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Two-state Brownian motor driven by synchronously fluctuating unbiased forces
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As a model of the Brownian motor, we consider a particle moving unidirectionally under the action of two
synchronously fluctuating unbiased forces, transverse and longitudinal with respect to the particle track. The
former force induces track-normal transitions of the particle between the attached and detached states (with
and without a periodic potential, respectively), whereas the latter drives track-parallel motion in either state.
Analytical expressions of the current and efficiency are derived for different regimes, with due account of the
delayed response of the system to force fluctuations. For a sawtooth potential in the attached state, we reveal
several motion regimes affording the maximum current or the maximum efficiency. A special emphasis is placed
on the possibility of current reversal. As shown, the interplay between two phase-shifted harmonically varied
forces as well as inherent and externally induced asymmetry can lead to the emergence of multiple current
reversals, thus enabling the flexible controllability of the motion direction.
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I. INTRODUCTION

In systems possessing vectorial symmetry, a Brownian
particle subjected to external unbiased perturbations, deter-
ministic or stochastic, can exhibit a net drift even in the
absence of any long-range gradient [1–3]. The models for this
phenomenon generically called ratchets or Brownian motors
[4] have received much attention in recent years and have
been discussed in manifold contexts [1–12]. The Brownian
motor concept is primarily aimed at gaining insight into the
operation principles of molecular motor proteins [13] and
ion pumps [14]. Another motivation comes from artificial
molecular and nanoscale machinery design [10–12,15]. Two
main paradigms are recognized in this concept: flashing
ratchets [16–18] in which transported particles are exposed to
a time-fluctuating binding potential along their periodic track,
and rocking ratchets [19–21] in which the particles move in an
asymmetric periodic potential under the action of a spatially
uniform time-dependent zero-mean force. The properties of
the two ratchet types essentially differ in the adiabatic limit
and are characterized by the various mechanisms of current
reversal [22,23].

In inherently symmetric systems, directed motion can
emerge through the dynamical breaking of left-right symmetry.
There are a few essentially different ways, based on the
nonlinearity of the substrate, to bring about spatial asymmetry
by external perturbations. The most commonly used way is
to apply a temporally asymmetric, though zero-mean, driving
force to a particle moving in a symmetric periodic potential;
a so-called asymmetrically tilting ratchet is thus formed
[24–27]. A particular realization of this approach known as
harmonic mixing is the generation of a dc output by two
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superimposed sinusoidal ac input signals at commensurate
frequencies [28–31]. Another nonlinear mechanism leading
to motion rectification is gating, which originates from the
combined action of a modulated spatially symmetric potential
and an external time-symmetric ac force [32,33]. To provide
the gating effect, the perturbations must be synchronized so
that potential barriers lower in the first half-period at the same
time as the particle is pushed, say to the right, while the
barriers rise in the second half-period when the driving force
acts oppositely. The above-outlined nonlinear mechanisms
illustrate a potentially general approach to produce directed
motion in response to unbiased nonequilibrium perturbations;
this strategy suggests the combined use of two input signals
in which the rectification of one of them is induced or
enhanced by the other (nonlinear signal mixing [32,33]).
Such an approach involving a subtle interplay of nonlinearity,
asymmetry, signal parameters, and thermal noise offers great
promise to achieve controllable motion on the nanoscale [9,12]
and is definitely interesting for further analysis.

In the present work, we exploit the idea of nonlinear signal
mixing invoking a simple two-state model in which a Brownian
particle moving along a track stays in either an attached
or a detached state, with and without a periodic potential,
respectively. The track-parallel motion of the particle in either
state is driven by a longitudinal fluctuating unbiased force.
Track-normal transitions between the states occur under the
action of another fluctuating force, a transverse one. The
combination of the two synchronized force signals gives rise to
directed motion of the particle. We focus on various regimes of
the directed motion, depending on the model parameters. The
motivation for this research comes primarily from the fact that
more effective rectification of a signal by a ratchet device can
be achieved by adding another signal of controlled frequency,
amplitude, and phase. Additionally, we undertook the present
work to clarify the effect caused on the motor operation by the
system delayed response to the forcing.
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At first glance, the model considered here resem-
bles rocked-pulsated ratchet devices previously reported in
Refs. [32–34]. However, our model differs from that in
Ref. [34] both in formulation (the latter involves the fast
flashing of an asymmetric potential not synchronized with an
unbiased force oscillation) and the resulting effect (the latter
behaves as a mere superposition of the flashing and rocking
ratchets, thus yielding no directed motion in a symmetric
potential). Nor do the rocked-pulsated schemes [32,33],
though working in a symmetric potential (via the gating
mechanism), cover our model: we assume that the transverse
force effect is irreducible to a certain time dependence of the
potential energy amplitude because the force fluctuations and
the energy amplitude are related dynamically [22]. A sketch
of our approach was discussed in terms of the so-called low-
energy approximation, compared to the concepts of flashing
and rocking ratchets [22], and implemented as a near-surface
Brownian motor [35].

In contrast to the previous studies, the present two-state
consideration includes the effect of a delayed system response
to external force signals. The emphasis is made on the
possibility of current reversal resulting from the interplay
of two phase-shifted harmonically varied applied forces and
the competition between the inherent and externally induced
asymmetry of the system. As further shown, the model operates
in several motion regimes affording the maximum current or
the maximum efficiency.

II. THE MODEL

Consider a Brownian particle moving in a two-dimensional
potential V (x,z) under the action of a two-component time-
periodic force F(t) = (Fx(t),Fz(t)): F(t + τ ) = F(t), where τ

is a period. As a function of z, the potential is assumed to
have two minima at za = −H/2 and zd = H/2 separated by
a high barrier Vz at z = 0. This allows one to consider the
particle motion as driven diffusion along two x-parallel tracks
at za and zd combined with random hopping from one track to
the other (see Fig. 1). The two tracks referring to the attached
and detached states are characterized by different potential
profiles: V (x,za) = Va(x) and V (x,zd ) = Vd (x) = 0, where
Va(x + L) = Va(x) is a periodic function. Thus the particle
motion is hindered in the former state and is free in the
latter. The applied forces, Fx(t) and Fz(t), drive the system
out of equilibrium. If they also break the system symmetry
[due to a specific synchronization of the forces or a temporal
asymmetry of Fx(t)] or the symmetry is initially broken,
the directed motion occurs. Otherwise, enhanced diffusion is
observed [36,37].

With this setup, it is reasonable to treat the x motion
of the particle in terms of the continuous Fokker-Planck-
Smoluchowski description extended with sink and source
terms and the z motion in terms of the discrete kinetic approach.
Then the joint probability density pq(x,t) for the particle to
be in the attached or detached state (q = a,d) at position x
at time t satisfies two Smoluchowski equations with the sink
and source term r(x,t) accounting for the random interstate
transitions with the position-dependent rate constants γad (x,t)
and γda(x,t) (see, e.g., Refs. [1,3,8] where a similar description

FIG. 1. The scheme of the model represented by the x cross
section (a) and the z cross section at z = H/2 (b) (see the text for
more details). Here U and U0 are the amplitude and the average value
of the potential Va(x) relative to the energy of the detached state
Vd (x) = 0. In panel (a), the value of U0 is chosen equal to zero.

has been used):

∂

∂t
pq(x,t) = − ∂

∂x
Jq(x,t) ∓ r(x,t),

r(x,t) ≡ γad (x,t)pa(x,t) − γda(x,t)pd (x,t),

Jq(x,t) = −De−βVq [x;Fx (t)] ∂

∂x
[eβVq [x;Fx (t)]pq(x,t)], (1)

γqq′(x,t) = γ eβVq (x)−βFz(t)zq , γ = γ0e
−βVz ,

Vq[x; Fx(t)] ≡ Vq(x) − Fx(t)x, q = a,d,

where β ≡ (kBT )−1 (kBT is the thermal energy), D = kBT /ζ

is the diffusion coefficient (ζ is the friction coefficient)
referring to potential-free unrestricted Brownian motion, and
the characteristic frequency γ0 is determined by the curvatures
of minima and maxima of the potential in the x cross section.
The validity of the description used is provided by the inequal-
ities: βVz � 1 and τ−1 � γ0. Both probability densities and
probability currents must satisfy periodic boundary conditions
at x = 0 and L. In view of Eq. (1), this implies that the
probability ρq(t) to find the particle in state q defined as

ρq(t) ≡
∫ L

0
pq(x,t) dx (2)

satisfies the following equation:

d

dt
ρq(t) = ∓

∫ L

0
r(x,t) dx. (3)

We are concerned with sufficiently long times to assume
that the path traversed by the particle extends far beyond
the period L and the quantities of interest become periodic
functions of time. Of primary significance is the average
velocity of the particle, U, which is expressible in terms
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of the total probability current J (x,t) = Ja(x,t) + Jd (x,t) as
follows:

U =
∫ L

0
dx〈J (x,t)〉. (4)

Hereinafter, the angle brackets denote averaging over the
period. Another relevant quantity is the energetic efficiency
with which the motor converts external fluctuations into useful
work [8], e.g., advances against a constant load force Fl [so
that the resultant longitudinal force acting on the particle is
Fx(t) − Fl]. The energetic efficiency η is defined as the ratio
of the power output Pout to the power input Pin. Note that Pin

includes two contributions P (x)
in and P (z)

in reflecting the power
consumption for maintaining nonequilibrium distributions
along the x and z directions, required for the system to operate
as a Brownian motor. These main characteristics of the energy
conversion process can be specified by the following relations:

Pout = FlU, Pin = P (x)
in + P (z)

in , η = Pout/Pin,

P (x)
in =

∫ L

0
dx〈Fx(t)J (x,t)〉, (5)

P (z)
in =

〈
dFz(t)

dt
[ρa(t) − ρd (t)]

〉
H.

There are other energy characteristics of the processes con-
sidered which might be of physical interest, e.g., the heat
outflow from track q and heat flow along axis x, which can
be determined using the main characteristics (5).

Equations (1)–(5) provide a starting point for calculating the
motor characteristics for a wide range of problem parameters.
However, Eq. (1) indicates the coupling between x and z
motions, which generally makes the problem hard. Fortunately,
the problem can be tackled analytically in a few limiting cases
where the coupling can be neglected. In what follows, we
consider two such limits: the case of weak longitudinal forcing
corresponding to the linear response limit (see Sec. III) and
the case of high barriers of the periodic potential with slow
forcing where a kinetic description is adequate for the motion
not only in the z but also in the x direction (see Sec. IV). The
analysis of the two limiting cases reveals the main properties
of the motor.

III. LINEAR RESPONSE REGIME

In this section, we focus on the limit of weak forcing
βFxL � 1, where the linear response theory is valid. This
regime admits analytical treatment because Eq. (3) for the state
population probability ρq(t) can be written in a closed form. To
make this evident, first consider the Brownian particle motion
in the tilted periodic potential Vq(x; Fx), q = a,d, under the
action of a static tilting force Fx . In this case, the stationary
analytical solution for the probability density and the current
in state q populated with probability ρq is well known [38–40]:

pq(x) = Q−1ρqe
−βVq (x;Fx )

[∫ L

0
dx eβVq (x;Fx )

− (1 − e−βFxL)
∫ x

0
dx ′ eβVq (x ′;Fx )

]
,

Jq = DQ−1(1 − e−βFxL)ρq,

Q =
∫ L

0
dx eβVq (x;Fx )

∫ L

0
dx e−βVq (x;Fx )

−(1 − e−βFxL)
∫ L

0
dx e−βVq (x;Fx )

∫ x

0
dx ′ eβVq (x ′;Fx ).

(6)

In the linear response regime, these expressions take the
form

pq(x) ≈
[∫ L

0
dx e−βVq (x)

]−1

ρqe
−βVq (x),

(7)
Jq ≈ L−1ζ−1

q Fxρq,

where ζ−1
q is the effective mobility of the Brownian particle in

the periodic potential Vq(x) [41]:

ζ−1
q = L2∫ L

0 dx eβVq (x)
∫ L

0 dx e−βVq (x)
ζ−1. (8)

Note that ζd = ζ and the approximate equalities (7) become
exact at q = d.

With approximate expressions (7) and the transition rates
defined in Eq. (1), the net transition current density between
the states r(x) appears as

r(x) ≈ γ

[∫ L

0
dx e−βVa (x)

]−1

ρae
−βFzza − γL−1ρde

−βFzzd .

(9)

Thus in the linear response limit, r(x) is independent of x
becoming zero at the following equilibrium values of ρ(0)

q :

ρ(0)
a = [1 + Wa exp fz]

−1, ρ
(0)
d = 1 − ρ(0)

a , (10)

where

W−1
a ≡ L−1

∫ L

0
dx e−βVa (x), fz = FzH/kBT . (11)

We are now in a position to discuss the case of the
time-dependent force F(t). Suppose that the time modulation
is slow, τ−1 � γ0, which enables the kinetic description of
the z-directed motion. Under such a condition, the interstate
transition dynamics is independent of the motion in the x
direction. This, together with Eq. (7), allows one to write
Eq. (3) in the closed form

dρa(t)/dt = −[γ̃ad (t) + γ̃da(t)]ρa(t) + γ̃da(t), (12)

with the renormalized rate constants

γ̃ad (t) = γWa exp[fz(t)/2],
(13)

γ̃da(t) = γ exp[−fz(t)/2].

The periodic solution of Eq. (12) can be obtained from
the general solution [42] using the periodic condition ρa(t) =
ρa(t + τ ):

ρa(t) = s(t){[s−1(τ ) − 1]−1ϕ(τ ) + ϕ(t)},
ϕ(t) =

∫ t

0
γ̃da(t ′)s−1(t ′) dt ′, (14)

s(t) = exp

{
−

∫ t

0
[γ̃ad (t ′) + γ̃da(t ′)] dt ′

}
.

Explicit expressions (7) for the probability currents in the
attached and detached states are x independent. Thus in the
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linear response regime, Eq. (4) for the average velocity of the
directed motion driven by the longitudinal force Fx(t) − Fl

with 〈Fx(t)〉 = 0 takes the form

U = −[
ζ−1
a 〈ρa(t)〉 + ζ−1(1 − 〈ρa(t)〉)]Fl

+(
ζ−1
a − ζ−1

)〈ρa(t)Fx(t)〉. (15)

A. Adiabatic limit

In the adiabatic limit τ−1 � γ , the population probability
can be taken as ρa(t) = [1 + Wa exp fz(t)]−1 [cf. Eq. (10)], so
that the main motor characteristics defined in Eqs. (4) and (5)
can be easily found for the symmetric rectangular excitation
of the form F(t) = F sign[sin(2πt/τ )] [where sign(ξ ) = 1 at
ξ > 0 and sign(ξ ) = −1 at ξ < 0] from the relations

U = �0 (�1Fx − Fl) , P (x)
in = �0F

2
x ,

P (z)
in = 8kBT

τ

Wa sinh fz

1 + W 2
a + 2Wa cosh fz

fz,

�0 = ζ−1Wa (Wa + cosh fz) + ζ−1
a (1 + Wa cosh fz)

1 + W 2
a + 2Wa cosh fz

,

�1 =
(
ζ−1 − ζ−1

a

)
Wa sinh fz

ζ−1Wa (Wa + cosh fz) + ζ−1
a (1 + Wa cosh fz)

.

(16)

In the unloaded regime Fl = 0, the expression for the average
velocity is greatly simplified:

U = ζ−1
eff Fx, ζ−1

eff ≡
(
ζ−1 − ζ−1

a

)
Wa sinh fz

1 + W 2
a + 2Wa cosh fz

. (17)

As an example, for the sawtooth potential Va(x) of the
amplitude U with the average value U0 [relative to the energy
of the detached state Vd (x) = 0, see Fig. 1] and for the case of
the zero value of the temporal asymmetry parameter ε = 0 (see
Fig. 2), the quantities Wa and ζ−1

a are given by the relations

Wa = u

sinh(u)
exp(u0) , ζ−1

a = u2

sinh2(u)
ζ−1, (18)

where u ≡ βU and u0 ≡ βU0. First of all, note that expres-
sions (18) do not depend on the asymmetry of the potential
Va(x) (characterized by the parameter l). So the directional
motion occurs, in particular, for a symmetric potential. The
effective mobility of the Brownian particle in the attached state
ζ−1
a is determined only by the amplitude of potential Va(x),

whereas the quantity Wa depends on both U and U0. Thus,
in the low-temperature limit (u,u0,fz → ∞), where ζ−1

a ≈
4u2 exp(−2u)ζ−1, Wa ≈ 2u exp(u0 − u), and Wa cosh fz ≈
u exp(u0 − u + fz), the effective mobility ζ−1

eff tends to zero
at FzH < |U − U0| and takes the maximum value ζ−1/2 at
FzH > |U − U0|. At the same time, the effective mobility ζ−1

eff
vanishes in both cases for high temperatures, since ζ−1

a → ζ−1

at u → 0. That is why the temperature dependence of the
velocity is nonmonotonic at FzH < |U − U0| and monotonic
at FzH � |U − U0|. Such behavior is depicted in Fig. 3 for
the case U0 = 0.

FIG. 2. Dichotomic fluctuations of the applied unbiased force and
the fluctuation-induced change in the sawtooth potential Va(x).

The compact expression for the efficiency can be derived
from Eqs. (5) and (16) by neglecting the quantity P (z)

in , which
is justified in the adiabatic limit

η = Fl (�1Fx − Fl)

F 2
x

. (19)

From Eq. (19) it follows that the maximum of the efficiency
as the function of Fl is ηmax = �2

1/4. The temperature
dependence of ηmax is presented in the framed inset in Fig. 3.
If ζa � ζ , then Eq. (16) for �1 can be used to estimate the
upper bound of ηmax:

ηmax = 1

4

sinh2 fz

(Wa + cosh fz)2 <
1

4
. (20)

0
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FIG. 3. The temperature dependences of the effective mobility
defined by Eq. (17) for the sawtooth potential Va(x). The curves in
descending order correspond to the respective ratios FzH/U of 1.3,
1, and 0.7 at U0 = 0. The top right frame shows the temperature
dependences of the maximum efficiency for the same values of
FzH/U .
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B. Beyond the adiabatic limit

To go beyond the adiabatic limit, we invoke the addi-
tional approximation that transverse forcing is also weak,
|fz(t)| � 1. Then the expansion of solution (14) in terms of
the small periodic functions fz(t) yields

ρa(t) = 1

1 + Wa

{
1 − γWa

exp[γ (1 + Wa)τ ] − 1

∫ τ

0
dt ′ fz(t

′)

× exp

[
−γ (1 + Wa)(t − t ′) − γWa

∫ t

0
dt ′ fz(t

′)
]

× exp[−γ (1 + Wa)(t − t ′)]
}

. (21)

The expression obtained indicates that there is a delay of
the population probability ρa(t) with respect to the trans-
verse forcing fz(t). The characteristic time of this delay is
[γ (1 + Wa)]−1. Such a delay occurs for sufficiently high
barriers Vz between the attached and detached states and
for not too large values of the parameter Wa when the
inequality γ (1 + Wa) � γ0 ∼ kBT /ζH 2 holds. On the other
hand, it is known [18] that the adiabatic approximation
Ja[Fx(t),t] ≈ Ja[Fx(t)] is valid if the excitation frequency
satisfies the condition τ−1 � kBT /ζL2. Thus, with τ−1 falling
in the above range and H ∼ L, one can take advantage of the
adiabatic approximation and use Eq. (21). At the same time, τ
can be larger or smaller than the delay time [γ (1 + Wa)]−1.

The desired characteristics of the motor are derived
by the substitution of Eq. (21) into Eqs. (5) and (15).
The average velocity U is most simply represented in
terms of the Fourier components fj of the applied forces
f (x) [f (x) = ∑

j fj exp(−iωj t), ωj = 2πj/τ , wherej is an
integer]:

U = −Waζ
−1 + ζ−1

a

1 + Wa

Fl

+ γ

(
ζ−1 − ζ−1

a

)
Wa

1 + Wa

∑
j

Fx,j fz,−j

γ (1 + Wa) + iωj

. (22)

In the particularly important case of two mixed sinusoidal
signals, Fx(t) = Fx cos ωt and Fz(t) = Fz cos(ωt − ϕ), mu-
tually phase shifted by ϕ, Eq. (22) leads to

U = −Waζ
−1 + ζ−1

a

1 + Wa

Fl +
(
ζ−1 − ζ−1

a

)
Wa

2(1 + Wa)2
S(ω̃)Fxfz,

(23)
S(ω̃) = cos ϕ + ω̃ sin ϕ

1 + ω̃2
, ω̃ ≡ ω

γ (1 + Wa)
.

Here the function S(ω̃) accounts for the delayed response of the
system to the external excitation (see Fig. 4). It decreases from
unity (in the adiabatic limit) to zero at ϕ = 0 and exhibits
a nonmonotonic behavior at ϕ = 0, with a stopping point
emerging at ϕ < 0. The maximum value of the efficiency
is reached in the adiabatic limit at ϕ = 0. It is defined as
follows:

ηmax = 1

8

f 2
z

(Wa + 1)2 . (24)

The efficiency is small due to the smallness of the parameter fz.

-0.4

0

0.4

0.8

1.2

0 1 2 3 4 5

ω

S

~

FIG. 4. The quantity S(ω̃) versus the modulation frequency
(scaled by the reciprocal delay time) for different values of the
phase shift between the two force components: ϕ = 0 (the solid
line), ϕ = π/3 (the long-dashed line), and ϕ = −π/3 (the short-
dashed line). Note that the average velocity U is proportional
to S(ω̃).

IV. KINETIC DESCRIPTION

In this section, we consider another physical situation
amenable to analytical treatment. Assume that a Brownian
particle moves in a periodic potential with interwell barrier
heights larger than the particle thermal energy kBT and the
potential modulation frequency much less than the inverse time
D/L2 of the particle diffusion over the spatial period L. Then
the particle motion in the x direction can be regarded as ther-
mally activated hopping between the potential wells (discrete
states). With this coarse-grained description, one can neglect
the details of the particle intrawell behavior, in particular,
the coupling to the transverse dynamics [see Eq. (1)]. Thus the
motions in the x and z directions can be described separately. A
further advantage of the kinetic approach is that it allows going
beyond the linear response regime, thus providing a possibility
to elucidate the role of inherent and induced asymmetry in the
emergence of directed motion.

Within the kinetic description, the probability current
is simply the difference between the hopping rates to
the right and to the left. The corresponding forward and
reverse rate constants �α and ←

α can be found [43,44]
by calculating the probabilities to overcome the barrier
at x = 0 from the left to the right and vice versa (see
Fig. 2):

�α = D∫ l

−L+l
dx eβVa (x;Fx )

∫ 0
−L

dx e−βVa (x;Fx )
,

(25)
←
α = D∫ l

−L+l
dx eβVa (x;Fx )

∫ L

0 dx e−βVa (x;Fx )
.

Using the equality
∫ 0
−L

dx e−βVa (x;Fx ) = e−βFxL
∫ L

0

dx e−βVa (x;Fx ) which follows from definition (1) of Vq(x; Fx),
we obtain the probability current in the attached state under
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the action of the homogeneous and stationary force Fx :

Ja = (�α − ←
α)ρ(0)

a = D(eβFxL − 1)∫ l

−L+l
dx eβVa (x;Fx )

∫ L

0 dx e−βVa (x;Fx )
ρ(0)

a ,

(26)

where the state population probability ρ(0)
a is defined by

Eq. (10). The current in the detached state is Jd =
L−1ζ−1Fxρ

(0)
d . Thus for the asymmetric sawtooth potential

Va(x) of the amplitude U , with U0 = 0 (see Figs. 1 and 2), the
total probability current reads

J (F) = U

ζL2

4

1 + 2ue−u+fz

×{ue−2u[efx (1−κ) − efx (1+κ)] + fxe
−u+fz}, (27)

with the asymmetry coefficient κ = (2l − L)/L and the
dimensionless parameters u = βU > 1 and fx = βFxL/2 <

u. Note that beyond the linear response, fx >∼ 1, spatial
asymmetry comes into play.

To rationalize the role of inherent and induced asymmetry in
controlling particle transport, consider a simple case of a time-
periodic rectangular asymmetric excitation F(t). The positive
and negative force pulses are different both in magnitude and
duration but the period-averaged force vanishes, 〈F(t)〉 = 0
(see Fig. 2). The excitation gives rise to the directed motion of
the particle, with the velocity U which, in the adiabatic limit
and at the zero load force, becomes

U = L

2

[
(1 − ε) J

(
1 + ε

1 − ε
F
)

+ (1 + ε) J (−F)

]
. (28)

[Here ε is the temporal asymmetry parameter defined in Fig. 2
such that |ε| < 1 and J (F) is specified by Eq. (27).]

Figure 5 illustrates the peculiarities of the velocity change
with temperature in different regimes. As panel (a) indicates,
(i) there is no current reversal upon varying the temperature
in the absence of spatial and temporal asymmetry (curve 1);
(ii) spatial asymmetry leads to the appearance of current
reversal (curve 2); and (iii) in the case fz = 0 when our
model reduces to the rocking ratchet scheme, a stopping
point can arise as a result of the competition between spatial
(inherent) and temporal (induced) asymmetry (curve 3). The
curves in Figs. 5(b) and 5(c) show the possibility for one
or two stopping points to arise, with the different scale of the
velocity magnitude. Thus the ratio FzH/U and the asymmetry
parameters κ and ε, along with the additionally introduced
phase shift between force components and the load force, may
have a dramatic impact on the temperature behavior of the
velocity causing, in particular, multiple current reversals.

Estimating the characteristic values of the average ve-
locity, we use the typical sliding velocity U/(ζL) as a
scaling factor (see Fig. 5). For characteristic parameter values
U = 10 pN nm, ζ = 10−6 pN s/nm, and L = 10 nm, the slid-
ing velocity is sufficiently high, U/(ζL) = 103μm/s. As a
result, the velocity of the motor treated here can amount
to biologically relevant values of the order 100 μm/s [see
Fig. 5(a)].
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FIG. 5. The temperature dependences of the average velocity
in the framework of the kinetic approach with fx/u = 0.3 and
the system parameters fz/u ≡ δ, κ , and ε varied: curves 1, 2,
and 3, respectively, correspond to (a) δ = 0.3, κ = ε = 0; δ = 0.3,
κ = 0.9, ε = 0; and δ = 0, κ = 0.8, ε = 0.55; (b) δ = 0.04, κ = 0,
ε = −0.75; δ = 0.02, κ = 0, ε = −0.75; and δ = 0.01, κ = −0.05,
ε = −0.75; and (c) δ = 0.3, κ = 0.5, ε = −0.3; δ = 1.5, κ = 0.8,
ε = −0.8; and δ = 0.3, κ = 0.8, ε = −0.8.
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V. DISCUSSION AND CONCLUSIONS

The model developed in the present study exhibits a rich
variety of behaviors, some of which are sufficiently simple
to be tractable analytically. In the trivial cases, where only
one of two above-discussed fluctuating forces is applied,
our model reproduces one of two paradigmatic scenarios for
noise-induced motion, flashing and rocking (or asymmetrically
tilting) ratchets. Indeed, if only the transverse excitation
Fz is fed, directed motion arises due to potential profile
fluctuations so that the flashing ratchet scheme is implemented.
In this case, spatial asymmetry and nonadiabatic conditions
are crucial for the effect to emerge (in symmetric systems,
accelerated diffusion is only possible [45]). We do not
intend to discuss these features in further detail here, as
the flashing ratchet has been abundantly discussed in the
literature.

With only the longitudinal excitation Fx , our model
operates as a rocking (or asymmetrically tilting) ratchet.
Importantly, this motor efficiently functions in the adiabatic
limit provided that the potential profile is asymmetric. When
both Fx and Fz are applied, the suggested model is not
merely a hybrid of the two prototypical mechanisms, but
exhibits qualitatively new features as compared to either
of them. In particular, if the force components fluctuate
synchronously, neither the spatial asymmetry of the potential
nor the temporal asymmetry of input signals is necessary for
directed motion to occur. This case exemplifies the gating
mechanism [12,32,33] thoroughly analyzed in the low-energy
approximation [22].

The Brownian motor considered here has some features
in common with the so-called near-surface motor [35] in
which the unidirectional surface-parallel motion of a Brownian
particle is produced by a surface-inclined zero-mean small
fluctuating force. This motor operates in the near-surface
potential V (x,z) which is periodic in the surface-parallel
coordinate x and, in the case of a polar substrate, exponentially
fast decreases with distance z, with the zero average value
of V (x,z). This peculiarity corresponds to U0 = 0 in the
present model. A key distinction between these two models
is that the transverse motion involved in the present model is
restricted by transitions between the attached and detached
states which are delayed relative to the fluctuations of
the transition-inducing transverse force component. Though
somewhat simplistic, this description of transverse motion
captures the essentials of the problem and, importantly, makes
the analytical treatment quite feasible. On the other hand, this
setup is relevant to a variety of situations where the moving
part of a motor can be attached to or detached from the
track-parallel surface depending on its conformational state. If
this motor part carries a charge, it can be driven by an ac electric
signal.

A distinctive feature of the present analysis is that it includes
a delayed system response to external force signals. This is
possible since the attached/detached state lifetime and the
characteristic time of diffusion over the potential period differ
widely, L2/D � γ −1, which allows us to simultaneously
consider the delayed response of the state populations and the
adiabatic limit for the longitudinal motion. For the particularly
important case of two mixed sinusoidal signals, Fx(t) =

Fx cos ωt and Fz(t) = Fz cos(ωt − ϕ), with the frequency
ω � D/L2, it is then found (see Sec. III and Fig. 4) that
the motor velocity U (i) monotonically decreases with ω if
the synchronous signals are coherent, ϕ = 0 (solid line), and
(ii) behaves nonmonotonically as a function of ω if there
is a phase shift between the signals, ϕ = 0 (short-dashed
line). The long-dashed line in Fig. 4 demonstrates that certain
values of the phase shift can result in a stopping point on
different sides of which the function U(ω) has the opposite
signs.

The most striking manifestation of the effect is that directed
motion emerges even in the absence of spatial and temporal
asymmetry provided the input force signals are synchronized.
In this situation, Eqs. (16) and (17) suggest that the model
exhibits qualitatively different behaviors, depending on the
signal amplitudes. In particular, the low-temperature trends in
the probability current are different at FzH < |U − U0| and
FzH � |U − U0|: in the former case, the current tends to zero
as T → 0, while in the latter, it takes the maximum value in
this limit. Hence, the respective temperature dependences of
the velocity are nonmonotonic and monotonically decreasing
(see Fig. 3 for the case of U0 = 0). The maximum efficiency
can reach 0.25 in the low-temperature limit.

The spatial asymmetry of the potential and the temporal
asymmetry of the excitations are the governing factors of the
current reversal occurrence. Their effect on motion charac-
teristics is analyzed in terms of the kinetic approach which
enables simplification of the analysis as well as extension
of the resulting conclusions to arbitrarily shaped potentials.
As shown in Sec. IV (see Fig. 5), both spatial and temporal
asymmetry afford the possibility of current reversal. Two
stopping points originate from the competition between the
two kinds of asymmetry. It is evident that a richer behavior of
the motor velocity exhibited, in particular, by multiple current
reversals, may follow from a more sophisticated treatment
which additionally includes such factors as a delayed response
of state populations, a phase shift between the Fx and Fz force
components (as in Sec. III), and the load force Fl .

Substituting the biologically relevant values of model
parameters into the analytical relationships obtained, one
can estimate the characteristic average velocities of the
suggested motor which in some regimes are comparable to
those of typical (protein) molecular motors (100 nm/s). A
simple mechanism of directed motion generation along with
a high estimated efficiency of the corresponding Brownian
motor offer much promise for research- and practice-oriented
implementations of the model developed.
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