
smooth time evolution. Furthermore, at any time instant, the net
interaction strength (row sum of matrix K) of all species to some
species is finite. Therefore, we define a kinetic order penalty as

J0 = ‖K‖∞ = max
i

⎧
⎨

⎩

n∑

j=1

|kij |

⎫
⎬

⎭ (row sum)

K = {kij , i = 1, ..., n, j = 1, . . . , 2(n + m)}

=

⎡

⎢⎣
g11 . . . g1,n+m

... h11 . . . h1,n+m
...

...
gn1 . . . gn,n+m

... hn1 . . . hn,n+m

⎤

⎥⎦ . (16)

JS
3 and JS

10 are chosen as our error- and slope-penalty,
respectively.

As we know, concentration error Je , slope error Jd , and
skeletal-structure penalty Jo are belong to different scales. We
here normalize them as Je = Je /Jee , Jd = Jd /Jde , and J0 =
Jo /Joe , where Jee , Jde , and Joe are the expected concentration
error, slope error, and interaction measure, respectively. To infer
a biological regulation network, our objective is to push both Je

and Jd to approach zero but to obtain a nonzero minimum value
of Jo . The targets of Je and Jd are the same, but they are totally
different from that of Jo . Therefore, summating their scaled
functions is not suitable. Moreover, the structure identification
of a biological system is to get minimum value of Jo under
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TABLE I
VARIABLES AND MODULUS OF SUBPROCESSES IN FIG. 7

allowable Jd and Je . It is different from fuzzy rule selection,
where rules are extracted only if it is possible to either maintain
or even improve the system’s accuracy [33], [34] and general
multiobjective optimization problems. Therefore, Pareto-
optimal-based evolution computation approaches [35]–[41]
are also unsuitable. In this paper, we use fuzzy composition
“ � ” (min max) to integrate these three penalties into a
reconstruction performance. Based on this performance,
the proposed GA becomes a self-interactive multiobjective
evolution optimization technology.

Biological systems are dynamic changeable systems. To guar-
antee well performance of computation approaches for gene net-
work identification, except concentration error, we should con-
sider slope error for data with close values but different slope.
Additionally, sparse connection and the correct division of exci-
tory and inhibitory interactions are two important issues that are
to be concerned. Therefore, the whole structure identification
can be physically realized as three modules in series (a state
estimator, S-system modeling, and a slope estimator). Since un-
certainty and noise are two serious issues in a biological system,
fuzzy relation and fuzzy functions are adopted to describe the
dynamic behavior of subprocess modules. Fig. 7 shows a block
diagram to describe the inference of structure identification.

Rx , R, and Rd are, respectively, fuzzy modules for a state
estimator, an S-system, and a slope estimator. R−1 is the inverse
fuzzy relation for S-system modeling. State estimator Rx(x, x̂)
describes the fuzzy relation between input x (true state) and
output x̂ (estimated state). The corresponding fuzzy relation
equation is x̂ = x � R, where “ � ” denotes min max composi-
tion. Here, our purpose is to minimize Je such that estimated
state x̂ approaches to true state x. Similar operations are used
for S-system modeling R(x̂, ˙̂x) and slope estimator Rd( ˙̂x, ẋ).
Table I lists the inputs, outputs, fuzzy equations, and optimiza-
tion of these subprocesses. Steps 1–4 describe the inference
flow for structure identification. Three normalized errors, i.e.,
Je , Jd , and J0 , denote the distortion of these subprocess. The
entire process is composed of a forward process (Rx � R) and
a backward process (Rd � R−1). Therefore, we have

x = ẋ � R−1(backward S-system modeling)

= ( ˙̂x � Rd) � R−1 (slope estimator)

= ((x̂ � R) � Rd) � R−1(forward S-system modeling)

= (((x � Rx) � R) � Rd) � R−1(state estimator)

= x � Rx � R � Rd � R−1 . (17)

For perfect construction, the membership functions of compos-
ite fuzzy relation R∗ = Rx � R � Rd � R−1 always belong to 1.
Therefore, the reconstruction ability of structure identification
is dependent on the composition of the distortion of subsystems
Je , Jo , and Jd . Therefore, we define a reconstruction perfor-
mance Jrec−0 as the union (U) of Je � J0 and Jd � J0 (forward
AND backward processing)

min
k

Jrec-o = min
k

[(Je � J0)U(Jd � J0)]

= min
k

[(Je UJd) � J0 ]

= min
k

[min
k

(Je ∨ Jd) ∨ J0 ]

= min
k

[Je ∨ Jd ∨ J0 ] (18)

where maximum ∨ is adopted as the union operation. In other
words, Jrec-0 = Je ∨ Jd ∨ J0 .

Based on this definition, an automatic self-interactive learning
in Table IX, shown in the Appendix, is done. It is noticed that
Jee and Jde are values approaching zero, but Joe is a value
between 0.001 and 10. As J0 is comparable with Je or Jd ,
Je and Jd are values approaching zero. In the beginning of a
learning process, concentration error Je and slope error Jd are
much larger than J0 . During the mid-learning stage, those three
penalties compete with each other to get the opportunity to be
reduced. At the final stage, Jo becomes the only winner, since
both Je and Jd are close to zero. Therefore, choosing Jrec-0
can divide our learning into two phases. In phase I, the learning
purpose is to get an allowable space; concentration error Je is
the key learning index and slop error Jd is for smooth evolution.
In phase II, J0 is the only kernel index to achieve spare network
structure. Therefore, we modify Jrec-0 by adding phase I and
phase II weighting factors wI and wII , i.e., Jrec-1 = max{wII

Je , wI Jd , J0}. This modification makes the performance index
suitable for all kinds of biological systems (wI = wII = 1
for most systems). Besides, the dynamic behavior of a system
is also an important factor for time-series-data-based learning.
(We get this result from parameter identification in Section II-
B1.) Considering dynamic behavior helps us to simultaneously
fine-tune the structure and parameters of a system in phase-
II learning. Therefore, we further modify the performance as
Jrec = max{ηII Je , wI Jd , J0} with an adaptive-learning ratio
ηII = wII × μ, where μ is an adaptive dynamic factor.

The reconstruction index is embedded into EEGA to infer
biological regulatory networks from time series data. Fig. 8
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Fig. 8. Logical flow of FRMOGA for skeletal-network structure identification.

describes the proposed FRMOGA for skeletal-network structure
identification.

III. S-SYSTEM MODELING OF GENE REGULATION NETWORKS

We now examine the proposed FRMOGA by identifying three
biological systems (genetic branch pathway, cascade pathway,
and small-scale genetic networks). Search space is set to be
[0, 30] for rate constants and [–4, 4] for kinetic orders. In this
paper, no further assumption for self-interaction (gii and hii)
is made. All dependent and independent variables are included
in an S-system. In other words, our learning is based on the
super structure of an S-system model, where there are 2n(n +
m + 1) parameters to be identified. Table V in the Appendix
lists the assumptions, dataset, and pruning thresholds used in
the published papers. We use a cubic spline technology to get
a smooth profile for time series data. Then, an integral-based-
modified collocation method with piecewise linear Lagrange

polynomials as shape polynomials is adopted to approximate
the generated dynamic profile [18]

xi(tl) = xi(tl−1) + 0.5ηl {fi(xi(tl), θ) + fi(xi(tl−1), θ)}
i = 1, ..., n, l = 1, ..., NS (19)

where xi(tl) and fi(xi(tl), θ) are the expansion coefficients of
the ith state and rate functions at the lth collocation point, and ηl

is a time interval. Decoupled technology is adopted to get initial
values for entire coupled S-type system learning.

A. Genetic Branch Pathway System

Eight sets of concentration data are generated from a true
S-system; parameters are listed in Step 0 in Table II. Simulation
time is set to be 8 s and sample time is 0.02. In this system,
there are 48 parameters that are to be identified. Table II shows
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TABLE II
TRUE AND ESTIMATED PARAMETERS OF AN S-TYPE SYSTEM FOR A BRANCH PATHWAY NETWORK IN FIG. 6(a)

TABLE III
TRUE AND ESTIMATED PARAMETERS OF AN S-TYPE SYSTEM FOR A CASCADE PATHWAY NETWORK IN FIG. 6(b)
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Fig. 9. Convergence results of EEGA, HDE [15], [17], [18], improved GA [42], and DE are examined by a wide search space ([0, 100] for rate constants and
[–100, 100] for kinetic orders) with a bad initial start (80 for all parameters). Solid curves represent the estimated profiles of EEGA and HDE; dashed curves
represent those of the improved GA (GA+ ) and DE. Those curves are drawn for fitness evaluation from 1000 to 50 000.

that only two-step pruning action is taken. An obvious value
gap exists between redundant interactions and possible interac-
tions in Step 1. We subtract redundant interactions denoted by
underlines with a threshold 10−15 . The pruned structure is fur-
ther learned by FRMOGA to get the modified structure in Step
2. Step 3 shows the finalized structure. The inferred structure

is identical to true structure (Step 0), and parameter values are
nearly the same as those in the true system.

B. Cascade Pathway System

Eight sets of concentration data are generated from true equa-
tions with parameters in Step 0 in Table III. Simulation is from
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Fig. 10. Convergence comparison of EEGA with IGA and SPXGA cited from [21, Fig. 2] for a small-scale (five genes), a medium-scale (20 genes), and
large-scale (30 genes) genetic networks. Six-set time series data with 11 sample points are used.

time t = 0 s to t = 8 s with a sample time of 0.02. The cor-
responding super structure of the S-system has 30 parameters
that are to be identified. Step 1 in Table III shows the first-time
learning result. Those interactions with kinetic order less than
10−15 are deleted. The pruned model is further modified into
Step 2 in Table III by FRMOGA. After retruncating trivial terms
and performing learning again, we have the final structure and
associated parameters in Step 3 in Table III.

C. Small-Scale Genetic Network

Our third case is a small-scale genetic network with two
regulatory signals. True rate constants and kinetic orders are
listed in Step 0 of Table V in the Appendix. Each experiment
is simulated from time t = 0 s to t = 0.5 s with a sample time
of 0.0125. In this system, there are 90 parameters that are to

be identified. Inferred parameters and kinetic orders are shown
in Steps 1 and 2. Pruning threshold is also set to be 10−15 .
Those redundant connections to be truncated are denoted by
underlines. In this system, only two-step learning is taken.

D. Convergence Comparison

Figs. 11–13, shown in the Appendix, describe the conver-
gence of each step of EEGA for those three systems. Table V
gives the comparison of the used dataset, assumptions, S-system
models, and pruning thresholds for EEGA and the published
computation algorithms. Pruning ratio ρ is defined as the ra-
tio of the smallest preserved term to pruning threshold. A safety
pruning is taken by EEGA with ρ = 7.5× 1012 . Except mutation
and crossover, EEGA introduces fuzzy-based tumble migration
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TABLE IV
TRUE AND ESTIMATED PARAMETERS OF AN S-TYPE SYSTEM FOR A SMALL-SCALE GENETIC NETWORK IN FIG. 6(c)

to escape from local minima. Some advanced operations on the
best-so-far individual are to accelerate convergence. To show
the global search power, a bad initial start in a very wide range
is used in Fig. 9. Fig. 9 shows the convergence comparison of
EEGA with DE, HDE [15], [17], [18] and our previously work
improved GA (GA+ ) [42] for low- and medium-dimensional
systems (N = 3, 4, and 20 genes) by a wide search space ([0,
100] for rate constants and [–100, 100] for kinetic orders) with
a bad initial start (80 for all parameters). Fig. 10 shows con-
vergence results of EEGA, intelligent two-stage evolutionary
algorithm (IGA) [21], and SPXGA [19] for low-, medium-, and
high-dimensional systems (N = 5, 20, and 30 genes) with the
same search region as [21] ([0, 15] for rate constants and [–3,
3] for kinetic orders).

IV. CONCLUSION

The inverse problem of identifying a dynamic biological sys-
tem from time series data is a central theme in systems biol-
ogy. However, even if multiobjective computation approaches
are used, structure identification is still a big challenge. How
to avoid from sticking into local minima is very important to
infer such a high dimensional and nonlinear system by com-
putation approach. Additionally, a big gap between true and
redundant interactions is necessary to ensure a correct struc-

ture, since noise and uncertainty exist in a biological system.
In other words, the pruning threshold should be small enough.
The used technology should possess good search power and
has the ability to escape from local minima. In this paper, we
propose an EEGA learning technology to achieve the improve-
ment of the best-so-far individuals and to ensure global optimal
search. A fuzzy-based multiobjective construction performance
index is derived to infer a physically reasonable regulation net-
work. Simulation results in Tables II–IV show that a very big
gap exists in true and redundant interactions. The truncation
threshold can be decreased down to 10−15 , and a correct struc-
ture is achieved after only one- or two-step pruning operations.
Table V in the Appendix shows our pruning action is absolutely
safe as compared with that in the published papers. Fig. 9 shows
the good global search power of EEGA with a bad initial start
(80 for all parameters) in a wide search space ([0, 100] for rate
constants and [–100, 100] for kinetic orders) for three-, four-,
and 20- dimensional systems. In this paper, we did not add noise
in our time series data. Most researches use existing smoothing
or filtering technique to deal with noise. However, those ap-
proaches depend too much on smoothing skills and lack clear
guidelines, especially for structure identification. In the future,
we shall propose a new estimator (filter) to solve those data se-
riously contaminated by white noise and color noise, or systems
with bias and uncertainty.
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APPENDIX

TABLE V
STRUCTURE IDENTIFICATION COMPARISON

TABLE VI
SINGLE-OBJECTIVE PERFORMANCE INDEX
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Fig. 11. Convergence of EEGA for each step in the structure identification of a branch network in Fig. 6(a) starting from (βi , hii ) = (30, 4). Dash line denotes
true value. Black solid curve shows the convergence of Step 1, blue for Step 2, and Green for Step 3.

TABLE VII
PERFORMANCE COMPARISON FOR A GENETIC BRANCH PATHWAY IN FIG. 6(a)

TABLE VIII
PERFORMANCE COMPARISON FOR A CASCADE PATHWAY SYSTEM IN FIG. 6(b)
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TABLE IX
Updated TERMS IN SELF-INTERACTIVE LEARNING

Fig. 12. Convergence of EEGA for each step in the structure identification of a cascade network in Fig. 6(b) starting from (βi , hii ) = (30, 4). Dash line denotes
true value. Black solid curve shows the convergence of Step 1, blue for Step 2, and Green for Step 3.
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Fig. 13. Convergence of EEGA for each step in the structure identification of a small-scale genetic network in Fig. 6(c) starting from (βi , hii ) = (30, 4). Dash
line denotes true value. Black solid curve shows the convergence of Step 1 and blue for Step 2.
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