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Toward Optimal Multiuser Antenna Beamforming
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Abstract—In this paper, we present a joint antenna beamform-
ing and power allocation technique to maximize the multiuser
sum rate in an underlying microcellular system which reuses the
same spectrum of a macrocellular system. One challenge in this
kind of hierarchical cognitive radio (HCR) systems is to manage
the interference between the macrocell and the microcell. The key
contribution of this paper is to develop an optimization technique
for antenna beamforming that can maximize the achievable
sum rate of the underlying cognitive radio (CR) microcellular
system and control the interference between the macrocell and
the microcell with a satisfaction level. The proposed technique
optimizes the sum rate performance by maximizing its lower
bound and transfers the original non-convex problem into a
convex optimization problem by introducing auxiliary variables
to confine the intra-user interference power among the sec-
ondary system. Next, an iterative sum rate maximization (ISM)
algorithm is developed to find the beamforming weights and
the allocated power for each secondary user to simultaneously
maximize system sum rate, coverage, and concurrent multiuser
transmission probability in the HCR system. The developed joint
design methodology provides valuable insights into the design of
an optimal HCR system for various numbers of users as well as
cell coverage, and can quantitatively optimize the performance
tradeoffs in the hierarchical multiuser CR systems for current
and future wireless communication applications.

Index Terms—Hierarchical cognitive radio, multiuser beam-
forming, power allocation, convex optimization.

I. INTRODUCTION

RECENTLY, cognitive radio (CR) has emerged as an im-
portant technology for future wireless communications

[1][2] since it can improve the utilization of precious fre-
quency spectrum. According to the amount of the required side
information, CR systems have three ways to avoid interfering
noncognitive users: underlying, interweaving, and overlaying
[3][4]. In the underlay scenario, the CR system operates when
the interference from CR systems to the primary users is
below a prescribed threshold [5]–[17]. The interweave CR
system, requiring considerable information about the activity
of noncognitive users, opportunistically accesses the vacant
frequency spectrum which is unoccupied by the noncognitive
users at particular time or a specific geographic location [18]–
[20]. The overlay CR system requires noncognitive users’
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information and applies sophisticated signal processing to
control the interference to the noncognitive users [27].

In this paper, we investigate a hierarchical cognitive radio
(HCR) system where an underlying microcellular system
simultaneously shares the same spectrum resource with a
macrocellular system. Wireless data service usually exhibits
an asymmetric behavior with less data traffic generated in the
uplink than that in the downlink, and thus the uplink spectrum
is often underutilized. To improve the spectrum efficiency, an
underlying microcellular CR system is deployed to recycle the
uplink spectrum of an already existing macrocellular system.
One major challenge for this kind of HCR systems is to man-
age the interference between the microcell and the macrocell.
Another essential challenge is to optimize the secondary users’
throughput, while protecting the primary users from being
interfered by the secondary users. Moreover, the primary users
in the macrocellular system posses higher priority to use the
spectrum than the secondary users in the microcellular system.

The objective of this paper is to overcome the aforemen-
tioned challenges for the HCR system by using multiple
antenna beamforming. In the last decade, multiple-antenna
techniques have received a lot of attention due to the advantage
of capacity increase [22] and interference reduction [23].
The objective in [23] was to apply beamforming and power
control techniques to increase data throughput of homoge-
neous wireless networks, while maintaining total transmission
power at the minimum required level and achieving signal-
to-interference plus noise power ratio (SINR) thresholds for
all users’ links. Our work differs from [23] in two aspects.
First, we design the beamforming and power control from
a sum-rate maximization perspective, while [23] was from
a viewpoint of power minimization. Second, we consider
both the intra-cell interference and the cross-tier interference
between the macrocell and the microcell, while [23] was only
applied to a single cell scenario. In this paper, we suggest
applying the beamforming or space-division multiple access
(SDMA) techniques to maximize the sum rate of the underly-
ing microcellular system, while serving a number of secondary
users of the underlying CR systems by effectively overcom-
ing the cross-tier interference between the microcellular CR
system and the macrocellular noncognitive radio system. For
an underlying CR system we take account of the following
three constraints: interference power, SINR, and transmission
power. With the interference power constraint, the primary
user can use a single-user decoder without degrading data
rates even in the presence of interfering secondary users. We
are also interested in the numbers of serviceable secondary
users with the minimum guaranteed data rate and the extra
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data rate that can be provided by the underlying CR system
for the secondary users. Hence, the SINR constraint is set
as the the minimum link quality requirement for concurrent
multiuser transmissions, depending on signalling schemes and
bit error rates. The transmission power constraint is to limit
the maximum total transmission power at the underlying CR
base station (BS).

The HCR system can be regarded as a paradigm of the tradi-
tional two-user interference channel problem where two users
transmit independent messages without cooperation. The exact
capacity region of the two-user interference channel is not yet
fully understood and remains an open issue. In this channel
model, each transmit-receive pair wishes to achieve reliable
communications, but the two users interfere with each other.
The capacity region is only known for a few special cases such
as the Gaussian interference channel or discrete memoryless
interference channel with strong interference [24][25]. The
growth of CR has recently motivated many works to study the
two-user interference channel with one cognitive transmitter
[26]–[28]. The channel models considered in [26][29][30]
assume that the cognitive transmitter could non-causally or
causally access the message of the primary transmitter to
enable interference reduction and improve transmission rates
through some precoding strategies, e.g., Gel’fand-Pinsker cod-
ing in [31] and Costa’s dirty paper coding in [32]. Due to the
one-side transmitter cooperation, finding the capacity region
of the two-user cognitive interference channel is much easier
than that of the traditional two-user interference channel. The
optimization framework to determine the sum capacity of
the cognitive interference channel is in general a non-convex
problem. Based on theoretical results in [29], the work of
[33] thus attempts to optimize the sum capacity of a multi-
input multi-output (MIMO) cognitive interference channel by
applying duality techniques. However, the results invented by
this work can only provide us an upper bound for the sum
rate of the two-user interference channel (or equivalently, the
HCR system) as it is assumed that the message of the primary
transmitter is fully acquirable at the cognitive transmitter.
Therefore, it is imperative to understand the achievable sum
rate of the traditional two-user interference channel and to
benchmark the sum rate performance of the HCR system from
practical design viewpoints.

In this paper, we jointly design the beamforming weights
and the allocated power for each CR user to maximize the
sum rate of the underlying CR system, while satisfying the
constraints of the interference power to the primary BS, the re-
quired SINR for the secondary users, and the total transmitted
power from the secondary BS. The design framework for the
HCR system discussed in this paper can help us understand:
(1) how beamforming techniques can be used to manage the
interference in the HCR system; (2) what sum rate can be
achieved in the underlying CR system. Actually, the sum rate
maximization problem is strongly NP-hard even for a standard
multiuser power control problem [34]. Compared with those
works without adopting beamforming or merely concerning
power control [5]–[17], it is more challenging to find the op-
timal solution for the joint multiuser beamforming and power
allocation with all the aforementioned considered constraints,
which is indeed a non-convex optimization problem. Detailed

review of these related works will be conducted in Section II.
The main contribution of this paper is to solve the afore-

mentioned non-convex optimization problem by proposing
an iterative sum rate maximization (ISM) algorithm. First,
we optimize the sum rate of the microcellular system by
alternatively maximizing its lower bound performance and
discuss the feasibility of the three imposed constraints. A
necessary condition for the choice of Imax and γmin,k to make
the considered optimization problem feasible is provided,
where Imax and γmin,k are the given values with respect
to the interference power and SINR constraints, respectively.
Besides, we also analyze the feasibility condition for the
case where secondary users are ideally scheduled at different
spatial angular directions. Second, we transform the problem
of interest into a form of convex optimization by introducing
auxiliary variables in the objective function to constrain the
intra-user interference power among the secondary users. The
transformation approach used for tackling the non-convex sum
rate maximization problem is inherently different from the
conventional epigraph approach in [15] although they look
similar at the first glance. The idea of our approach originates
from an observation that by fixing the values of the auxiliary
variables, the non-convex optimization problem becomes a
manageable convex optimization problem. In addition, an
iterative procedure is provided for updating two lower bound-
related coefficients so as to tighten the lower bound of the sum
rate performance. It is proved that when the iterative procedure
converges, the optimal solution of the transformed convex
optimization problem with the two converged coefficients is
a local maximizer of the original sum rate maximization
problem. Third, we use the Lagrangian function and Karush-
Kuhn-Tucker (KKT) conditions to analyze the optimal sum
rate performance with respect to the perturbations of the
auxiliary variables. Interestingly, we find that the maximum
achievable sum rate of the transformed equivalent system
can proportionally increase with respect to the introduced
auxiliary variables when the intra-user interference power
constraints among the secondary users are inactive for the
derived optimal beamforming weights, i.e., the equality for the
intra-user interference power constraints does not hold. When
the intra-user interference power constraints are active, i.e.,
the equality for the intra-user interference power constraints
becomes effective, one can increase the sum rate by trading
off the objective of maximizing the matched output power and
that of minimizing the intra-user interference power among
the secondary users. This property helps the proposed ISM
algorithm maximize the underlying microcellular sum rate,
while complying with all the three aforementioned constraints.
The developed methodology can enhance the underlying CR
systems to achieve the maximum sum rate, and facilitate the
coexistence with noncognitive systems.

The rest of this paper is organized as follows. Some related
works are introduced in Section II. In Section III, we describe
the HCR system model, where multiple antennas are used at
the underlying CR system for downlink broadcasting. Section
IV introduces the sum rate maximization problem by jointly
designing multiuser beamforming and power allocation with
the constraints of SINR, interference power, and transmission
power and discuss the feasibility of the three imposed con-
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straints. In Section V, we present the ISM algorithm, which
can help reach the optimal solution for the non-convex opti-
mization problem. Section VI shows some numerical results.
Finally, Section VII concludes the paper.

The following notations are used throughout this paper. The
uppercase and lowercase boldface letters are used to denote
matrices and vectors, respectively. The notations (·)†, (·)T ,
and E[·] denote the conjugate transpose, the transpose, and
the expectation, respectively. The quantity ‖x‖2 denotes the
Euclidean norm of a vector x. Let �e (·) and �m (·) denote
the real and imaginary part, respectively. IN represents the
N ×N identity matrix.

II. RELATED WORKS

Some recent research works [5]–[17] discussed the sum
rate maximization and power minimization issues for the
underlying CR systems. Two essential issues associated with
allocating power and designing beamforming weights for the
secondary users were investigated in these works. The works
of [5]–[8] focused on minimizing the total transmission power
of the CR system. In [5], a joint power control and beamform-
ing algorithm was proposed to minimize the total transmission
power of the CR system and to satisfy the SINR requirements
for both the primary and secondary users. However, acquir-
ing the channel information of the primary system for the
underlying CR system is difficult because it requires a huge
amount of feedback information between two heterogeneous
systems. Hence, the works [6] and [7] considered a more
practical design, in which an interference power constraint
was used instead of the SINR constraint for the primary user.
Two power control strategies were proposed in [6] to assure
the aggregated interference power at the primary nodes with
a satisfaction probability. However, antenna beamforming is
not applied in [6]. Joint power control and beamforming was
proposed in [7] to minimize the total transmission power
of the CR system, subject to the following two constraints:
(1) the interfering power to the primary user is below an
acceptable value; (2) the SINR of the secondary users is above
a required threshold. Paper [7] developed two suboptimal
schemes based on the weighted least square principle to
tackle the above optimization problem. Considering the same
optimization problem as in [7], the authors in [8] utilized the
Gram-Schmidt basis scheme to find the beamforming weights
that place spatial nulls at the direction of primary users’
receivers.

In the literature, another direction for the underlying CR
systems was only focused on maximizing the achievable data
rates, e.g. [9]–[17]. A power loading scheme for multicarrier
CR systems was investigated by the convex optimization
approach in [9] without applying beamforming techniques
and only considering the interference introduced to the pri-
mary user. Considering a cognitive multiple access channel, a
weighted sum rate maximization problem for power allocation
was investigated in [10] under the constraints of interference
power and transmission power, in which an efficient iterative
algorithm was proposed to decouple the complicated two-
constraint optimization problem into two single-constraint
problems [10]. The works in [11]–[17] utilized the beamform-
ing for overcoming the interference problem, and the idea

of user scheduling was exploited in [11]–[12] to improve
the sum rate performance opportunistically. A zero-forcing
beamforming (ZFB) scheme incorporated with a user selection
algorithm was proposed to maximize the sum rate of the
secondary system, satisfy the SINR requirements of the sec-
ondary users, and limit the interference power to the primary
users [11]. The proposed scheme in [11] was suboptimal
and may violate the two aforementioned constraints in some
cases. In addition, a joint ZFB and user scheduling scheme
was proposed in [12] to manage the cross-tier interference
among the primary and secondary users. It was shown that
the combination of beamforming and user scheduling can
mitigate the interference and increase the sum rate of the
underlying CR system. Similarly, the work in [13] intended to
maximize the sum rate of an underly paradigm CR network
by iteratively performing transmit beamforming and power
control. A duality relation between broadcast and multiple
access channels was utilized to devise an minimum mean
square error (MMSE) beamformer by further attending the
interference power to primary users. The non-convex sum rate
formulation was then approximated by a convex function, and
the power control was optimized by a sub-gradient method
with a fixed beamforming weight at each iteration. Based
on the noncooperative game theory, a novel decentralized
approach was investigated in [14], where each CR transmit-
receive pair competes against the others to maximize its own
information rate.

Some works, however, focused on the worst SINR criterion
which is intimately associated with the sum rate maximization,
and they casted the beamforming design problem via standard
conic optimization frameworks or genetic algorithms [15][16].
From the perspective of random matrix theory, an antenna
beamforming scheme was designed to maximize a cognitive
SIR by deriving the lower bound on the average interference
to the primary users and the upper bound on the average
cognitive SIR of the cognitive user [17]. Although the worst
SINR maximization problem is mathematically easier than the
sum rate maximization problem, optimizing the worst SINR
does not necessarily maximize the sum rate performance.

From the above discussion, we observe that the interference
problem between the macrocellular systems and the microcel-
lular systems has not been well addressed by simultaneously
considering all the constraints of interference power, SINR,
and transmission power. Moreover, the optimal solution for
jointly designing antenna beamforming and power allocation
for underlying CR systems has not been implemented from
the perspective of maximizing achievable sum rates.

III. HIERARCHICAL COGNITIVE RADIO SYSTEMS

Fig. 1 illustrates the considered HCR system model, where
a frequency division duplex (FDD) macrocellular system con-
sists of a BS and a primary user equipped with one single
antenna. In the same area, an underlying time division duplex
(TDD) microcellular BS with multiple antennas is deployed.
The underlying CR microcellular BS is equipped with M
multiple antennas to serve a group of K secondary users
concurrently by utilizing the uplink spectrum of the primary
macrocellular system, where M > K . The HCR system aims
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Fig. 1. An HCR system model.

at providing reliable communications for the secondary users
and avoids yielding severe interference to the primary user.

Denote sj and x as the transmitted signals from the
secondary BS to the jth secondary user and that from the
primary user to the primary BS, respectively. Assume that the
transmitted signals sj and x are uncorrelated with each other,
i.e., E

[
xs∗j
]
= 0 for all j, and E

[
sis

∗
j

]
= 0 for all j �= i.

Furthermore, the energy of signal sources is assumed to be
normalized to one, i.e., E

[
|sj|2

]
= E

[
|x|2
]

= 1 for all
j. An M × 1 column vector wj represents the beamforming
weight for the jth secondary user, for j = 1, . . . ,K . Then,
the received signal at the kth secondary user is given by

rk =

⎛
⎝ K∑

j=1

wjsj

⎞
⎠

†

hk +
√
Qgkx+ zk, k = 1, . . . ,K ,(1)

where hk denotes the channel response corresponding to M
antennas between the secondary BS and the kth secondary
user; Q denotes the transmitted power for the primary user;
gk represents channel response between the primary user and
the kth secondary user; and zk is Gaussian noise at the kth

receiver side with zero mean and variance σ2
z . On the other

hand, the received signal at the primary BS can be written as

r0 =
√
Qg0x+

(∑K

j=1
wjsj

)†
h0 + z0 , (2)

where z0 denotes the noise at the primary BS, and h0 and
g0 represents the channel from the secondary BS to the
primary BS and that from the primary user to the primary BS,
respectively. Let D0 and d0 be the distance from the primary
BS to the secondary BS and to the primary user, respectively,
and represent dk as the distance between the primary user
and the kth secondary user (k = 1, . . . ,K). For simplicity,
we assume that the secondary users are uniformly distributed
within a circle of a fixed radius D1. Assume that long-term
power control is adopted to compensate path loss in both the
macrocellular and microcellular systems. Hence, in (1) and (2)

the channel responses gk with the effects of shadowing and
multipath fading are represented as

gk =

{√
βkak, k = 0√
ξkβkak, k = 1, . . . ,K ,

(3)

where ak is a Rayleigh-faded channel gain, βk stands for
the log-normal shadowing with a variance of S, ξk char-
acterizes the effective interference power boost for the kth

secondary user resulting from the perfect power control
mechanism at the primary user. Due to the long-term power
control for compensating path loss, the power emitted by the
primary user is scaled by a factor of (d0/dref )

α1 , where
dref is the reference distance, and α1 is the path loss
exponent of the primary system. Thus, the effective inter-
ference power gain to the kth secondary user is given by
ξk=(d0/dref )

α1 (dref/dk)
α1 =(d0/dk)

α1 . Similarly, we can
express the channel responses hk as

hk =

⎧⎨
⎩
√
ξβ̃kãkvk, k = 0√
β̃kãkvk, k = 1, . . . ,K ,

(4)

where vk is the steering vector characterizing the relative
phase response of each antenna; ãk and β̃k have the same
definitions as ak and βk in (3), respectively; ξ=(D1/D0)

α2

models the effective interference power gain for the relative
distance of D1 and D0 with the path loss exponent α2 in the
secondary system. Note that for a linear array with antenna
spacing of half a wavelength and a far-field narrowband source
assumption, the steering vector can be expressed as vk =[
1, e−jπ sin θk , . . . , e−j(M−1)π sin θk

]T
, where θk is the spatial

angle for the kth secondary user and −π
2 ≤ θk < π

2 [35].

IV. JOINT MULTIUSER BEAMFORMING AND POWER

ALLOCATION

A. Sum Rate Maximization Problem

From (1), the average SINR for the kth secondary user is
given by

Υk =

∣∣∣w†
khk

∣∣∣2∑K
j=1,j �=k

∣∣∣w†
jhk

∣∣∣2 +Bk

, k = 1, . . . ,K , (5)

where Bk = Q |gk|2 + σ2
z is the noise plus the interference

power resulted from the primary user. The achievable sum rate
for all the secondary users in the underlying CR system can
be lower bounded by

Rsum =
∑K

k=1 log2 (1 + Υk)

≥∑K
k=1 pklog2 (Υk) + ρk � Rsum,lb ,

(6)

where the two coefficients pk and ρk can be chosen as pk =
ςk/(1 + ςk) and ρk = log2 (1 + ςk) − pk log2 (ςk), for any
given ςk > 0 [13]. In fact, the equality in (6) holds when
pk = Υk/(1 + Υk) and ρk = log2 (1 + Υk) − pk log2 (Υk),
and the equality holds for (pk, ρk) = (1, 0) if Υk approaches
plus infinity.

Our objective is to maximize the sum rate of the secondary
system by tightening the lower bound in (6) subject to the
following three constrains: (1) to ensure the interference power
to the primary BS; (2) to guarantee the SINR requirement for
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each secondary user; (3) to limit the transmission power from
the secondary BS. From (6), the problem can be formulated
as follows:

Ŵ = argmax
W

K∑
k=1

pk · log2
( |w†

khk|2∑
K
j=1,j �=k |w†

jhk|2+Bk

)
+ ρk

subject to

(C.1)
∑K

j=1

∣∣∣w†
jh0

∣∣∣2 ≤ Imax

(C.2)
|w†

khk|2∑
K
j=1,j �=k |w†

jhk|2+Bk

≥ γmin,k, k = 1, . . . ,K

(C.3)
∑K

j=1 ‖wj‖2 ≤ Pmax ,

(7)

where W = [w1, . . . ,wK ]; 0 < pk < 1, for all k; Imax,
γmin,k, and Pmax are given with respect to the interference
power, SINR, and transmission power constraints, respectively,
The selection of the coefficients pk and ρk will affect the lower
bound performance, which will be discussed later in Section
V. Note that the primary user’s link quality often relies on
its SINR value. However, using an instantaneous SINR as a
performance constraint is impractical for HCR systems since it
is difficult to track instantaneous channels of the primary link
at the microcellular BS. For practical applications, an attractive
performance metric is the outage probability of the primary
user’s SINR. In Appendix A, we establish the equivalence
relationship between the outage probability constraint and the
interference power constraint of (C.1). Moreover, the power
allocated to the secondary users is implicitly defined in the
power norm of wj (j = 1, . . . ,K). Since the amplitude
and phase of the beamforming weight vectors for all the
secondary users need to be jointly optimized, we refer (7)
as a joint optimization problem for multiuser beamforming
and power allocation in the rest of this paper. The joint mul-
tiuser beamforming and power control optimization problem
can maximize the overall microcellular sum rate by making
tradeoffs among the three imposed constraints in (7). When the
constraint set is feasible, all the secondary users are allowed to
transmit concurrently. In general, the concurrent transmission
opportunity strongly depends on the secondary users’ spatial
angles or correlations. Solving this sum rate optimization
problem can provide us some important insights into the
performance of the concurrent transmission probability and
the achievable sum rate for various spatial scheduling schemes
and different numbers of transmit antennas.

B. Feasibility

This subsection discusses the feasibility of the optimization
problem (7). By applying the Cauchy-Schwarz inequality
and the constraint (C.3), it follows that

∑K
j=1

∣∣wH
j h0

∣∣2 ≤∑K
j=1 ‖wj‖2 ‖h0‖2 ≤ ‖h0‖2 Pmax. Then, from (C.1) and

(C.3), we obtain that any beamforming weights wk subject
to (C.3) must also satisfy the interference constraint (C.1) if

Imax ≥ Pmax ‖h0‖2 . (8)

Besides, by substituting (C.3) into (C.2), a necessary condition
is provided in (B.4) in Appendix B. We prove in (B.7) that
if secondary users are ideally scheduled at distinct angular
directions in the spatial domain, there exists beamforming

weights wk such that

Υk ≥ γmin, for all k,

only if Pmax

K ·max
k

(
‖hk‖2

Bk

)
≥ γmin.

(9)

where we assume γmin,k = γmin for all k. Finally, combining
(8) and (9), we can conclude that the problem (7) is feasible
for a given Pmax only if Imax and γmin are appropriately
chosen to meet the two conditions (8) and (9).

V. ITERATIVE SUM RATE MAXIMIZATION ALGORITHM

A. Transformation into Convex Optimization Problem

As seen in (7), it is nontrivial to solve the joint optimization
problem because the objective function is apparently non-
concave. In this section, we propose an iterative approach to
find the optimal solution of (7). First we introduce auxiliary
variables in the objective function of (7) to limit the intra-user
interference power among the secondary users. Then, we can
rewrite the considered joint optimization problem as

Ŵ = argmax
W

K∑
k=1

pk · log2
(

1
Ωk+Bk

∣∣∣w†
khk

∣∣∣2)+ ρk

subject to

(C.1)
∑K

j=1

∣∣∣w†
jh0

∣∣∣2 ≤ Imax

(C.2)
|w†

khk|2∑K
j=1,j �=k |w†

jhk|2+Bk

≥ γmin,k, k = 1, . . . ,K

(C.3)
∑K

j=1 ‖wj‖2 ≤ Pmax

(C.4)
∑K

j=1,j �=k

∣∣∣w†
jhk

∣∣∣2 ≤ Ωk, k = 1, . . . ,K ,

(10)

where Ωk is an auxiliary variable with a non-negative value
which bounds the intra-user interference power to the kth

secondary user, for k = 1, . . . ,K , and Ω = [Ω1, . . . ,ΩK ]
T .

Since the beamforming vectors in (10) appear in terms of the
norm square expression, it is possible to forget the phase with-
out affecting the optimal solution. Without loss of generality,
we restrict that the matched output between the beamforming
weight wk and the channel response hk for each secondary
user is merely a non-negative real value, i.e., producing the
amplitude gain. Thus, we can reformulate (10) as follows:

Ŵ = argmax
W

K∑
k=1

pk

(
2 log2

(
w†

khk

)
− log2 (Ωk +Bk)

)
+

K∑
k=1

ρk

subject to

(C.1)
∑K

j=1

∣∣∣w†
jh0

∣∣∣2 ≤ Imax

(C.2)
∑K

j=1,j �=k

∣∣∣w†
jhk

∣∣∣2 +Bk

≤ 1
γmin,k

(
w†

khk

)2
, k = 1, . . . ,K

(C.3)
∑K

j=1 ‖wj‖2 ≤ Pmax

(C.4)
∑K

j=1,j �=k

∣∣∣w†
jhk

∣∣∣2 ≤ Ωk, k = 1, . . . ,K

(C.5)�e
(
w†

khk

)
≥ 0, k = 1, . . . ,K

(C.6)�m
(
w†

khk

)
= 0, k = 1, . . . ,K .

(11)

Until now, it is still very difficult to simultaneously opti-
mize the transformed optimization problem in (11) for both
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variables W and Ω because the objective function in (10)
or (11) is the logarithm of a quadratic-over-linear function,
which appears as a non-concave one. The non-concavity can
be intuitively checked by rewriting the objective function in
(10) as the minus of two convex functions 2 log2

(
w†

khk

)
and log2 (Ωk +Bk). However, we show that (11) is indeed
a convex optimization problem for a given Ω. Clearly, the
constraints (C.1), (C.3), and (C.4) in (11) are convex since
they appear in the formulation of the non-negative weighted
sums of quadratic functions. The constraint functions of (C.5)
and (C.6) are linear. We can further express (C.2) in (11)
as a second-order cone convex constraint like [38]. Since the
above optimization problem of (11) for any fixed value of Ω
is convex, one can obtain the optimal beamforming weight
vectors to achieve the maximum sum rate R1 (pk, ρk,Ω).

B. Tightness of Sum Rate Lower Bound Performance

The lower bound performance of (6) is strictly related to pk
and ρk, and we tighten the performance by iteratively updating
the two coefficients. Define ŵ

(i)
k as the optimal solution of

(11) for a given
(
p
(i)
k , ρ

(i)
k ,Ω

(i)
k

)
at the ith iteration. In the next

iteration, we update Υ
(i+1)
k = Υk

(
wk ← ŵ

(i)
k

)
, Ω

(i+1)
k =∑K

j=1,j �=k

∣∣∣ŵ(i)
j hk

∣∣∣2, and the two coefficients as

p
(i+1)
k = pk

(
ςk ← Υ

(i+1)
k

)
;

ρ
(i+1)
k = ρk

(
ςk ← Υ

(i+1)
k

)
,

(12)

where
(
p
(0)
k , ρ

(0)
k ,Ω

(0)
k

)
are initialized as (1, 0,∞), and the

notation f(x← y) means that the variable x in f(·) is replaced
by y. We repeat the above procedure until the values of pk
and ρk converge, i.e., p(i+1)

k = p
(i)
k = p∗k, ρ(i+1)

k = ρ
(i)
k = ρ∗k,

and Ω
(i+1)
k = Ω

(i)
k = Ω∗

k and it possesses the following two
important properties:

1) Convergence: The update of p
(i)
k and ρ

(i)
k monoton-

ically increases the lower bound performance. That
is, we have

∑K
k=1 p

(i+1)
k log2

(
Υ

(i+1)
k

)
+ ρ

(i+1)
k ≥∑K

k=1 p
(i)
k log2

(
Υ

(i+1)
k

)
+ ρ

(i)
k . This can be easily veri-

fied from (6), and thus, the convergence can be obtained.
2) Local maximizer: When the iterative procedure con-

verges, the optimal solution of (11) with (pk, ρk,Ωk) =
(p∗k, ρ

∗
k,Ω

∗
k) can reach a local maximizer of the original

sum rate maximization problem, i.e., the problem that
the objective function Rsum =

∑K
k=1 log2 (1 + Υk) is

adopted in (11). See Appendix C for the proof.

C. Iterative Sum Rate Maximization (ISM) Algorithm

Now, we determine the optimal value for Ω under the
converged values of (p∗k, ρ

∗
k):

Ω̂ = argmax
Ω

R1 (p
∗
k, ρ

∗
k,Ω) . (13)

Although Ω̂ in (13) can be obtained by the exhaustive search,
it is still preferable to develop an efficient way to reduce the

computational complexity. First, according to (10), we define

R2 (Ω,W) =
K∑

k=1

p∗k · log2
(

1
Ωk+Bk

(
w†

khk

)2)
+ ρ∗k

� f (Ω) + g (W) ,

(14)

where f (Ω) =
∑K

k=1−p∗k · log2 (Ωk +Bk) and g (W) =∑K
k=1 2p

∗
k · log2

(
w†

khk

)
+ ρ∗k. For convenience of notation,

we omit p∗k and ρ∗k in R1 (p
∗
k, ρ

∗
k,Ω). From (11) and (14), it

follows that

R1 (Ω) = max
W∈Θ(Ω)

R2 (Ω,W)

= max
W∈Θ(Ω)

{f (Ω) + g (W)} , (15)

where Θ (Ω) is the feasible set associated with the opti-
mization problem of (11) and its size depends on the value

of Ω. Consider two vectors Ω(1) =
[
Ω

(1)
1 , . . . ,Ω

(1)
K

]T
and

Ω(2) =
[
Ω

(2)
1 , . . . ,Ω

(2)
K

]T
, leading to two non-empty feasible

sets Θ(1) and Θ(2), respectively. By letting Ω(2) ≤ Ω(1) (i.e.,
Ω

(2)
k ≤ Ω

(1)
k ∀k), we can observe that

f
(
Ω(2)

)
≥ f

(
Ω(1)

)
. (16)

Define Rg (Ω) = max
W∈Θ(Ω)

g (W). Since Θ(2) is a subset of

Θ(1) if Ω(2) ≤ Ω(1), one can see that

Rg

(
Ω(2)

)
≤ Rg

(
Ω(1)

)
. (17)

To further analyze the optimal value of Rg (Ω) with respect
to the perturbations of the auxiliary vector Ω, we can write a
Lagrangian function by incorporating the constraint of (C.4) in
(11) into the objective function g (W). Hence, we transform
the optimization problem of Rg (Ω) = max

W∈Θ(Ω)
g (W) into

its equivalent form:

Rg (Ω) = −max
λ≥0

min
W∈Θ̃

−g (W)

+
K∑
k=1

λk

(
K∑

j=1,j �=k

∣∣∣w†
jhk

∣∣∣2 − Ωk

)
,
(18)

where λ = [λ1, . . . , λK ]
T is a Lagrange multiplier vector with

respect to the constraint of (C.4), and Θ̃ is a convex set formed
by all constraints in (11), exclusive of (C.4). From (18), we
then show that

Rg

(
Ω(2)

)
= max

λ≥0,W∈Θ̃
g (W)−

K∑
k=1

λk

(
K∑

j=1,j �=k

∣∣∣w†
jhk

∣∣∣2 − Ω
(2)
k

)

= g
(
W̃
)
−

K∑
k=1

λ̃k

(
K∑

j=1,j �=k

∣∣∣w̃†
jhk

∣∣∣2 − Ω
(2)
k

)

≥ g
(

�

W
)
−

K∑
k=1

�

λk

(
K∑

j=1,j �=k

∣∣∣�w†
jhk

∣∣∣2 − Ω
(2)
k

)

= g
(

�

W
)
−

K∑
k=1

�

λk

(
K∑

j=1,j �=k

∣∣∣�w†
jhk

∣∣∣2 − Ω
(1)
k

)

+
K∑

k=1

�

λk

(
Ω

(2)
k − Ω

(1)
k

)
= Rg

(
Ω(1)

)
+

K∑
k=1

�

λkΔk ,

(19)
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where Δk = Ω
(2)
k −Ω

(1)
k , W̃ and λ̃k are the optimal variables

in (18) for Ω = Ω(2), and
�

W and
�

λk are the optimal variables
in (18) for Ω = Ω(1). From (17) and (19), we provide an upper
bound and a lower bound on the perturbed optimal value of

Rg

(
Ω(2)

)
. The optimal Lagrange multipliers

�

λk are exactly
the local sensitivity of the lower bound for the optimal value
Rg

(
Ω(2)

)
with respect to the perturbed vector Ω(2). In fact,

�

λk can be regarded as a subgradient of Rg (Ω) at Ω = Ω(1)

[38]. If
�

λk is small, the lower bound for Rg

(
Ω(2)

)
will not

decrease too much for a small perturbation on Δk. On the
contrary, the influence on the lower bound becomes significant

if
�

λk is large. By applying the KKT condition [38], we can
conclude that (as shown in Appendix D)

R1

(
Ω(2)

)
≥ R1

(
Ω(1)

)
,

for
∑K

j=1,j �=q

∣∣∣�w†
jhq

∣∣∣2 < Ω(1)
q ; (20a)

R1

(
Ω(2)

)
≥ R1

(
Ω(1)

)
+

�

λqΔq

−p∗q · log2
(
Ω

(1)
q +Δq +Bq

Ω
(1)
q +Bq

)
,

for
∑K

j=1,j �=q

∣∣∣�w†
jhq

∣∣∣2 = Ω(1)
q .(20b)

The above analyses indicate two important proper-
ties. First, when the qth intra-user interference power∑K

j=1,j �=q

∣∣∣�w†
jhq

∣∣∣2 < Ω
(1)
q , we can increase R1 (Ω) by

decreasing the value of Ω
(1)
q until the intra-user interference

power
∑K

j=1,j �=q

∣∣∣�w†
jhq

∣∣∣2 = Ω
(1)
q . Second, when the qth intra-

user interference power
∑K

j=1,j �=q

∣∣∣�w†
jhq

∣∣∣2 = Ω
(1)
q , the lower

bound of the optimal value is determined by the values of
�

λq

and Δq . This lower bound can not be improved by decreasing

Ω
(1)
q because the value of

�

λqΔq − p∗q · log2
(

Ω(1)
q +Δq+Bq

Ω
(1)
q +Bq

)
could be smaller than zero. Intuitively, the lower bound for
(20) shows that the sum rate is affected by the secondary
users’ matched output power and the intra-user interference
power among the secondary users. Based on the observation
found in (20), we propose an iterative algorithm to increase
the sum rate by decreasing Ωk (k = 1, . . . ,K).

Fig. 2 illustrates the procedures of implementing the ISM al-
gorithm. In the initialization step, we first release the intra-user
interference power constraints among the secondary users.
Subject to the constraints of the primary user’s interference
power, the secondary users’ SINR, and the total transmission
power, we find the lower bound coefficients p∗k and ρ∗k,
and maximize the sum-log of the matched output power for
secondary users. Let Ŵ(0) denote the obtained beamforming
weight. Then, the intra-user interference power constraints in
(20) and the corresponding R1

(
Ω(0)

)
are updated by setting

Ω
(0)
k =

∑K
j=1,j �=k

∣∣∣ŵ(0)†
j hk

∣∣∣2 for all k. When there is no feasi-

ble solution Ŵ(0) at the initialization, it is implied that the re-
quired values Imax, γmin,k, and Pmax for the three constraints
in (7) are too strict to allow concurrent transmissions for all the
secondary users. Set i = 1 and q = 1, and choose a fixed step
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Fig. 2. Procedures for the ISM algorithm.

size δ, where 0 < δ < 1. To increase the achievable sum rate,
we make a tradeoff between the objective of maximizing the
matched output power and that of minimizing the intra-user
interference power for the secondary users. We first compute
a new vector Ω(i) from Ω(i−1) based on an updating rule
Ω(i) = Ω(i−1)−(1− δ)Ω(i−1)

q eq , where eq is the qth column
of a K ×K identity matrix IK . By solving (11) via convex
optimization, if Ω(i) is feasible, we can obtain R1

(
Ω(i)

)
and continue to the next iteration by increasing the value
of i when the improvement in R1

(
Ω(i)

) − R1

(
Ω(i−1)

)
is

larger than a specified threshold ΔT ≥ 0. Otherwise, we have
Ŵ(i) = Ŵ(i−1), and then activate the intra-user interference

power constraints by setting Ω
(i)
k =

∑K
j=1,j �=k

∣∣∣ŵ(i)†
j hk

∣∣∣2 for
all k. Next, we calculate the corresponding achievable sum
rate R1

(
Ω(i)

)
, and then proceed to the next secondary user by

adding the values of q and i. The algorithm terminates until q
reaches the maximum value of K and no further improvement
in R1 (Ω) can be achieved. Many path-following interior-point
algorithms have been investigated for efficiently achieving the
optimality of the convex optimization problem of (11). The
discussion of the convergence and complexity of these interior-
point algorithms can be found in [36].

It is assumed that the microcellular BS has to know the
channel state information hk (k = 0, . . . ,K), and the noise
plus interference power at each secondary user Bk (k =
1, . . . ,K). This can be accomplished by periodically broad-
casting beacon signals from the microcellular BS in some
dedicated beacon time slots. Thus, the secondary users and the
macrocellular BS can individually measure the corresponding
channel hk. The beacon signal can be transmitted by using
spread spectrum techniques such as pseudo random sequences
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to avoid disturbing the primary user’s transmission at the
preliminary stage. Also, each secondary user is assumed to
be equipped with a cellular signal strength monitoring device
to monitor the noise plus interference power Bk coming from
its surrounding primary user. Afterwards, all these information
is reported to the microcellular BS in turn through their uplink
channels [37].

It is worthwhile to discuss the relationship between the
proposed scheme and the ZFB scheme in [11] and [12]. From
(10), we can observe that when the auxiliary variables Ωk are
all equal to zero, the proposed scheme is degenerated into a
ZFB-based sum rate maximization problem with optimal user
power allocation, i.e., replace wj in (10) by

√
βjŵZF,j , as

follows:

β̂ = argmax
β

K∑
k=1

pk · log2
(

βk

Bk

)
+ ρk

subject to

(C.1)
∑K

j=1 βj

∣∣∣ŵ†
ZF,jh0

∣∣∣2 ≤ Imax

(C.2) βk

Bk
≥ γmin,k, k = 1, . . . ,K

(C.3)
∑K

j=1 βj ‖ŵZF,j‖2 ≤ Pmax ,

(21)

where Ŵ†
ZF = [ŵZF,1, . . . , ŵZF,K ]

†
=
(
H†H

)−1
H† is

the ZFB solution, H = [h1, . . . ,hK ], β = [β1, . . . , βK ],
and βj is the power allocated to the jth secondary user.
The degenerated optimization problem of (21) is a convex
one with affine function constraints, and the zero-forcing
condition will rigorously limit the degree of design freedom
for achieving the optimal sum rate, where the allocated power
βj should satisfy the three constraints in (21). Our proposed
scheme, however, bears resemblance to the MMSE solution by
replacing Ŵ†

ZF in (21) with Ŵ†
MMSE =

(
H†H+Φ

)−1
H†,

where Φ complies with the intra-user interference power
constraints of (C.4) in (10). Due to the relaxation of Ωk = 0,
the proposed scheme offers more flexibility to obtain better
performance than the ZFB scheme.

VI. PERFORMANCE AND DISCUSSION

A. Simulation Setup

Here we describe the simulation environments for evalu-
ating the performance of the proposed ISM algorithm. Table
1 lists the simulation parameters, and the 3GPP-based system
parameters and channel models are adopted in our simulations
[39][40]. Consider a Cartesian coordinate system with X and
Y axes as shown in Fig. 3. Assume that the BSs of the
macrocellular and microcellular systems are located at points
(0m, 300m) and (400m, 0m), respectively. A primary user
randomly appears within the circle centered at (0m, 300m)
with the radius of d0 ≤ 100m, and K secondary users
uniformly locate at a semicircle with angle of arrival (AOA)
θk = −90◦ + [90◦ + 180◦ (k − 1)]/K, for k = 1, . . . ,K , and
the radius of D1 = 100m, 200m or 300m to the secondary
BS. Particularly, we also simulate the case where the sec-
ondary users are randomly distributed within the circle with
the radius of D1 ≤ 300m, i.e., random spatial scheduling.
The secondary BS is equipped with an array of M = K + 1
antenna elements which are separated by half a wavelength.
The thermal noise density and system bandwidth are set as

0 ,300m m

400 ,0m m

User #1

User #2User #3

User #4

Secondary BS

Primary BS

1D

0d

Fig. 3. Geographical locations of the HCR systems.

−174 dBm/Hz and 10MHz, respectively. Assume that per-
fect power control is used for both macrocellular and microcel-
lular systems, and let the maximum uplink transmission power
of the primary user be 23 dBm. The maximum downlink
total transmission power for the secondary BS is set to be
(49 + 10 log10K) dBm, which is proportional to the number
of secondary users. For each secondary user, the minimum
link quality requirement to achieve a BER=10−6 under BPSK
modulation with coding rate 1/2 is given by 6.4 dB in terms
of SINR [41]. The interference power constraint parameter,
Imax, is calculated according to (A.3). For example, Imax is
given by −91.85 dBm for Pout = 0.01, γ = 6.4 dB, and
d0 = 100m. The variance for the log-normal shadow fading
is 8 dB, and the spatial correlation of the shadowing in the
microcell is modeled by (0.3)Δ/10, where Δ is the distance
between any two secondary users with respect to the reference
distance of 10m. The non-light-of-sight (NLOS) path loss
model is used for each channel link [39]. We also simulate the
case where the BS-to-BS link is light-of-sight (LOS) in Fig.
8 [39]. The Rayleigh fading is adopted, which is very often
observed in cellular applications. We evaluate the proposed
algorithm in terms of the achievable sum rate Rsum and
the concurrent transmission probability Pct in the secondary
system. The concurrent transmission probability is defined as
the probability that the underlying CR BS can simultaneously
serve all K users in the presence of the primary user [42].
The step size and adjustment parameters δ and ΔT in the ISM
algorithm are set to be 0.1 and 0.02, respectively. In addition,
the ZFB method and the beamforming method, referred to as
”MaxMin SINR” in [15], are simulated to compare with our
proposed ISM algorithm.

B. Numerical Results

Fig. 4 shows the sum rate improvement by using the
ISM algorithm for a cell radius D1 = 200m, compared
to the case without considering the sum rate maximization.
The initial sum rate is small and limited by the intra-user
interference power among the secondary users because the
ISM algorithm initially maximizes the total matched output
power for the secondary users, subject to the three HCR
system constraints (C.1)-(C.3) in (7). Moreover, the sum rate
performance under the converged coefficient (p∗k, ρ

∗
k,Ω

∗
k) is

better than the initial sum rate, and the gap becomes significant
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TABLE I
SIMULATION PARAMETERS

Position & Coverage

Position of primary BS (0m, 300m)

Position of secondary BS (400m, 0m)

AOA of secondary users −90◦ + [90◦ + 180◦ (k − 1)]/K
or random distribution

Antenna Configuration for Secondary BS

Number of antennas K + 1

Antenna spacing λ/2 (λ: wavelength)

Power

Transmit power of primary user 23 dBm

Transmit power of secondary BS (49 + 10 log10 K) dBm

Interference power at primary BS −91.85 dBm (Pout = 0.01 and
d0 = 100m)

SINR of secondary users 6.4 dB

Channel Model

Path loss exponent
NLOS: 131.1+42.8 · log10(d) dB
LOS: 103.4 + 24.2 · log10(d) dB
(d: distance in km)

Shadow effect Log-normal, ∼ N (0, 8 dB)

Shadow correlation in microcell 0.3Δ/10 (Δ: distance in m)

Rayleigh fading ∼ CN (0, 1)
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Fig. 4. Comparison of the initial sum rate and achievable sum rate for a cell
radius D1 = 200m.

as K increases because a more tight lower bound is obtained
in severe interference scenarios. We can observe that the ISM
algorithm can dramatically increase the achievable sum rate
two to three folds for K ≥ 3, compared with the initial
phase. Particularly, we can see that the intra-user interference
significantly dominates the performance of the initial sum rate
for K = 3 since the secondary users have highly correlated
spatial signatures in this case, while the achievable sum rate
can be greatly improved after several iterations of the ISM
algorithm.

Fig. 5 shows the concurrent transmission probability for
various numbers of secondary users K with microcell radiuses
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Fig. 5. Concurrent transmission probability for various numbers of secondary
users K with cell radiuses D1 = 100, 200, and D1 ≤ 300 meters.

D1 = 100m, 200m and D1 ≤ 300m. It is found that for
D1 = 100m and 200m, the concurrent transmission proba-
bility monotonically decreases when the number of secondary
users or the cell radius increase. For a target probability of
Pct = 0.8, the underlying CR system can simultaneously
support six and two users with cell radiuses 100m and 200m,
respectively. When the radius changes from 200m to 300m
and the users are uniformly distributed within the circle, the
concurrent transmission probability degrades significantly as
K increases. This is because some secondary users on the
left-side of the microcell are closer to the macrocell, thereby
experiencing more interference contributed from the primary
user. Moreover, the limitation of interference power to the
primary BS will rigorously restrain these secondary users from
being allocated enough power, resulting in a high possibility of
violating the SINR requirements. From the figure, we observe
that the concurrent transmission probability of the proposed
algorithm is identical to that of the MaxMin SINR method
and is superior to that of the ZFB method because the intra-
user interference power is strictly limited to zero in the ZFB
method.

Fig. 6 shows the achievable sum rate versus the number of
secondary users for various cell radius D1. We can observe
that the achievable sum rate degrades a little bit as the cell
radius is expanded from 100m to 200m. Another interesting
observation is the improvement of the achievable sum rate
resulting from beamforming techniques. As one can expect,
the spatial domain can provide another resource to increase
the sum rate of the secondary system. Thus, the sum rate
increases linearly with the number of users up to six even
when the secondary users simultaneously appear on the cell
edge of 100m and 200m. However, there exists an optimal
achievable sum rate against the number of secondary users
in the cell edge cases. Note that for K = 7, the secondary
system can achieve the sum rate 32.2 and 30.4 bits/s/Hz
for the cell radius 100m and 200m, respectively. For the
two considered cell edge cases, each user has an average
rate of 4.6 and 4.3 bits/s/Hz. When the number of users
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Fig. 7. Effective sum rates for various numbers of secondary users K with
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is larger than seven, the achievable sum rate is saturated
even if more antennas are deployed at the underlying BS.
While users are uniformly distributed within the cell radius
of 300m, the achievable sum rate is increased proportional
to the number of secondary users K , and the proposed ISM
algorithm can improve sum rate performance by about 8 and
10 bits/s/Hz for K = 7 and K = 9, respectively, compared
to the method that maximizes the worst SINR. This significant
gap is due to the fact that the sum rate formula is a logarithm
function of SINR, and maximizing the worst SINR only does
not necessarily maximize the sum rate performance. With a
great sacrifice of the concurrent transmission probability, the
ZFB method performs slightly better than the proposed ISM
algorithm.

Fig. 7 shows the effective sum rate versus the number of
secondary users. The effective sum rate Reff is defined as the
product of the achievable sum rate Rsum and the concurrent
transmission probability Pct. For D1 = 100m and 200m, the

effective sum rate decreases when the number of users is larger
than six. From the viewpoint of maximizing the effective sum
rate at the cell edge, we suggest deploying an antenna array
with at most seven antennas at the underlying CR BS, covering
an area with the cell radius of 200m when considering the
use of beamforming for SDMA in an HCR system. Besides,
we also simulate the effective sum rate performance of the
ZFB with optimum power allocation in (21) for comparison.
It is found that the proposed scheme performs better than the
ZFB scheme, and the performance gap becomes obvious as K
increases. This is because when K increases, the zero-forcing
criterion will lower the probability for multiuser concurrent
transmission. We can also observe that for D1 ≤ 300m and
K ≤ 9, the maximum effective sum rate offered by the
underlying CR system is not more than 12 bits/s/Hz. The
MaxMin SINR method is inferior to our proposed algorithm,
and the performance gap of the effective sum rate between the
two methods is about 3 bits/s/Hz.

Fig. 8 depicts the effective sum rate performance for differ-
ent SINR outage probabilities of the primary user when the
BS-to-BS link is LOS or NLOS. The simulation is carried
out with a required SINR of the primary user γ = 6.4 dB
or 11.2 dB for BPSK and QPSK modulation, respectively
[41]. It can be generally observed that as γ decreases or Pout

increases, the microcellular system can attain better effective
sum rate performance. As compared with the NLOS channel,
the microcellular system is subject to a performance loss from
3.5 bits/s/Hz to 5 bits/s/Hz in the LOS channel, and the
slope of the improvement across Pout is relatively steeper.

Fig. 9 illustrates the power allocation ratio for each indi-
vidual secondary user in the case of K = 4 and D1 = 100m,
200m, and 300m. We can observe that for D1 = 100m, the
power distributed to each user is almost identical since the
two-tier interference between the microcell and the macrocell
is not a dominant factor in this case. Actually, users closer to
the primary system can consume a little bit more power. When
the cell radius D1 increases to 200m, two users on the central
location are assigned more power (about 27% ∼ 29%) than
the others on the two sides (about 19% ∼ 25%). For a larger
cell radius of 300m, the power allocated to the fourth user
is immediately boosted to a ratio of 39%, thereby decreasing
the accessible power to the other three users. We also find
that the first user away from the primary system acquires
the least power allocation ratio among the four users, and
the ratio tends to decrease as the cell radius increases. When
D1 = 300m, the power ratio for user #1 is merely about 14%.
This phenomenon can be explained as follows. In addition
to the primary user, the fourth secondary user is interfered
with other secondary users. Beamforming technique mainly
exploits the information of the steering vectors, characterized
by the AOA, to separate the secondary users. Since the steering
vectors for the two users on the two sides of the microcell are
highly correlated, the first user is assigned much less power
to ensure the SINR requirement of the fourth user.

Fig. 10 illustrates the achievable sum rate for each sec-
ondary user in the case ofK = 4 andD1 = 100m, 200m, and
300m. Except for the fourth user, the secondary system can
provide each secondary user with a user rate ranging between
4 and 8 bits/s/Hz, and a slight degradation can be observed
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Fig. 9. Power allocation ratio for each secondary user in the case of K = 4
and D1 = 100m, 200m, and 300m.

for an increasing radius. Indeed, the second user can attain the
highest user rate. In spite of obtaining the highest power, the
fourth user can only gain a user rate of about 2.56 bits/s/Hz,
which is slightly higher than the minimum guaranteed rate
2.42 bits/s/Hz with respect to the minimum required SINR
6.4 dB.

VII. CONCLUSION

In this paper, we have developed a design methodology
for joint antenna beamforming and power allocation in the
hierarchical multiuser CR system. The developed methodology
can maximize the sum rate of the underlying CR system.
Numerical results show the performance tradeoff of the HCR
system for various cell coverage, achievable sum rate, and
concurrent transmission probability, which can provide useful
insights into the deployment of an HCR system for current and
future wireless communication applications, e.g., long-term
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Fig. 10. Achievable rates for each secondary user in the case of K = 4 and
D1 = 100m, 200m, and 300m.

evolution (LTE), WiMAX, etc. With random spatial schedul-
ing, it is possible to deploy an underlying microcellular CR
system to improve the spectrum efficiency by using antenna
beamforming. However, the improvement of the sum rate and
spectrum utilization contributed by antenna beamforming is
gradually saturated and even becomes worse when a large
number of secondary cognitive users concurrently transmit
data. In the worst case of all secondary users being at the
cell edge, it is suggested to deploy at most seven antennas
at the microcellular BS since there is no further improvement
on the effective sum rate when the number of antennas is
beyond seven. Our numerical results also implicate that for
a cell coverage of 300m, the maximum spectrum efficiency
provided by the underlying CR system is lower than 12
bits/s/Hz, roughly between 5 and 12 bits/s/Hz. For a
large cell radius, users’ locations have influence on power
allocation, system sum rate as well as concurrent transmission
probability, and therefore, the spatial scheduling is a crucial
factor for further improving the system performance when the
underlying microcellular system is applied for next-generation
wireless communications. An interesting research direction
that can be extended from this work is to investigate the
location-based scheduling to further improve the performance.

APPENDIX A.

From (2), the SINR of the primary user at the macrocellular
BS is given by

Υ0 =
Q |g0|2∑K

j=1

∣∣∣w†
jh0

∣∣∣2 + σ2
z

, (A.1)

where |g0|2 is a composite shadowing-Rayleigh fading ran-
dom variable which can be approximated as the log-normal
distribution with the mean m0 = ln

(
1
/√

2
)

and variance
σ2
0 = (S ln (10)/10)

2
+ ln (2) [43]. The SINR outage proba-
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bility for the primary user is therefore calculated as

Pr (Υ0 ≤ γ) = Pr

⎛
⎜⎝|g0|2 ≤ γ

(
K∑

j=1
|w†

jh0|2+σ2
Z

)

Q

⎞
⎟⎠

= Φ

⎛
⎜⎝ ln

(
γ
Q

(
K∑

j=1
|w†

jh0|2+σ2
Z

))
−m0

σ0

⎞
⎟⎠ ,

(A.2)

where Φ (x) is referred to as the cumulative distribution func-
tion (CDF) of the standard normal distribution. We observe
from (A.2) that to provide the primary user with a target
SINR threshold γ and an outage probability upper bounded
by Pout is equivalent to restricting the interference power to
the following upper limit:

∑K
j=1

∣∣∣w†
jh0

∣∣∣2 ≤ Imax

= σ2
z

(
Q

γσ2
z
exp

{
σ0Φ

−1 (Pout) +m0

}− 1
)
,
(A.3)

where the macrocellular BS only needs to know a preset
average SNR of the primary link, Q

/
σ2
z , after power control.

APPENDIX B.

To ease analysis, we assume that γmin,k = γmin, for all k.

Define ζk =
|w†

khk|2∑K
j=1 |w†

jhk|2 and μk =
|w†

khk|2
Bk

. Using (5), we

get

min
k

Υk = min
k

1
1
ζk

+ 1
μk

−1
= 1

max
k

(
1
ζk

+ 1
μk

)
−1

≥ 1

max
k

(
1
ζk

)
+max

k

(
1

μk

)
−1

� Υ̃ ,
(B.1)

where we use max
k

(ak + bk) ≤ max
k

ak + max
k

bk. It can be

verified from (B.1) that the SINR constraint (C.2) in (7) is
feasible if there exists beamforming weights wk such that
Υ̃ ≥ γmin. Note that max

k

(
1
μk

)
= 1

min
k

μk
and max

k

(
1
ζk

)
=

1
min
k

ζk
. From (C.3) in (7) and applying the Cauchy-Schwarz

inequality, we can write

min
k
μk ≤ 1

K

K∑
k=1

1
Bk

∣∣∣w†
khk

∣∣∣2
≤ 1

K

K∑
k=1

1
Bk
‖wk‖2 ‖hk‖2 ≤ Pmax

K max
k

(
1
Bk
‖hk‖2

)
.

(B.2)

We now appeal to the results in [15], showing that min
k
ξk ≤

rank(H)
K , where H = [h1, . . . ,hK ]. From (B.1) and (B.2), it

follows that

Υ̃ ≤ 1

K
rank(H) +

K
Pmax

·min
k

(
Bk

‖hk‖2

)
− 1

. (B.3)

Therefore, from (B.1) and (B.3), we conclude that there exist
beamforming weights such that

Υk ≥ γmin, for all k, only if
1

K
rank(H)

+ K
Pmax

·min
k

(
Bk

‖hk‖2

)
−1
≥ γmin .(B.4)

Notice that the rank of H depends on the steering vectors
of secondary users. From (4), the determinant of H can be

computed by applying the Vandermonde determinant [44]. For

the case of K ≤M and
√
β̃kãk �= 0 for all k, we can get

det (H) �= 0 if and only if
e−jπ sin θm �= e−jπ sin θk , for all k �= m .

(B.5)

Since −π
2 ≤ θm < π

2 and |sin θm − sin θk| < 2 for any k and
m, it is then straightforward to rewrite (B.5) as

rank (H) = K if and only if
θm �= θk, for all k �= m .

(B.6)

Hence, if secondary users are ideally scheduled at distinct
angular directions in the spatial domain, i.e., rank (H) =
K ≤M , the necessary condition degenerates into

Υk ≥ γmin, for all k, only if
Pmax

K ·max
k

(
‖hk‖2

Bk

)
≥ γmin .

(B.7)

APPENDIX C.

For simplicity, we express the constraint functions in (11),
excluding (C.4), as ψk(W)‡. We now prove that the optimal
solution of (11) with (p∗k, ρ

∗
k,Ω

∗
k) satisfies KKT conditions of

the original sum rate maximization problem:

{Ŵ, Ω̂} = argmax
W,Ω

K∑
k=1

log2

(
1 + 1

Ωk+Bk

∣∣∣w†
khk

∣∣∣2)
subject to
(C.1 − C.3, C.5, C.6)ψk (W) ≤ 0,

k = 1, . . . , 4K + 2 ,

(C.4)
∑K

j=1,j �=k

∣∣∣w†
jhk

∣∣∣2 ≤ Ωk, k = 1, . . . ,K .

(C.1)

Define v∗k ≥ 0 and λ∗k ≥ 0 as the Lagrangian multipliers
for the constraints ψi(W) ≤ 0 and (C.4), respectively,
and w∗

k as the corresponding optimal solution of (11) when
(pk, ρk,Ωk) = (p∗k, ρ

∗
k,Ω

∗
k). By applying KKT conditions, the

partial derivative of the Lagrangian dual function of (11) with
respect to wj at (w∗

k, v
∗
k, λ

∗
k) yields

−2hjh
†
jw

∗
j

K∑
i=1,i�=j

∣∣∣w∗†
i hj

∣∣∣2+Bj+
(
w∗†

j hj

)2

+
∑
k

v∗k ∇wj [ψk (W)]
∣∣
wk=w∗

k

+
K∑

k=1,k �=j

2λ∗khkh
†
kw

∗
j = 0 ,

(C.2)

for j = 1, . . . ,K . On the other hand, the KKT conditions
for the Lagrangian dual function of the problem (C.1) with
respect to wj and Ωj are given by

−2hjh
†
jwj

Ωj+Bj+(w†
jhj)

2 +
∑
k

ṽk∇wj [ψk (W)]

+
K∑

k=1,k �=j

2λ̃khkh
†
kwj = 0, j = 1, . . . ,K ,

(C.3)

and

λ̃j =
(w†

jhj)
2

(Ωj+Bj)
2+(w†

jhj)
2
(Ωj+Bj)

, j = 1, . . . ,K , (C.4)

where ṽk ≥ 0 and λ̃k ≥ 0 are the Lagrangian multipliers.
Without loss of generality, λ̃k > 0 as γmin,k is usually

‡The K equality constraints in (C.6) can be represented by 2K affine
inequality constraints.
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larger than zero. The complementary slackness condition

λ̃j

(∑K
i=1,i�=j

∣∣∣w†
ihj

∣∣∣2 − Ωj

)
= 0 yields

Ωj =
∑K

i=1,i�=j

∣∣∣w†
ihj

∣∣∣2, j = 1, . . . ,K. (C.5)

Substituting (C.5) into (C.3) and letting (wk, ṽk, λ̃k) =
(w∗

k, v
∗
k, λ

∗
k), we can show that the conditions (C.2) and (C.3)

are identical. Consequently, the optimal solution w∗
k is also a

local maximizer of the problem (C.1).

APPENDIX D.

By applying the KKT conditions [38], three conditions
associated with λk and Ωk are obtained :

�

λk

(
K∑

j=1,j �=k

∣∣∣�w†
jhk

∣∣∣2 − Ω
(1)
k

)
= 0, k = 1, . . . ,K ,(D.1)

K∑
j=1,j �=k

∣∣∣�w†
jhk

∣∣∣2 ≤ Ω
(1)
k , k = 1, . . . ,K , (D.2)

and
�

λk ≥ 0, k = 1, . . . ,K . (D.3)

Hence, from (D.1)-(D.3), we can conclude that

�

λk = 0, for
∑K

j=1,j �=k

∣∣∣�w†
jhk

∣∣∣2 < Ω
(1)
k ; (D.4a)

�

λk > 0, for
∑K

j=1,j �=k

∣∣∣�w†
jhk

∣∣∣2 = Ω
(1)
k . (D.4b)

It is implied that the kth optimal Lagrange multi-
plier is zero unless the kth intra-user interference power∑K

j=1,j �=k

∣∣∣�w†
jhk

∣∣∣2 = Ω
(1)
k . By picking a particular vector

Ω(2) = Ω(1), of which the qth element is replaced by a non-
negative value ω, where w < Ω

(1)
q , and thus Δq < 0, we can

obtain from (17), (19) and (D.4) that:

Rg

(
Ω(2)

)
= Rg

(
Ω(1)

)
,

for
∑K

j=1,j �=q

∣∣∣�w†
jhq

∣∣∣2 < Ω(1)
q ; (D.5a)

Rg

(
Ω(2)

)
≥ Rg

(
Ω(1)

)
+

�

λqΔq,

for
∑K

j=1,j �=q

∣∣∣�w†
jhq

∣∣∣2 = Ω(1)
q . (D.5b)

From (15), (16) and (D.5), it follows that

R1

(
Ω(2)

)
≥ R1

(
Ω(1)

)
,

for
∑K

j=1,j �=q

∣∣∣�w†
jhq

∣∣∣2 < Ω(1)
q ;(D.6a)

R1

(
Ω(2)

)
≥ R1

(
Ω(1)

)
+

�

λqΔq

−p∗q · log2
(
Ω

(1)
q +Δq +Bq

Ω
(1)
q +Bq

)
,

for
∑K

j=1,j �=q

∣∣∣�w†
jhq

∣∣∣2 = Ω(1)
q .(D.6b)
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