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PAPER

A Verification-Aware Design Methodology for Thread Pipelining
Parallelization

Guo-An JIAN†a), Cheng-An CHIEN†b), Nonmembers, Peng-Sheng CHEN†c), Member,
and Jiun-In GUO††d), Nonmember

SUMMARY This paper proposes a verification-aware design method-
ology that provides developers with a systematic and reliable approach to
performing thread-pipelining parallelization on sequential programs. In
contrast to traditional design flow, a behavior-model program is constructed
before parallelizing as a bridge to help developers gradually leverage the
technique of thread-pipelining parallelization. The proposed methodology
integrates verification mechanisms into the design flow. To demonstrate the
practicality of the proposed methodology, we applied it to the paralleliza-
tion of a 3D depth map generator with thread pipelining. The parallel 3D
depth map generator was further integrated into a 3D video playing sys-
tem for evaluation of the verification overheads of the proposed method-
ology and the system performance. The results show the parallel system
can achieve 33.72 fps in D1 resolution and 12.22 fps in HD720 resolution
through a five-stage pipeline. When verifying the parallel program, the pro-
posed verification approach keeps the performance degradation within 23%
and 21.1% in D1 and HD720 resolutions, respectively.
key words: verification, 3D depth map generation, pipeline, parallel com-
puting, behavior model

1. Introduction

Multicore systems provide powerful computing capabilities
that can improve the performance of applications, and such
systems have been widely adopted in desktop workstations
and consumer electronic devices. However, an application
must be parallelized to obtain the performance benefits of
multicore systems. Many design patterns for parallel pro-
gramming have been proposed to exploit the advantages of
parallelism [1]. According to the characteristics of the appli-
cations, the programmer selects suitable patterns with which
to develop and parallelize the applications. Thread pipelin-
ing [2], which is one such pattern, processes data through
a sequence of stages to extract the potential concurrency
(Fig. 1). Assume that D1–D7 represents the sequence of
data to be processed, and each datum must be processed in
the correct order through three stages of the pipeline. Dark
gray areas in the figure represent the time taken for waiting,
synchronization, and data transfer among the stages. First,

Manuscript received November 18, 2011.
Manuscript revised June 3, 2012.
†The authors are with the Department of Computer Science

and Information Engineering, National Chung Cheng University,
ChiaYi, Taiwan 621.
††The author is with the Department of Electronics Engineering,

National Chiao Tung University, HsinChu, Taiwan 300.
a) E-mail: chienka@mail.cs.ccu.edu.tw
b) E-mail: cca95m@cs.ccu.edu.tw
c) E-mail: pschen@cs.ccu.edu.tw
d) E-mail: jiguo@nctu.edu.tw

DOI: 10.1587/transinf.E95.D.2505

stage1 starts to process D1. After stage1 has finished pro-
cessing D1, it sends the result to stage2 and notifies stage2
that it can start processing D1. Stage1 then processes the
next datum D2, while stage2 processes D1. Then, stage3 re-
ceives and processes D1, and stage1 and stage2 respectively
process D3 and D2. For the execution model, the stages in
a pipeline can be executed in parallel during most of the
processing period. Theoretically, the speed at which an ap-
plication is run can be increased by close to N times for an
N-stage pipeline with sufficient input data. In addition to
input data, two factors have a strong effect on the perfor-
mance of an application constructed by thread pipelining.
The first is synchronization among pipeline stages, which
ensures the sequence of data is processed in the expected or-
der. The second is the processing time of the pipeline stages,
because given that the data are processed based on the or-
der of pipeline stages, each pipeline stage must wait if the
previous or next stage has not finished the process. There-
fore, the pipeline stage with the longest execution time has
a disproportionate influence on the performance of the en-
tire pipeline. To overcome this problem, the pipeline should
be appropriately partitioned into several stages with similar
execution times, to ensure optimal performance.

The design pattern of thread pipelining implicitly con-
tains task- and data-parallel concepts. Each stage in a
pipeline can be individually optimized and parallelized,
and seamlessly integrated into the pipeline to enhance the
pipeline performance. Many domain-specific applications
can be well parallelized using this pattern to realize im-
provements in speed. Applications related to digital signal
processing (DSP) perform a variety of signal processing op-
erations (e.g., filtering and DSP algorithms) on input sen-
sor data. Multimedia-related applications usually apply a
sequence of transformations and operations to input stream-
ing data. Each of these applications can be viewed as one
or several pipelines, and the transformations and operations
that occur during processing can be formulated as pipeline

Fig. 1 Concept of thread pipelining.
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stages.
Generally, parallel programming is complicated and

error-prone [3]. Therefore, despite the numerous benefits
that thread pipelining can offer, it remains problematic to re-
liably verify the correctness of an application parallelized by
this approach. Many previous studies have considered ver-
ification issues related to parallel programming. Previous
verification approaches can be roughly classified into two
types: mathematical and formal verifications. We briefly
describe these approaches as follows:

(1) Mathematical approach: A parallel program can be
described and modeled by a sequence of formal state-
ments. According to the theorem proving and induc-
tion principles, we can mathematically verify whether
a parallel program is correct [4], [5].

(2) Formal verification: The target design is modeled
through a modeling language such as UML (Unified
Modeling Language) [6]–[9]. Then, the designer can
verify the target design by using verification tools.

In recent years, behavior-modeling techniques have
been widely used in several research areas, including the
verification of embedded systems [10], [11], and hardware–
software co-design [12]–[15]. According to the concept of
behavior-modeling techniques, a behavior model is intro-
duced as a bridge between an original program and the par-
allel program, for the purpose of verification. It also serves
as a firewall that appropriately prevents the bugs caused
in the design stage from spreading to the implementation
stage during the parallelization. In this paper, we pro-
pose a verification-aware methodology to help developers
to correctly parallelize applications by using thread pipelin-
ing. Replacing traditional verification approaches that di-
rectly verify parallel programs, the proposed methodology
divides the development of a parallel program into the be-
havior and parallel phases. In the behavior phase, the orig-
inal program is appropriately transformed into the corre-
sponding behavior-model program, which sequentially ex-
ecutes and mimics the actions of the final parallelized pro-
gram. In the parallel phase, the parallel program is intu-
itively derived from the behavior-model program. The pro-
posed methodology has the advantage of integrating verifi-
cation mechanisms into the design flow. During verification,
the behavior-model program is concurrently executed with
the original program or its parallel program to automatically
verify the results. To demonstrate the practicality of the pro-
posed methodology, we applied it to the parallelization of a
3D depth map generator with thread pipelining. The par-
allel 3D depth map generator was further integrated into a
3D video playing system for evaluation of the verification
overheads of the proposed methodology and the system per-
formance. The results show the parallel system achieved
33.72 fps in D1 resolution and 12.22 fps in HD720 resolu-
tion through a five-stage pipeline. When verifying the par-
allel program, the proposed verification approach keeps the
performance degradation within 21% and 22% in D1 and
HD720 resolutions, respectively.

1.1 Contribution

This paper makes the following contributions:
(1) Verification methodology: A verification-aware design
methodology is presented that helps programmers to iden-
tify program bugs and to develop correct parallel programs.
Compared to the existing formal verification and mathemat-
ical researches, it has the following advantages: (a) Low
learning threshold for beginners. The proposed methodol-
ogy does not rely on any metalanguages (formal specifica-
tion languages) or software tools for the verification. It has
a lower learning threshold, so developers can easily perform
the program parallelization and verification. (b) No state-
space explosion. For the formal verification and mathemat-
ical approach, programs to be verified are modeled by met-
alanguages or are formally specified by mathematical for-
mulas. Then state machines are used to simulate for the
verification. The state-space explosion might occur due to
the enormous increment of the number of states in parallel
programs. The proposed methodology uses behavior-model
programs to replace the detailed state simulation. (c) Low
risk of starting again from scratch. The existing verifica-
tion researches only focus on the verification which is one
of the last stages during software development. If devel-
opers find bugs which are resulted from design errors, they
will be forced to go back to the design stage to re-design the
parallel programs. This situation will significantly hurt soft-
ware development productivity. The proposed methodology
integrates the design and verification flows of program par-
allelization into a standard operation procedure (SOP). By
using the proposed methodology, developers are forced to
face the verification at the design stage, and the software
productivity and reliability of developing parallel programs
can be improved according to software engineering litera-
tures.

The proposed methodology also suffers two overheads.
First, the behavior-model program used in the proposed
methodology is required to be verified. Then the verified
behavior-model program is used to help the verification of
the parallel program. Although developers need to do the
verification of the behavior-model program, they can thor-
oughly understand the behavior of the parallel program dur-
ing the verification. This experience can help developers to
efficiently construct the parallel program. Second,the pro-
posed methodology does not aim to prove total correctness
of parallel programs. Its goal is to quickly find out most
of the bugs while parallelizing sequential programs and to
build up workable parallel programs. For critical systems,
developers need to perform deductive verification in order
to guarantee the total correctness of software components.
(2) Case study: The feasibility and practicality of the pro-
posed methodology is demonstrated by applying the ap-
proach to developing a parallel 3D depth map generator,
which is further integrated into a 3D video playing system
for evaluation of the verification overheads of the proposed
methodology and the system performance. The experimen-
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tal results are presented, showing an improvement in the per-
formance of the 3D video playing system and in the verifi-
cation overheads of the proposed methodology.

The remainder of this paper is organized as follows.
Section 2 presents the proposed verification-aware design
methodology, and Sect. 3 describes how to apply the pro-
posed verification mechanism to a parallel 3D depth map
generator, and reports the results of simulations and perfor-
mance measurements. Finally, the conclusions are presented
in Sect. 4.

2. Verification-Aware Methodology

Generally, for the parallelization of applications, develop-
ers intuitively rewrite the sequential program into the cor-
responding parallel version using techniques in which they
are skilled. However, this approach carries a high risk of er-
rors. In addition, developers may encounter problems dur-
ing debugging, even though they can quickly parallelize the
program using their advanced coding skills. In contrast to
the traditional design procedures, we propose a verification-
aware methodology to help developers to correctly paral-
lelize applications by using thread pipelining. Figure 2
shows the whole design flow that is used to parallelize an
application with the proposed verification-aware methodol-
ogy. Of note, the verification mechanisms are integrated into
the design flow. We leverage a behavior-model program as a
bridge for gradually and correctly parallelizing the original
program. The proposed methodology divides the develop-
ment of the parallel program into the behavior and paral-
lel phases. In the behavior phase, the original program is
appropriately transformed into the corresponding behavior-
model program, which sequentially executes and mimics
the actions of the final parallelized program. To prevent
the construction of an incorrect behavior model, behavior-
level verification is performed to ensure consistency in func-
tionalities between the original program and the behavior-
model program. After building the certified behavior-model
program, we enter the parallel phase, in which developers

Fig. 2 Design flow of the proposed verification-aware methodology.

start to construct the parallel program based on the certi-
fied behavior-model program, and parallel-level verification
is performed to fix bugs in the parallel program.

Below, we describe how to model the behaviors of
pipelining execution, and we provide detailed descriptions
of behavior- and parallel-level verification.

2.1 Behavior Model

The behavior model plays an important role during the pro-
cess of parallelization because it is a bridge that helps to
reduce the coding complexity when directly writing paral-
lel programs from sequential programs. The construction
of a behavior-model program involves three steps. The first
step is data packetization. For thread pipelining paralleliza-
tion, data transfer among pipeline stages is usually a major
source of synchronization problems. During this step, all
the related data required by pipeline stages are appropriately
grouped into a packet that is delivered among the pipeline
stages to simplify the construction of a pipeline and to avoid
redundant interference. Figure 3 shows a pseudo code that
demonstrates the technique of data packetization. Assume
func1()–funcn() perform the orderly processing of a stream
of data. The original program uses shared data to commu-
nicate among func1()–funcn(), as shown on the left side of
Fig. 3; the program that uses data packets is shown on the
right side of the figure. A structure data type, PACKET, can
be appropriately defined to form a data packet that contains
the necessary data for func1()–funcn(). func1()–funcn() are
also suitably modified to operate on the data packets.

The second step in the construction of a behavior-
model program is task partitioning, which decides the num-
ber of stages in the pipeline. According to the pattern of
thread-pipelining, the entire computation must be divided
into several tasks so that all the tasks can concurrently op-
erate on different data. These tasks conceptually represent
the stages in the pipeline. The workload of each task should
be balanced in order to maximize the performance of the
whole pipeline. Figure 4 shows a pseudo code that parti-
tions the original works, func1()–funcn(), into m stages: be-
havior stage1()–behavior stagem().

The third step is behavior pipelining, which involves
the construction of a behavior-model program to sequen-
tially and faithfully simulate the execution of the pipeline
built by the final parallelized program. Here, we focus on

Fig. 3 Pseudo code at the step of data packetization.
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Fig. 4 Pseudo code at the step of task partitioning.

Fig. 5 Pseudo code at the step of behavior pipelining.

the behavior of the pipeline. To mimic the pipeline execu-
tion, we add several statements to control the execution of
the stages. Each function no longer performs its computa-
tion over the same data packet, and the loop iteration has to
be changed to Nstage + (Ntotal − 1), where Nstage is the num-
ber of stages in the pipeline and Ntotal is the number of input
data. Figure 5 shows the pseudo code at the step of behavior
pipelining for the case shown in Fig. 4.

2.2 Verification

Here, we describe the verification mechanisms that are in-
tegrated into the proposed verification-aware methodology.
As shown in the rhombuses in Fig. 2, the verification pro-
cess is required to perform during the behavior and par-
allel phases. The behavior-level verification assesses the
consistency of functionalities between the behavior-model
and the original programs, and the parallel-level verifica-
tion assesses the consistency of functionalities between the
behavior-model and parallel programs. To improve the prac-
ticability, the behavior- and parallel-level verifications are
run synchronously, which means that the behavior-model
program is concurrently executed with the original program
or parallel program to automatically verify the results. This
strategy results in a much higher likelihood of identifying
bugs in the application.

Fig. 6 Working flow of behavior-level verification.

Fig. 7 Timing diagram of behavior-level verification.

2.2.1 Behavior-Level Verification

Figure 6 shows the workflow of behavior-level verification.
The behavior-model program is set as the target to be ver-
ified, and the original program is set as a comparison that
provides reliable data for verification. During the behavior-
level verification, the original program does not process the
next data until it has finished processing the current data.
Therefore, verification is not started until the first processed
data have passed completely through the pipeline. A verifier
routinely waits for request signals from the behavior-model
and original programs, compares data, records the results of
comparisons and status information, and issues resume sig-
nals back to the behavior-model and original programs. Fig-
ure 7 shows a timing diagram in which it is assumed that the
original program, the behavior-model program, and the ver-
ifier are executed by individual threads. An overall execu-
tion on data n represents the execution of all pipeline-related
computations regarding these data. For the case shown on
the right-hand side of Fig. 3, the pipeline-related computa-
tions are func1()–funcn(). At timestamp T1, the original pro-
gram finishes the overall execution on the data D1; mean-
while, the data D1 are processed at stage2 for the behavior-
model program. The verifier must wait until the behavior-
model program completes the process on D1. At timestamp
T2, the behavior-model program completes the process on
D1 and then the verifier is signaled to start verifying the cur-
rent results. After finishing the verification, the original and
behavior-model programs resume processing the next data.

2.2.2 Parallel-Level Verification

For simplicity, we assume that the parallel program con-
tains a pipeline with several pipeline workers. Each pipeline
worker is dedicated to one pipeline stage, and each pipeline
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stage can be only assigned to one pipeline worker. Because
the mapping between physical processor cores and pipeline
workers is flexible, this assumption does not result in any
loss of generality for the approach. Figure 8 shows the
workflow of parallel-level verification. The parallel program
is set as the target to be verified, and the certified behavior-
model program is set as a comparison that provides reli-
able data for verification. The verifier and behavior-model
program are concurrently executed with all pipeline work-
ers. When a pipeline worker finishes the work on one data
packet, it pauses the execution and issues a request signal
to the verifier. Similarly, the behavior-model program simu-
lates the behavior of pipeline execution. Given that the data
packets from all pipeline stages must be verified, the verifier
may spend a lot of time checking the data. If the verifier fo-
cuses on the parts where data are written-out, the efficiency
of the checking data is significantly improved. Figure 9
shows a timing diagram for parallel-level verification. At
timestamp T1, the pipeline work1 finishes work on D1, and
as does the behavior-model program. The verifier starts the
verification and then issues the resume signal. Next, due to
parallel execution, pipeline worker1 and pipeline worker2
finish work on D2 and D1 before the behavior-model pro-
gram finishes the same work. Therefore, the verifier is re-
quired to wait and cannot start the verification until times-
tamp T2.

2.3 Software Design Change

Here we describe the issues relating to software design
change. When the design of data packets or pipeline stages
is changed, developers should go through the proposed de-
sign flow again in order to ensure the correctness of func-
tionality of parallel programs. For these cases, developers
should re-write the behavior-model program and then per-

Fig. 8 Working flow of parallel-level verification.

Fig. 9 Timing diagram of parallel-level verification.

form behavior-level verification to get a certified behavior-
model program. Then developers have to re-construct
the parallel program based on the revised behavior model.
Finally parallel-level verification should be performed to
check consistency of functionality between the behavior
model and parallel programs. Although developers should
go through the proposed design flow when the design of data
packets or pipeline stages is changed, it does not mean ev-
erything has to be re-done. The efforts about thread man-
agement and synchronization can be completely reused. In
addition, the development experience can be passed down to
reduce software development time and related cost.

3. Case Study

In this section, we present a case study in which the pro-
posed verification-aware methodology is used to help to ef-
ficiently and correctly parallelize a 3D depth map generator.
The parallel 3D depth map generator is then integrated into
a 3D video playing system to demonstrate its capability.

3.1 3D Depth Map Generator

Figure 10 shows the depth map generation algorithm [16],
which generates depth maps from single 2D images. The al-
gorithm can operate on three types of input images: images
of general scenes with a vanishing point (VP), images of
scenery containing sky and mountains, and close-up images.
First, the algorithm classifies input images into three cate-
gories. Images containing few vanishing lines are identified
as close-up images; those containing a sufficient number of
vanishing lines are classified as general images; and those
containing a sufficient number of vanishing lines, as well as
sky and mountains, are classified as scenery images. The
following techniques are used to generate accurate depth
maps: edge detection using Sobel filtering, line detection
using a 5 × 5 Hough transform, vanishing region detec-
tion, segmentation, depth map merging, depth map post-
processing by simplified joint bilateral filtering (SJBF), and
block-based contrast filtering for identifying foreground ob-
jects in close-up images. These processing steps are also
optimized to reduce the computational complexity while re-

Fig. 10 Depth map generation algorithm.
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Fig. 11 Structure of the 3D video playing system.

Fig. 12 Task partition for the 3D depth map generator.

taining high image quality. Figure 11 shows the structure
of the 3D video playing system, which consists of a video
dispatcher, a 3D depth map generator, and a pseudo display.
The video dispatcher reads the decoded video and then splits
it into several individual frames that are in order dispatched
to the 3D depth map generator to produce the corresponding
depth map information. Finally, the pseudo display collects
all the information in order and completes the work.

3.2 Parallelization

We now explain how to parallelize the 3D depth map genera-
tor by using the proposed verification-aware design method-
ology. Our target is to leverage thread-pipelining paral-
lelization to develop a parallel 3D depth map generator. Ac-
cording to the proposed design flow, we first start work in
the behavior phase to construct a behavior-model program
corresponding to the parallel 3D depth map generator. In ad-
dition to arranging the processed data and temporal buffers
into suitable data packets, the workload distribution of the
3D depth map generator is analyzed in order to select an
appropriate number of pipeline stages in the parallel pro-
gram. After considering the issue of workload balance and
the dependence relationships among operations in the gener-
ator, the generator is partitioned into five stages, S 1 ∼ S 5, as
shown in Fig. 12. Next, we implement the behavior-model
program and perform behavior-level verification to ensure
the behavior-model program can correctly mimic the behav-
iors of the parallel program. Figure 13 shows the timing
diagram of the behavior-level verification for the 3D depth
map generator. The behavior-model program, verifier, and
original 3D depth map generator are concurrently executed
through individual threads. After repeated modification and
verification, we construct a certified behavior-model pro-
gram. For a developer who is familiar with the proposed

Fig. 13 Timing diagram of behavior-level verification for the 3D depth
map generator.

Fig. 14 Concept of parallel-level verification for the 3D depth map gen-
erator.

Fig. 15 Timing diagram of parallel-level verification for the 3D depth
map generator.

verification-aware design methodology and the original 3D
depth map generator program, it would take about 1 day to
develop the certified behavior-model program. During the
behavior phase, most of the coding time is spent modeling
the pipeline behavior.

Next, we enter the parallel phase to develop the par-
allel 3D depth map generator. Figure 14 shows the con-
cept of synchronous verification during parallel-level verifi-
cation. The behavior-model program, verifier, and parallel
program are concurrently executed to test the results gen-
erated from each pipeline stage. Figure 15 shows the tim-
ing diagram of the parallel-level verification for the develop-
ment of the parallel 3D depth map generator. It takes 8 days
to complete the parallel depth map generator from the cer-
tified behavior-model program. For the parallel phase, we
spent most of the coding time handling the communications
among pipeline stages. The design of the synchronization
mechanism among threads is also time-consuming.

3.3 Evaluation and Discussion

Table 1 lists the configuration of the experimental envi-
ronment. The experiments were evaluated on a multi-
core platform with eight processors, each of which is an
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Table 1 Configuration of the experimental environment.

Item Value

Hardware CPU 8 quad-core processors, and each
processor is AMD Opteron quad-
core running at 2.3 GHz

Cache L1: 64 KB/core, L2: 512 KB/core,
L3: 2 MB/processor

Memory 64 GB
Software Operating system Linux (kernel version: 2.6.31)

Native C compiler GCC 3.4.6 with “-O2” option
Thread library POSIX thread library

(a) Performance comparison (b) Speedup comparison

Fig. 16 Comparison of performance and speedup for the evaluated con-
figuration.

AMD Opteron quad-core processor running at 2.3 GHz. The
3D depth map generator was verified on 303 tested cases
that contain images and videos with resolutions of HD720
(1280x720) and D1 (720x480). The tested cases are ran-
domly selected and fed into the 3D depth map generator
during the verification.

Figure 16 (a) compares the performance of the vari-
ous programs for the evaluated configuration, and Fig. 16 (b)
shows speedup values with the original program as a base-
line for comparison. The original 3D video playing sys-
tem can achieve 4.97 fps in HD720 resolution and 13.60 fps
in D1 resolution. The behavior-model program of the 3D
video playing system sequentially simulates the pipeline ex-
ecution, and several control statements are added in the pro-
gram to maintain the behavior of the pipeline execution.
Therefore, it can only achieve 4.32 fps in HD720 resolution
and 11.97 fps in D1 resolution, and the speedup is 0.87 in
HD720 resolution and 0.88 in D1 resolution. With the help
of thread-pipelining parallelization, the processing speed of
the parallel system can achieve 12.22 fps in HD720 res-
olution, and 33.72 fps in D1 resolution, corresponding to
speedup of the parallel system compared with the original
program of 2.46 and 2.48, respectively.

In addition to evaluating the original, behavior-model,
and parallel programs, we also test the performance of the
3D video playing system during the verification, in order to
understand the impact of the synchronous verification over-
heads on performance. The behavior-level verification uses
three threads to respectively execute the original, behavior-
model, and verifier programs. The parallel-level verifica-
tion uses five threads to execute the parallel program which
is parallelized by a five-stage thread pipelining. Besides,
it also uses one thread to execute the behavior-model pro-

Fig. 17 Performance comparison of the behavior-level verification.

Fig. 18 Performance comparison of the parallel-level verification.

gram and one thread to execute the verifier program. Fig-
ure 17 and Fig. 18 show the performance comparison of the
behavior-level and parallel-level verifications. In the fig-
ures, the labels “behavior-level verification (X cores)” and
“parallel-level verification (X cores)” on the x-axis represent
the performance during the behavior-level and parallel-level
verifications, respectively. X represents how many cores are
used to execute the behavior-level and parallel-level verifi-
cations. The y-axis represents the performance in fps. The
number in the square brackets indicates the performance
degradation with the original program as a baseline for com-
parison, while the number below the square brackets indi-
cates the performance.

Consider the relationship between the performance of
behavior-level verification and the number of cores avail-
able to the verification, as shown in Fig. 17. For the case
that three cores available to execute the behavior-level ver-
ification, the performance degradation caused by verifica-
tion is 14.6% in HD720 resolution and 13.3% in D1 reso-
lution. The performance of behavior-level verification ex-
ecuted on two cores is slightly slower than that on three
cores. The reason is the execution time of the verifier pro-
gram is much smaller than the original or behavior-model
programs. Consider the relationship between the perfor-
mance of parallel-level verification and the number of cores
available to the verification, as shown in Fig. 18. For the
case that seven cores available to execute the parallel-level
verification, the performance degradation caused during the
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Table 2 Comparison of code size.

program original program behavior-model program parallel program

code size 654,978 705,621 710,303
(bytes)

Table 3 Description of programs bugs identified during verification.

Description of errors Difficulty

Behavior phase Forget to give the data-buffer-
related variables initial values.

Easy

Read/write wrong data buffers due
to coding error.

Easy

Declare wrong data type during
data packetization.

Medium

Data access error due to access an
invalid address.

Medium

Parallel phase Deliver data packets to wrong
threads.

Medium

Synchronization error due to two
threads concurrently access the
same data buffer.

Hard

Errors due to globally synchronize
among threads (pipeline workers).

Hard

parallel-level verification is 21.1% and 23% for HD720 and
D1 resolutions, respectively. The results indicate that the
verification overhead brought by the proposed synchronous
verification mechanism is affordable and reasonable. The
evaluation also shows the performance of parallel-level ver-
ification is proportional to the number of cores available to
the verification. Table 2 lists the code size of static linked
executables for the original, behavior-model, and parallel
programs.

Several program bugs were identified during the ver-
ification. Table 3 provides a description of the serious er-
rors that arose during system development. In the behavior
phase, most of the errors resulted from the process of rewrit-
ing the original 3D depth map generator to the correspond-
ing behavior-model program. Because most of the work on
data packetization and task partitioning was performed in
the behavior phase, most of the errors in the parallel phase
arose from synchronization among threads (pipeline work-
ers). The term “Difficulty” in Table 3 is used to represent
the efforts of finding the errors. Compared to the behav-
ior phase, most of the synchronization errors in the parallel
phase are difficult to be found. The reason is that the occur-
rence of such errors may depend on some execution order of
threads and the execution of the threads may proceed out of
order.

4. Conclusion

We proposed a verification-aware design methodology that
provides developers with a systematic and reliable approach
to performing thread-pipelining parallelization on sequen-
tial programs, especially large or complicated programs.
In contrast to the traditional design flow, a behavior-model
program is constructed before parallelization as a bridge to
help developers gradually leverage the technique of thread-

pipelining parallelization. The characteristics of pipelining
mean that construction of the behavior-model program is
straightforward and much less error-prone than other design
patterns of parallel programs. To verify the behavior-model
program, a synchronous verification approach is proposed,
whereby the original program is concurrently executed with
the behavior-model program to automatically verify the re-
sults. After creating a certified behavior-model program, a
parallel program can be constructed based on the behavior-
model program. Employing an approach similar to syn-
chronous verification, the behavior-model program is con-
currently executed with the parallel program to test the cor-
rectness of parallel program. This strategy has a high like-
lihood of identifying bugs. To demonstrate the practicality
of the proposed methodology, it was applied to parallelize a
3D depth map generator using thread pipelining. The par-
allel 3D depth map generator was further integrated into a
3D video playing system for evaluation of the verification
overheads of the proposed methodology and the system per-
formance. The results show the parallel system can achieve
33.72 fps at D1 resolution and 12.22 fps at HD720 resolu-
tion through a five-stage pipeline. When verifying the par-
allel program, the proposed approach of synchronous veri-
fication keeps the performance degradation within 23% and
21.1% for D1 and HD720 resolutions, respectively.

The proposed methodology can help developers to rec-
tify bugs and to overcome the complexity of developing
parallel programs by employing a verification-aware design
flow. For leveraging the thread-pipelining execution model,
this technique not only reduces the risks of problems arising
when directly parallelizing a sequential program, it also pro-
vides a standard operation procedure (SOP) for designing a
reliable parallel program on multicore systems.
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