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Abstract: In this study, adaptive local binary patterns (ALBP) are proposed for image retrieval and classification. ALBP are based
on texture features for local binary patterns. The texture features were used to propose an adaptive local binary patterns histogram
(ALBPH) and gradient for adaptive local binary patterns (GALBP) in this study. Two texture features are most useful for
describing the relationship in a local neighbourhood. ALBPH shows the texture distribution of an image by identifying and
employing the difference between the centre pixel and the neighbourhood pixel values. In the GALBP, the gradient for each
pixel is computed and the sum of the gradient of the ALBP number is adopted as an image feature. In this study, a set of
colour and greyscale images were used to generate a variety of image subsets. Then, image retrieval and classification
experiments were carried out for analysis and comparison with other methods. From the experimental results, the authors
discovered that the proposed feature extraction method can effectively describe the characteristics of images in regard to
texture image and image type. The image retrieval and classification experiments also produced better results than other methods.
1 Introduction

In recent years, with the emergence of the internet,
multimedia data can be more easily shared. These include
digital images of textures, natural images, images of
animals and plants, digital signs, fingerprint images, facial
images, digital maps, medical images, art images and
others. Large amounts of digital content have been created,
stored and disseminated on account of the rapid expansion
in image creation, storage and management technologies.
The best method for effectively and efficiently retrieving
desirable images from a constantly growing image database
has thus become an important issue.

Texture features in an image play an important role in
computer vision and image processing. Image retrieval
and classification based on texture features are the active
research topics in the field of computer vision and pattern
recognition [1]. This paper focuses on the building of an
efficient and accurate texture image retrieval and
classification system. Many texture feature-based image
retrieval systems have been proposed in the academic arena
[2–8]. The texture classification methods have been the
focus of many studies [9–16].

Huang and Dai [2] proposed a texture-based image
retrieval system integrated with both wavelet decomposition
and a gradient vector. The system of Jhanwar et al. [3] is
based on a motif co-occurrence matrix which converts the
differences among pixels into a basic graphic and computes
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the probability of its occurrence in the adjacent area as a
texture feature of an image. Hafiane and Zavidovique [6]
focused on a novel description of coloured textures using
local relational string (LRS) based on the relative relations
between neighbouring pixels and their distribution. Lin
et al.’s [8] approach is based on a colour co-occurrence
matrix and uses the difference between pixels in scan
patterns for the colour and texture image retrieval.

For texture image classification, Deng and Clausi [11]
developed an anisotropic circular Gaussian MRF model for
retrieving rotation-invariant texture features. Varma and
Zisserman [12] investigated texture classification using
single images obtained from an unknown viewpoint and
illumination. Bianconi et al. [14] proposed a system of
coordinated clusters representation (CCR) based on the
probability of occurrence in elementary binary patterns
(texels) defined over a square window. The CCR was
originally proposed for binary textures, but was later
extended to greyscale texture images through global image
thresholding.

Ojala et al. [17] proposed the concept of a local-binary-
pattern (LBP) operator. The LBP operator primarily
describes the texture in images and provides a theoretically
simple and multi-resolution statistical method. Many studies
also discuss an LBP operator [17–27]. An LBP operator is
an effective way to describe image texture features. More
recently, an LBP operator has been used in other
applications such as classification [16–22], facial
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expression recognition [23–25], fingerprint recognition [26]
and shape localisation [27].

Guo et al. [16] completed a modelling of the LBP operator,
and an associated complete LBP (CLBP) scheme was
developed for texture classification. Ojala et al. [19]
presented a theoretically simple, yet efficient, multi-
resolution approach to greyscale and rotation-invariant
texture classification using local binary patterns and non-
parametric discrimination of sample and prototype
distributions. Zhou et al. [20] extended the LBP operator
using ‘uniform’ patterns, although it still possesses some
shortcomings: it discards important texture information and
is sensitive to noise. Liao et al. [21] proposed features
robust to image rotation: less sensitivity to histogram
equalisation and noise. Guo et al. [22] proposed an
alternative hybrid scheme: a global rotation invariant that
matches local variant LBP texture features.

The LBP operator evaluates the performance both of some
texture measures which have been successfully used in
various applications and of some new promising approaches
proposed recently. However, the LBP(riu2, P, R) operator
does not discern the complexity of textures between the
centre pixel and the neighbourhood pixels, or consider the
difference in magnitude between a pixel and its
neighbouring pixel, or the distribution ratio relationship of
the difference between them. Thus LBP is not suitable
when the adjacent grey values are very close to each other.
This paper uses the difference between the centre pixel and
the neighbourhood pixel values from every pattern number
as an accurate way to describe the texture feature of an
image; however, as most images are composed mainly of
smooth region, these smooth regions may have some pixels
with small differences in greyscale intensity.

Adaptive local binary patterns histogram (ALBPH) and
gradient for adaptive local binary patterns (GALBP) can
effectively describe the various properties of an image.
To enhance the retrieval performance, ALBPH and
GALBP are integrated to develop an image retrieval and
classification procedure based on texture distribution. The
integration of multiple features may certainly increase the
retrieval and classification performance.

Related research will be introduced in the next section.
Section 2.1 briefly reviews greyscale and rotation invariant
local binary patterns (GSRILBP). Section 2.2 presents the
smooth and unsmooth region. ALBPH features will be
introduced in Section 2.3. GALBP features will be
introduced in Section 2.4. Section 3 presents the image
retrieval system. In Section 4, we propose the image
classification system for two-class support vector machines
(SVMs). The experiments and comparisons with other
approaches are presented in Section 5. Conclusions will be
offered in Section 6.

2 Proper feature

2.1 Grey scale and rotation invariant local binary
patterns [19]

Ojala et al. [19] proposed the GSRILBP drawing from the
texture T (x, y) of pixels at coordinates (x, y) in a local
neighbourhood as the joint distribution. This is shown in
Fig. 1 of the grey levels in total node P (P . 1)

T (x, y) = t[fc(x, y), f0(x, y), . . . , fP−1(x, y)] (1)

where fc(x, y) of the centre pixel at coordinates (x, y) of a local
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neighbourhood is the grey value, fi(x, y) is the grey value
of ith node on a circle of radius R(R . 0 and R [ Z )
that forms a circularly symmetric set of coordinates
(x, y) of a local neighbourhood, the coordinate of fi(x, y)
is (x 2 Rcos((2pi)/(P)), y + Rsin((2pi)/(P))), i ¼ 0, 1, . . . ,
P 2 1 and P is a multiple of 4 (P ¼ 4, 8,12,. . .).

LBP for greyscale and rotation invariant [19] have P + 2
patterns, where two classes of these patterns are uniform
and non-uniform patterns, respectively. The pattern numbers
of a uniform pattern are given the number P + 1.
The non-uniform pattern is classified as pattern number 1.
Therefore GSRILBP defines the uniformity measure
U(LBP(P, R)) as follows

U (LBP(P, R)) = |s(fP−1 − fc) − s(f0 − fc)|

+
∑P−1

i=1

|s(fi − fc) − s(fi−1 − fc)| (2)

where s( fi 2 fc) is the difference function of the pixel
value difference between fi and fc. The difference function
s( fi 2 fc) is 1, if s( fi 2 fc) ≥ 0 and s( fi 2 fc) is 0, if
s( fi 2 fc) , 0, i ¼ 0, 1, . . . , P 2 1. The pixel is a uniform
pattern if the uniformity measure U(LBP(P, R)) is less than
the threshold value �U at coordinates(x, y); otherwise, the
pixel is a non-uniform pattern. Therefore the following
GSRILBP are

LBP(riu2, P, R) =
∑P−1

i=0 s(fi − fc), if U (LBP(P, R)) ≤ �U
P + 1, otherwise

{

(3)

where riu2 is the use of rotation invariant uniform pattern
that has a �U value of 2. The pattern is a uniform pattern if
U (LBP(P, R)) ≤ �U and the pattern numbers are given a
number from 0 to P. The pattern number of a non-uniform
with the number P + 1 is considered; thus, the image
feature calculates the mean of P + 2th pattern number in
each image.

2.2 Smooth and unsmooth region

The edge detection technique is applied to smooth and
unsmooth regions in this paper. RGB to YCbCr conversion
is the most commonly used colour coordinate system for
image processing. Y is the luminance component and Cb

and Cr are the chrominance components. The luminance

Fig. 1 Circular symmetrical sets of neighbours
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edge is determined using Y information to perform the edge
detection method described above. RGB of the pixel (x, y)
was transformed into the YCbCr domain using the
following formula

Y
Cb

Cr

⎡
⎣

⎤
⎦ =

0.209 0.587 0.114
−0.168 −0.331 0.5

0.5 −0.418 −0.081

⎡
⎣

⎤
⎦×

R
G
B

⎡
⎣

⎤
⎦

+
0

128
128

⎡
⎣

⎤
⎦ (4)

Sobel edge detection [28] was employed to detect the gradient
feature. The gradient magnitude ∇Y and direction u(x, y) for
Y (x, y) of pixel at coordinates (x, y) are given by

∇Y = g(x, y) =
																				
g2

x (x, y) + g2
y (x, y)

√
and

u(x, y) = tan−1 gy(x, y)

gx(x, y)

( )
(5)

In most cases, the edge variation can be expressed as
horizontal direction gx and vertical direction gy. A 3 × 3
block was used to compute the variations in the horizontal
and vertical directions gx and gy.

After the gradients g of the entire image were computed,
the ratio of each gradient to the total gradient was
estimated, as shown in Fig. 2. Let ri denote the percentage
of the ith gradient and be expressed as follows

ri =
∑i

j=0

pr(gj) =
∑i

j=0

ngj

N
(6)

where N is the total pixel number in an image, pr( gj) is the
probability of occurrence of the jth gradient gj, and ngj

is the
number of pixels that have a gradient level gj.

It is suggested that ri ¼ 10% and the gradient threshold is
dT ¼ gi. If a pixel’s gradient is g , dT, it is seen in the
smooth region; otherwise, it is seen in the unsmooth region.

Fig. 2 Gradient cumulative probability graph
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2.3 Adaptive local binary patterns histogram

Determining the difference between the values of the centre
pixel fc and the neighbourhood pixel fi from each pattern
number provides an accurate way to describe the texture
feature of an image. However, most images are mainly
composed of smooth regions. Although these smooth
regions may have some pixels with small differences in
greyscale intensity, they are classified according to pattern
number 1–P + 2. As shown in Fig. 3, the pattern number
LBP(riu2, 8, 1) in both Figs. 3a and b is 4, but the
differences between the fi and fc values are large. The
difference values express the texture descriptions of the
image. The smooth region shows the smooth area in an
image, and that the difference is small. The unsmooth
region shows the coarse area in an image, and the
difference is large. For that reason, we defined and
computed the adaptive local binary patterns (ALBP) in each
pixel of an image. Therefore ALBP defined the useful
patterns of LBP according to the smooth and unsmooth
regions in this paper.

To better describe the image features, the pattern number of
LBP within a smooth region is denoted by P + 2. The local
binary patterns of an unsmooth region were given a pattern
number from 0 to P + 1. Therefore the following ALBP are
(see (7))

where Dc is a gradient value of gc and DT is the gradient
threshold.

We applied the ALBPH of an image as one of the texture
features. There were P + 2 different pattern numbers for
each image. Before defining and computing the pattern
number histogram for ALBP features of an image, the
pixels of all database images were categorised into P + 2
pattern numbers for ALBP. The ALBP histogram shows the
texture distribution of an image. The ALBPH feature of the
kth pattern number can be defined as

ALBPHk (riu2, P, R) = Nk

N
(8)

where N is the total pixel number and Nk is the pixel number
of the kth pattern number in each image; therefore P + 2
ALBPH feature values can be obtained from a grey image.

2.4 Gradient for ALBP

In the previous section, the ALBP histogram was used as an
image feature; however, not all pixels in a pattern number
have the same characteristics. Thus, in this section, the
gradient for each pixel was computed, and the sum of the
gradient for the ALBP number (GALBP) adopted as an
image feature.

GALBP calculates the sum of pixel gradients belonging to
the P + 2 pattern number. Later, the gradient was created on
the basis of the P + 2 pattern number and the sum of
gradients. The probability of the sum of the ALBP number
in the entire image was estimated to obtain a feature of
GALBP. Let gi(x, y) be the gradient for each pixel at
coordinates (x, y) corresponding to the ith pattern number
ALBP(riu2, P, R) =

∑P−1
i=0 s(fi − fc) if U (LBPP,R) ≤ 2 and Dc ≥ DT

P + 1 if U (LBPP,R) . 2 and Dc ≥ DT

P + 2 otherwise

⎧⎨
⎩ (7)
IET Image Process., 2012, Vol. 6, Iss. 7, pp. 822–830
doi: 10.1049/iet-ipr.2011.0445



www.ietdl.org
Fig. 3 Pattern number of LBP (riu2, P, R) for 3 × 3 grids
on the image. The sum of gradients gi of the ith pattern
number, denoted as GALBPi, can be computed as follows

GALBPi =
∑Ni

j=1

gi (9)

where Ni is the total pixel number in the ith pattern number.

3 Image retrieval system

ALBPH and GALBP are useful for describing the
relationship between grey levels and textures in an image.
The two features are highly complementary and can be
integrated to establish a grey difference and grey-gradient
based on image retrieval and classification (an AGLBP
feature).

The ALBPH (ALBPHd
1, ALBPHd

2, . . . , ALBPHd
P+2) and

(ALBPHq
1, ALBPHq

2, . . . , ALBPHq
P+2) of the query image

Q and database image D were obtained from (8). The
image matching distance DALBPH between Q and D based
on the ALBPH can be calculated using the following equation

DALBPH =
∑P+2

k=1

ALBPHq
k − ALBPHd

k

ALBPHq
k + ALBPHd

k + n

∣∣∣∣∣
∣∣∣∣∣ (10)

where the superscripts q and d stand for the query Q and
database image D and n is any small number that avoids
the denominator ¼ 0.

The GALBP (GALBPd
1, GALBPd

2, . . . , GALBPd
P+2) and

(GALBPq
1, GALBPq

2, . . . , GALBPq
P+2) of images Q and D

were obtained from (9) so the image matching distance
DGALBP between Q and D based on GALBP can be
formulated as

DGALBP =
∑P+2

k=1

GALBPq
k − GALBPd

k

GALBPq
k + GALBPd

k + n

∣∣∣∣∣
∣∣∣∣∣ (11)

The proposed AGLBP retrieval system combines the ALBPH
and GALBP to quantise the similarity between Q and D. We
define the image matching distance DAGLBP between Q and
D, denoting the AGLBP retrieval system, and determine the
similarity of images as

DAGLBP = DALBPH + DGALBP (12)

generally DAGLBP decreases with an increase in similarity
between Q and D. Hence, the AGLBP retrieval system can
deliver the image from the database with a minimal DAGLBP.

The precision and recall measurements of Mehtre et al. [29]
are often used to describe the performance of an image
retrieval system. The precision (P) and recall (R) are
IET Image Process., 2012, Vol. 6, Iss. 7, pp. 822–830
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defined as

P(k) = nk/L and R(k) = nk/N (13)

where L is the total number of retrieved similar images in the
database, nk is the number of relevant matches among all the k
retrievals and N is the number of all relevant images in the
database.

4 Image classification system for two-class
SVMs

SVM [30] are appropriate for examining the classification
performance of various techniques. SVM performs well
with classification problems. In this paper, the classifier that
performs texture classification is drawn from the texture
features of AGLBP. This method is defined as transforming
two-class SVMs from multi-class classification problems
mapping into several two-class problems; thereby, the two-
class SVMs can be addressed directly using several SVMs.
Drawing from the two-class SVMs, the image classification
system was constructed using two-class SVM classifiers to
classify textures with multiple classes.

The two-class SVMs are assumed to have two sets of
training data set X ¼ {xi, yi}, where xi is the ith feature
vector, yi is class information, xi [ Rd, yi [ + {1, 21},
and i ¼ 1, 2, . . . , n. From these data, the classification line
for the two types can be determined as: f (x) ¼ wTx 2 b,
where the point of yi ¼ 21 is at f (x) , 0 and the point of
yi ¼ +1 is at; therefore we can use f (x) to determine the
data type.

First, we separated the data into training data and test data.
It was supposed that there were N types of training materials;
from the N types, any two types of data were selected to
complete a two-class SVM classification to determine the
optimal hyperplane; thereby, the total N(N 2 1)/2 set of
classifiers were then available. The test data were classified
using the classifiers obtained from the training data; each
test datum for each classifier was considered a category.
Therefore there were N(N 2 1)/2 categories for each test
data. Then, the number in each category was summed up;
the category with the highest numbers was taken as the
category of the test data.

This classification system mainly used AGLBP
characteristics to perform the two-class SVM classification.
The system also used a MatLab SVM tool written by
Chang et al. [31] for the calculation. Moreover, SVM used
RBF as the kernel of the experiment and employed cross
validation to determine the best parameters for C and g; the
ranges of cross comparison were [225, 216] and [2215, 214].

5 Experimental results

The performance of the proposed method for image retrieval
and classfication was evaluated using two image sets. Image
825
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Fig. 4 Some examples of Image Set 1
Set 1 is grey texture images from the Brodatz texture
database, and Image Set 2 is the colour texture images from
the Columbia-Utrecht (CUReT) database. Each image set
included four types of texture variations: the original
texture, histogram equalised textures, randomly rotated
textures and histogram equalised textures.

Image Set 1 (as shown in Fig. 4) contains 111 640 × 640
pixels grey level different texture images. Each image is
partitioned into 25(5 × 5) non-overlapping sub-images of
128 × 128 pixels. Subset 1 consists of sub-images
downsampled to 64 × 64 pixels using the average between
four adjacent pixels. Subset 2 is a histogram equalisation
from Subset 1. Subset 3 is the centre 64 × 64 pixels after a
random rotation of each sub-image. Subset 4 is a histogram
equalisation from Subset 3. Subsets 3 and 4 were generated
by 10 random rotations. Finally, we obtained the average
retrieval precision, the classification accuracy and the
standard deviation is generated by 10 random rotations.

Image Set 2 (as shown in Fig. 5) contains 45 colour texture
images selected from the CUReT database. Each colour
image size is 320 × 320 pixels, and was transformed into a
grey image in this paper. Each class of texture image is
826
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represented by one texture image. Each image was
paritioned into 9(3 × 3) non-overlapping sub-images of
106 × 106 pixels. Subset 5 is defined as the centre 64 × 64
pixels from each sub-image without interpolation. Subset 6
is defined as the histogram equalisation from Subset
5. Subset 7 is defined as the centre 64 × 64 pixels after a
random rotation in each sub-image. The histogram
equalisation from Subset 7 is defined as Subset 8. Subsets 7
and 8 were generated by ten random rotations. Similarly,
we obtained the average retrieval precision, the
classification accuracy and the standard deviation generated
by ten random rotations.

This paper has adopted two texture features ALBPH and
GALBP. To validate the effect of the method brought
forward by this paper, the experimental results were
compared with the results of the following image retrieval
methods based on texture fetures: Ojala et al. [19], Hafiane
and Zavidovique [6], Bianconi et al. [14], Huang and Dai
[2] and Jhanwar et al. [3]. It is given that r ¼ 1 and p ¼ 8
by Ojala et al. [19], d ¼ 3 by Hafiane and Zavidovique [6]
and Otsu’s threshold by Bianconi et al. [14] in the
experiments.
Fig. 5 Some examples of Image Set 2
IET Image Process., 2012, Vol. 6, Iss. 7, pp. 822–830
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Fig. 6 Comparison of retrieval precision of Image Set 1

a Retrieval precision of Subset 1
b Retrieval precision of Subset 2
c Retrieval precision of Subset 3
d Retrieval precision of Subset 4
5.1 Performance of an image retrieval system

In the first experiment from Image Set 1, the average precision
of each retrieval image for the various images was calculated
from Subsets 1–4. The average precision for each value of L
is shown in Fig. 6. The experiment used the number of the
first 25 retrieved images L to compute the precision P for
each query image, finally obtaining the average precision.
The experimental results clearly reveal that for the first
25 returned images, the AGLBP retrieval system is
IET Image Process., 2012, Vol. 6, Iss. 7, pp. 822–830
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significantly superior to the methods of Ojala et al. [19],
Hafiane and Zavidovique [6], Bianconi et al. [14], Huang
and Dai [2] and Jhanwar et al. [3]. The average precision
for the histogram equalisation of images is better than that
of the original image. The average precision for Subsets 3
and 4 of the random rotation decreased faster than Subsets
1 and 2. At the same time, the average precision of the
present method provides better accuracy than other methods.

This paper compares the average precision of Subsets 1–4
for L ¼ 2 and L ¼ 25. The experimental results from our
Table 1 Comparison of retrieval precision on Image Set 1 for L ¼ 2 and L ¼ 25

Subset L ¼ 2 L ¼ 25

P, % 1 2 3 4 1 2 3 4

Ojala et al. [19] 88.11 84.11 70.1 + 0.5 68.5 + 0.3 53.56 48.27 22.5 + 0.2 21.5 + 0.3

Hafiane and Zavidovique [6] 71.84 71.84 65.8 + 0.4 65.6 + 0.5 28.28 28.28 19.4 + 0.2 19.3 + 0.2

Bianconi et al [14] 85.64 86.47 73.9 + 0.4 68.3 + 0.5 48.65 48.68 30.4 + 0.3 24.0 + 0.1

Huang and Dai [2] 85.82 83.73 68.2 + 0.5 64 + 0.6 54.59 50.67 18.1 + 0.1 14 + 0.2

Jhanwar et al. [3] 73.24 70.11 56.1 + 0.3 55.9 + 0.3 36.26 31.57 9.9 + 0.1 9.8 + 0.2

Present method 94.38 91.06 80.8 + 0.5 77 + 0.4 62.34 56.53 33.4 + 0.3 29.3 + 0.2
827
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Fig. 7 Comparison of retrieval precision of Image Set 2

a Retrieval precision of Subset 5
b Retrieval precision of Subset 6
c Retrieval precision of Subset 7
d Retrieval precision of Subset 8
method and the other five methods are shown in Table 1. Our
method has achieved a better average precision for the various
images than has the others.

Next, the performance was evaluated by the four different
subsets from Image Set 2. The average precisions for the
varying values of L are shown in Fig. 7. The experiment
was carried out with the number L from the first 1st to the
9th retrieved images. These results clearly reveal that the
AGLBP retrieval system is significantly superior to the
methods of Ojala et al. [19], Hafiane et al. [6], Bianconi
828
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et al. [14], Huang Dai [2] and Jhanwar et al. [3]. The
average precision of the histogram equalisation of the
images is less than that for the original image. The average
precision for Subsets 7 and 8 decreased faster than the
Subsets 5 and 6, because Subsets 7 and 8 are variations of
rotation. At the same time, the average precision of the
present method is more accurate than the other five methods.

Table 2 shows the average precision of the AGLBP
retrieval system and the precisions of the compared
methods on CURet for L. The experimental results show
Table 2 Comparison of retrieval precision on Image Set 2 for L ¼ 2 and L ¼ 25

Subset L ¼ 2 L ¼ 25

P, % 5 6 7 8 5 6 7 8

Ojala et al. [19] 91.4 92.1 82 + 1.5 79.9 + 1 73.3 72.0 48.5 + 1.3 44.5 + 1

Hafiane and Zavidovique [6] 79.3 79.0 69.1 + 1.3 69.2 + 1.2 50.7 50.6 34.5 + 0.7 34.9 + 0.6

Bianconi et al. [14] 84.1 76.0 76.8 + 1.3 72.3 + 0.9 49.2 44.4 43 + 0.6 38.5 + 0.7

Huang and Dai [2] 90.2 76.4 76.4 + 0.9 63.9 + 1 68.7 48.0 37.6 + 0.8 24.9 + 0.6

Jhanwar et al. [3] 73.5 69.1 58.1 + 0.6 58.4 + 1 43.6 42.6 21.1 + 0.3 21 + 0.6

Present method 97.3 96.0 89.8 + 0.9 86.2 + 1.4 78.5 78.6 58.3 + 1.1 52.1 + 0.9
IET Image Process., 2012, Vol. 6, Iss. 7, pp. 822–830
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Fig. 8 Twenty four homogeneous texture images from Image Set 1
that: (i) the AGLBP retrieval system provides a much higher
rate of accuracy than the other five methods and (ii) the
average precision accuracy of the AGLBP retrieval system
decreases as L increases.

5.2 Performance of texture image classification

The performance of texture image classification was
evaluated for 24 homogeneous texture images selected from
Image Set 1, and then generated into Subsets 1 to 4 using
the same variations which were defined before, as shown in
Fig. 8. The SVM classifier was trained by using 13 samples
from each class, whereas the other 12 samples were used as
testing data in this experiment.

As a result, with the exception of Hafiane’s and Bianconi’s
methods, the classification accuracy value for the original
textures image Subset 1 decreased; however, after the
texture image’s random rotation (Subset 3) and the
histogram equalisation (Subset 4), the increase and decrease
of classification accuracy value showed inconsistancies. The
results of the classification accuracy obtained from the
proposed method was higher than the other results as

Table 3 Comparison of classification accuracy for Image Set 1

Image subset Classification accuracy, %

1 2 3 4

Ojala et al. [19] 83.68 85.42 77.9 + 2.8 72.4 + 2.4

Hafiane and

Zavidovique [6]

93.40 93.06 72 + 2.3 73.8 + 2.1

Bianconi et al. [14] 97.92 96.53 86 + 1.6 80.8 + 2.7

Present method 99.65 100 94.4 + 1.5 95.7 + 1.5

Table 4 Comparison of classification accuracy for Image Set 2

Image subset Classification accuracy, %

5 6 7 8

Ojala et al. [19] 92.78 91.67 79.2 + 2.9 73.8 + 2.5

Hafiane and

Zavidovique [6]

88.89 88.82 62.4 + 2.8 61.6 + 2.5

Bianconi et al. [14] 67.22 62.78 62.32 + 1.9 61.4 + 3.6

Present method 97.78 98.33 86.8 + 2.1 85.7 + 3.2
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shown in Table 3. The classification accuracy subsequent to
the original texture images (Subset 1) and the histogram
equalisation (Subset 2) was as high as 99.65 and 100%,
respectively. In particular, the classification rate of the other
methods decreased after the random image rotation,
whereas the classification accuracy of the method proposed
here reached as high as 94.4% (Subset 3) and 95.7%
(Subset 4). The standard deviation of classification rate was
also smaller, indicating that the method proposed here has
better stablity.

The performance of texture classification for Image Set 2
was evaluated in 45 homogeneous texture images selected
from Subsets 5–8. The SVM classifier was trained by using
five samples of each class, whereas the other four samples
were used as testing data in this experiment.

The classification accuracy obtained in these experiments is
shown in Table 4. From the results, we determined that the
classification accuracy of our method was higher in the
original texture image (Subset 5) and after the histogram
equalisation (Subset 6); however, the classification
accuracies of the compared methods descended (Bianconi’s
method most). After the random texture image rotation
(Subset 7) and the histogram equalisation (Subset 8), no
matter what method was used, the classification accuracy
descended. The method proposed here clearly has greater
accurancy than the compared methods in every subset with
the classification accuracy reaching as high as 86.8%
(Subset 7) and 85.7% (Subset 8).

6 Conclusions

This paper has proposed a noval ALBP technique, which
considers non-smooth and smooth texture image regions,
and uses ALBP to generate new features: ALBPH and
GALBP. The two features are highly complementary and
can be integrated to establish a grey-difference and
grey-gradient. These features are able to effectively describe
the various properties of an image.

This study adopted image retrieval and classfication for its
experiments. The image database used in the experiments
contained two image sets (each Image Set selected four
types of individual subsets); the results were compared
using five scholarly methods. The experiment results
revealed that the average precision of our method is more
accurate than those of the other methods. For image
classification, this study used a supporting vector machine
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as the classifier, and the results were compared with the
results gained using other scholars’ methods. Regardless of
which subset was used, the results were better with our
system compared with the other methods. Moreover, the
stability of both retrieval and classification was also higher.
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