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Abstract

Independent component analysis (ICA) has been widely used to attenuate interference caused
by noise components from the electromagnetic recordings of brain activity. However, the scalp
topographies and associated temporal waveforms provided by ICA may be insufficient to
distinguish functional components from artifactual ones. In this work, we proposed two
component selection methods, both of which first estimate the cortical distribution of the brain
activity for each component, and then determine the functional components based on the
parcellation of brain activity mapped onto the cortical surface. Among all independent
components, the first method can identify the dominant components, which have strong
activity in the selected dominant brain regions, whereas the second method can identify those
inter-regional associating components, which have similar component spectra between a pair
of regions. For a targeted region, its component spectrum enumerates the amplitudes of its
parceled brain activity across all components. The selected functional components can be
remixed to reconstruct the focused electromagnetic signals for further analysis, such as source
estimation. Moreover, the inter-regional associating components can be used to estimate the
functional brain network. The accuracy of the cortical activation estimation was evaluated on
the data from simulation studies, whereas the usefulness and feasibility of the component
selection methods were demonstrated on the magnetoencephalography data recorded from a

gender discrimination study.

(Some figures may appear in colour only in the online journal)

1. Introduction

Independent component analysis (ICA) is a type of
blind source separation method, capable of decomposing
mixed signals into mutually independent components (ICs)
(Bell and Sejnowski 1995, Comon 1994). It has been
widely used to disentangle magnetoencephalographic (MEG)
and electroencephalographic (EEG) signals, particularly to
attenuate interference caused by noise through the removal
of artifactual components from the acquired data (Cao et al
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2003, Dammers et al 2008, Delorme et al 2007, Escudero et al
2007, Fatourechi et al 2007, Joyce et al 2004, Jung et al 2000,
Lemm et al 2006, Li et al 2006, Lu et al 2012, Mantini et al
2008, Rong and Contreras-Vidal 2006). This preprocessing
step can increase the accuracy of spike detection in single-trial
recordings (De Lucia et al 2008, Ossadtchi et al 2004), the
identification of the neuronal event-related potential (Lee er al
2003, Pritchard et al 1999, Saatchi 2004, Tang et al 2002a,
Turi et al 2012, Vigario et al 2000), the classification of neural
activity in brain—computer interface systems (Kachenoura et al
2008, Kamousi er al 2007, Lee et al 2006, Lou et al 2008, Serby
et al 2005, Xu et al 2004) and source localization (Debener
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et al 2007, Kobayashi et al 2002, Mantini et al 2008, Tang
et al 2002b, Zhukov et al 2000).

Following component decomposition, the next step
involves distinguishing the functional ICs from the artifactual
ones, according to their temporal waveforms and scalp
topographies, which are spatial distributions of electric
potentials/magnetic fields mapped on/over the scalp
surface, respectively. However, the electromagnetic recordings
originating from a single source of brain activity may be
decomposed into several ICs, particularly when many channels
are engaged (Makeig et al 1999, Viola et al 2009). In this
case, it is difficult to individually determine whether an IC is a
functional component according to the scattered information in
its temporal waveform and scalp topography. One possible way
to avoid this over-splitting problem is to estimate the model
order of ICA decomposition (Roberts and Everson 2000). On
the other hand, different source distributions may result in
similar scalp topographies (Fogelson et al 2004). Therefore,
selection of functional ICs should comprehensively consider
the holistic information of the cortical source distributions
estimated from all ICs.

The source information of an IC can be calculated
by estimating the associated brain activity from the scalp
topography of the IC. Dipole fitting (Scherg and Von Cramon
1985) is a widely used method for source localization (Cao et al
2002, Debener et al 2005, Makeig et al 2004, Onton et al 2005,
Sercheli et al 2009). However, this method requires a fixed
number of dipoles and initial guesses of dipole parameters to be
made in advance (Michel et al 2004). The simple assumption
that there is only one dipole source associated with every
IC (Cao er al 2002, Latif et al 2007, Zhukov et al 2000)
is generally not true, particularly when an IC is associated
with synchronized activity among multiple regions of the
brain (Tang et al 2005). Furthermore, it has been reported that
estimation results are heavily influenced by the initial guesses
regarding the parameters in the dipole source model (Cuffin
1998, Grech et al 2008).

Electromagnetic spatiotemporal independent component
analysis (EMSICA) (Tsai et al 2006) is another way to
calculate the source information for each IC. The conventional
ICA method is modified to simultaneously estimate the
independent temporal dynamics and their corresponding
cortical activation topographies. This method utilizes the
Bayesian statistical framework for imaging independent brain
activity using implicit and explicit constraints. Compared to
the temporal ICs obtained by the conventional ICA method,
EMSICA estimates the spatiotemporal ICs at the expense of
other unknown parameters, and thus may increase the risk of
instability in the estimation of the unmixing matrix.

This paper first presents an approach to cortical
mapping that estimates a cortical activation topography
from the scalp MEG/EEG topography for each IC.
Moreover, we propose two component selection methods
to determine functional components based on the estimated
cortical source distribution. Instead of the assumption of
spatial independence imposed in EMSICA, our approach
uses conventional ICA to decompose the MEG/EEG
measurements, whereupon the cortical activation topography

is estimated with a minimum norm constraint. Component
decomposition using conventional ICA is more stable and
efficient than EMSICA because it requires fewer unknown
parameters. Furthermore, using the proposed cortical mapping
approach to estimate the cortical activation topography is
more flexible because different kinds of ICA methods can
be used to decompose MEG/EEG signals according to their
characteristics (Kachenoura et al 2008).

Based on the spatial and temporal information of each IC,
a variety of procedures has been proposed for the determination
of functional components, such as visual inspection, template-
based approaches, and clustering analysis methods. Visual
inspection is the most commonly used method for classifying
functional ICs and non-functional artifacts (Debener et al
2005, 2008, Fogelson et al 2004, Jung et al 2000). However,
the selection results tend to be inconsistent and subjective
(Naeem et al 2006). Template-based approaches are capable
of automatically identifying ICs with characteristics similar
to those of the spatial or temporal templates provided
beforehand (De Martino et al 2007, Lee et al 2003, Wessel
and Ullsperger 2011). Although the results are more consistent
than those obtained from visual inspection, the criteria for the
construction of templates may bias the selection results.

The idea behind clustering-based approaches (Contreras-
Vidal and Kerick 2004, Himberg et al 2004, Jervis et al
2007, Jung et al 2001, Milanesi et al 2009, Onton et al
2005) is to categorize ICs into several groups, such that
the within-group spatiotemporal characteristics are similar
but the between-group ones are dissimilar. Although there
is no need for prior knowledge regarding the spatiotemporal
characteristics of function-related activity, the clustering
results are sensitive to the type of features, clustering methods,
and the associated parameters. These approaches essentially
focus on the statistical characteristics of ICs but not on
their physiological interpretation. Furthermore, clustering
approaches are inherently time-consuming, particularly when
the datasets are diverse or the number of features is large
(Viola et al 2009). Moreover, these approaches often encounter
difficulties associated with inter-participant variation, the
multiple executions of ICA, and the large number of ICs
(Groppe et al 2009). By combining template-based and
clustering-based methods, a hybrid algorithm, CORRMAP
(Viola et al 2009), has been proposed to identify a compact
cluster of ICs similar to a specific spatial template.

This paper proposes two component selection methods
that utilize the parceled cortical activity of all components
to provide statistical guidance for the selection of two
categories of functional components. The first category
includes the dominant components, which are highly active in
dominant regions. The second category includes inter-regional
associating components with similar component spectra for a
pair of regions in the brain. The component spectrum of a
region enumerates the amplitudes of the cortical activity across
all components. To complete a task, several networks in the
brain work together and a single region of the brain may be
involved in different networks. The regions of a brain network
communicate with each other through synchronized brain
activity (Engdahl ef al 2010, Georgopoulos et al 2007, 2010,
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Varela et al 2001). The cortical source distribution of an IC
contains vertices that have the same temporal activation pattern
as the temporal waveform of the IC. Thus, the distribution
may represent one functional brain network because regions
with high amplitudes apparently reveal the synchronized
brain activity. The conventional approaches for estimating
the connectivity of brain networks consider the relationship
between the brain activity of different regions. However, brain
activity in one region may include activity that does not belong
to the networks involving the pair of regions. The proposed
associating component selection method quantifies network
connectivity by considering the contribution of activity to the
network. Moreover, the proposed selection methods are based
on anatomical structure, making them more objective than
visual inspection and the template-based methods. Compared
to the clustering-based method, our methods not only consider
the features extracted from statistical analysis but also allow
users to specify regions of interest based on their prior
knowledge.

The proposed algorithms for estimating the cortical
activation topographies of ICs and selecting functional
components are described in section 2. In section 3, we present
the evaluation results pertaining to the accuracy and feasibility
of the proposed algorithms using five sets of simulation data as
well as the data from a gender discrimination study. The
advantages and limitations of the proposed algorithms are
addressed in section 4. Conclusions are drawn in section 5.

2. Materials and methods

This section describes the proposed methods of component
selection for MEG signal analysis. First, the cortical activation
topography is estimated for each IC. The estimation method
consists of a forward model, which represents the relationship
between sources of brain activity and MEG measurements,
a general linear model, which relates the cortical activation
topography to the scalp topography, and the minimum
norm solution to this linear model. Based on the estimated
cortical activation topographies, the proposed component
selection algorithms are capable of determining both dominant
components with a high degree of activity in the specified
regions and inter-regional associating components, which have
similar component spectra and high cumulative activity in a
pair of regions. Note that the proposed methods can also be
applied to the analysis of EEG signals.

2.1. Forward model

In the MEG forward model, the lead field vector I, € %€
indicates how the unit dipole with parameters 8 = {r, q}
contributes to the measurements of the MEG sensor array:

ly = Giq, ey

where G, € ¢ is the gain matrix describing the sensitivity
of C MEG sensors to the current dipole source located at
r € % and q € %> is a unit vector representing the dipole
orientation (Baillet et al 2001, Mosher et al 1999, Sekihara
and Nagarajan 2008).

MEG measurements are induced by an ensemble of
neuronal activity throughout the entire brain, which can be
represented by a distributed source model. Assume that there
are P vertices on the cortical surface and each vertex is
associated with a dipole with parameters 6, = {r,, q,},
p=1,2,..., P, where r, is the vertex position and q, is
the orientation of the dipole located at r,. There are two
ways to determine the dipole orientation q,. The first is the
surface-constrained method, which assumes that the dipole
is aligned with the normal direction of the cortical surface.
This type of anatomical information can be obtained through
cortex segmentation of magnetic resonance (MR) images.
The other method is a data-driven approach, which estimates
the dipole orientation solely from MEG measurements. For
example, the maximum contrast beamformer (MCB) provides
an analytical solution to the dipole orientation subject to a
minimum variance and maximum contrast criterion as well as
unit-gain constraint (Chen et al 2006).

The measurements m(t) = [m(f) mx(t) ... me(D)]'e
%Cand dipole activity s(r) = [si(r) s2(t) ... sp()]'e R
distributed on the cortical surface can be related by

m(t) = Ls(t) +n(?), 2)

where m(¢) is the temporal waveform measured by the cth
MEG sensor attime r,c=1,2, ..., C,L=1[lg 1y, ... lp,] €
REXP is the lead field matrix composed of P lead field vectors,
le,, p =1, 2, ..., P, each associated with dipole parameters
0,, s,(?) is the amplitude of the pth dipole, n()e R denotes
the additive noise at time ¢ and ‘7" indicates the transpose of a
matrix or a vector.

2.2. Cortical activation topographies of ICs

Equation (2) describes the source model indicating that MEG
measurements m(#) originate from the superposition of P
brain source activity s(f) = [s1(¢) s2(¢) ... sp()]’e R’ From
another aspect, the ICA method decomposes the measurements
m(?) into K ICs, x(r) = [x;(f) x2(f) ... xx(H]7e RE, K < C,
in which every component is temporally independent of the
others. The measurements m(#) are weighted superpositions
of K ICs, which can be divided into signal and noise subsets.
Without loss of generality, we assume that the signal subset
X(1) = [x1() x2(¢) ... xz()]" contains the first Z components

whereas the noise subset X,(f) = [xz41() xz2(t) ... xx(D]7
contains the remaining K — Z components. That is,

m(f) = AX(t) = AgXs(t) + Apxn (1), 3)
where A = [a; 2, ... ag] € RK is a mixing matrix and

its column vector a; represents the scalp topography
corresponding to the kth component xi(f). Each scalp
topography ay is associated either with signal subset Ay =
[a; a; ... az] or noise subset A, = [azy| azp ... ag].
Let mg, (r) = apx(f) denote the part of the measurements
contributed by the temporal profile xi(f) and the scalp
topography a; of the kth IC, k = 1, 2, ..., Z. Let m,(¢) =
A x,(7) € RE denote the part of the measurements contributed
by noise components. Assume that the partial measurements
m, (¢) originate from the superposition of the source signals
si(f) = [s1(0) sa(d) spO]fe ®P, which reflect the
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temporal activity of the dipole sources distributed on the
cortical surface. Equation (3) can then be rewritten as

m(t) = Asxs(t) + Aan(t)

V4 zZ
= my () +my(t) = Y Lsi(t) +my (1) 4)

k=1 k=1

Note that the noise term n(z) is not explicitly modeled in (4) but
is implicitly embedded in the measurements my(f) contributed
by the noise components x,(?) (Tsai et al 2006).

Let vector by = [byx ba ... bp]T € RY represent the
cortical activation topography of the kth signal component,
x(H, k=1,2, ..., Z The dipole activity s;(f) and the signal
component x(f) can be related by (Tsai et al 2006)

Sk (1) = byx(1). ®)

By substituting (5) into the forward model, equation (4)

becomes
z

m(t) = Y Lbx(r) + my(1) = LBx(1) + m, (1),  (6)
k=1
where B = [b; b, ... bzle %%, According to (4) and (6),
the relationship between cortical activation topographic matrix
B and scalp topographic matrix A of signal components Xy(f)
can be expressed as the linear equation

AgXq ) = LBx(?). N

When the data acquisition period is long enough, we can
assume that the set of signals x,(f) at every time point span the
space of %Z. Equation (7) is thus equivalent to

A, = LB, (®)
or
aa=Lb, k=12, ..., 2 ©)

To obtain a unique and stable solution, the Tikhonov
regularization term (Tikhonov and Arsenin 1977) is added
to the linear model as in (9) to impose the minimum
norm constraint on cortical activation topography by. This
regularization term can avoid the overfitting problem and
provide a solution to the estimation of cortical activation
topography by according to the design of the Tikhonov matrix
T, which is expressed as

by = arg min { ][ €' (a; — L) I+ 2|07}, 10)

where C,, € RE*C is the noise covariance matrix and A is a
hyperparameter for balancing the different scales between the
fitting residual HC,T 12 (ay — Lby) ” and the regularization term
[I'Tby||. In the present study, we make no prior assumptions
in the estimation of cortical activity, and thus the identity
matrix, I, is adopted as the Tikhonov matrix (Hdmildinen and
Ilmoniemi 1994, Hauk 2004). Finally, the cortical activation
topography by can be calculated by

b, = (L7C; 'L + A1) 'L7C; 'a,. (1)
According to the matrix inversion lemma, we can derive

another form of the solution:

by = LT (LL” + AC,) 'ay. (12)

Equation (12) is preferable for estimating by because (12) has
only one matrix inverse computation and the dimension of
LL7, C x C, is usually much smaller than that of LL, which
isP x P.

In summary, the proposed method is capable of
estimating the cortical activation topography b, mapped on
the cortical surface through the scalp topography a; and
the lead field matrix L, once the kth IC, x(¢), is obtained
by ICA.

2.3. Selection of functional components

The proposed component selection methods incorporate the
information of the cortical activation topographies, by, and
the temporal profiles of ICs, x(f),k=1,2, ..., Z, todetermine
the functional components, as illustrated in the flow diagram
shown in figure 1. For the kth IC, we first calculate the
power of its temporal activity, E{(bpkxk(t))z}, at the pth vertex,
where E{-} denotes the expectation value. Let w; =
[uig uox ... ug)” represent the parceled activity of the L
automated anatomical labeling (AAL) regions for the kth IC.
The AAL regions for each subject can be obtained by spatially
transforming the CH2 template to the MR image of the subject
using the registration technique proposed by Liu et al (2010).
This method utilizes brain structure information to calculate
the affine transformation and non-rigid deformation between
the CH2 template and the MR image of the subject. These two
transformations are then applied to transform the locations of
AAL regions from the space of the CH2 template to that of
the subject image. For the Ith element of w;, uy, the value
is calculated as the square root of the mean of the « highest
power values among the vertices in the /th AAL region. For
each AAL region, if « is larger than the number of vertices
in that region, then « is adjusted to be the total number of
vertices in that region. The parceled activity for all components
is calculated and grouped as U = [u; u, ... uyz]. Note that
the corresponding brain atlas of CH2 template is used to parcel
the cortical activation topography of each IC. In contrast, the
template used in the template-based IC selection methods
defines the characteristics of a specific IC category (De
Martino et al 2007, Lee et al 2003, Wessel and Ullsperger
2011).

We propose two methods to select functional components
from the signal subset, x,() = [x1(t) x() ... xAD],
according to their corresponding parceled activity. The aim
of the first method, dominant component selection, is to
identify regions with a high degree of activity as well as
the components that contribute to this activity. As shown in
figure 1(a), the component with the maximum parceled activity
among the Z components is first identified for each of the L
AAL regions. These L AAL regions are then selected one by
one in descending order of amplitude of the maximum parceled
activity until the cumulative portion of the maximum parceled
activity exceeds 8%. The selected regions are referred to as
dominant regions and the components corresponding to the
maximum parceled activity in these regions are referred to as
dominant components.

In a dominant region, there may be multiple components
with a high degree of activity. Important information may
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Figure 1. Flow diagram of the proposed component selection methods based on parceled brain activity. For example, the values of L and Z

are 6 and 8, respectively, in this diagram. The proposed dominant comp
regions are AAL regions 1, 3 and 4 with dominant components 6, 4 and

onent selection method is shown in (a) and the selected dominant
5, respectively. The extension of this method is shown in (b) and the

extended dominant components selected for dominant regions 1, 3 and 4 are component sets {1, 6, 7, 8}, {2, 4, 6}, and {1, 5, 7},
respectively. As shown in (c), a set of inter-regional associating components {2, 3, 6, 7} designated in the dashed box are the common
components between AAL regions 1 and 3, with a strong association between these two regions.

be lost if we only choose the component with the maximum
activity using the above-mentioned dominant component
selection method. The remedy is to extend this method by
reexamining the Z components with a threshold for each
dominant region, as shown in figure 1(b). In this extension,
components with a relatively high degree of parceled activity

are selected from all of the Z components. For a dominant
region, the Z components are selected one by one according to
their amplitudes of parceled activity sorted descendingly. The
selection process terminates when the cumulative portion of
parceled activity of the selected components exceeds a certain
value. Finally, each dominant region has a set of extended



J. Neural Eng. 9 (2012) 056006

H-L Chan et al

association= 4.69x10"

association= 2.00x10"

0.025r

0.02-

parceled activity

100
(a) all components

120

180 10 20 30

(b) common components

140 160

Figure 2. Component spectra of (a) independent components and (b) common components for the right RO (AAL 18) and right SMG (AAL
64). The black dots in (a) indicate the common components of the right RO and right SMG. The association values between the two regions
shown at the top of (a) and (b) are calculated as the inner products of their parceled activity in all 179 ICs and the 36 common components,

respectively.

dominant components, which contribute to the major portion
of brain activity in this region.

The goal of the second component selection method is
to select inter-regional associating components, as shown
in figure 1(c). Only the pair of regions with a large inter-
regional association has associating components, comprising
a set of common components for these two regions. For a
pair of regions, the common components are the ICs with
a high degree of parceled activity in both regions. To select
common components, highly activated regions of each IC are
first identified according to the parceled activity of each region
(regional activity). For each IC, these highly activated regions
are selected one by one in descending order of regional activity
until the cumulative portion of the regional activity of the
selected regions exceeds a given threshold (30% in this study).
Then, for each pair of regions, an IC is identified as a common
component if its highly activated areas contain both regions.
As illustrated in figure 2, the component spectrum of a given
region is the amplitude distribution of the parceled activity
across components with respect to that region. The association
between two brain regions is assessed as the scalar product
of their common component spectra, which is a similarity
measure of the common components between the two involved
brain regions. The association values and common components
for all pairs of regions constitute the association matrix and
the common component table, respectively. Finally, for a pair
of regions with a high degree of association, their common
components are regarded as the inter-regional associating
components of these two regions.

Note that, for each IC, different brain areas have the same
temporal waveform, albeit on different scales. That is, two
regions probably connect to each other when both have strong
activation in the same IC. Therefore, a large scalar product
value of common component spectra can be considered as a
high degree of connectivity between two regions because of
their similar activation patterns across the components with
strong activation.

2.4. Materials

This study recorded MEG signals of a 35-year-old female
subject undertaking a gender discrimination experiment. The
measurements were acquired using 204-channel gradiometers
of a whole-head Neuromag Vectorview system with a sampling
rate of 1 kHz. The magnetometers of the Neuromag Vectorview
system were not used in our experiments because of their
disadvantages of wide field spread (Hyvirinen et al 2010)
and high sensitivity to noise. The T1-weighted MR images
of this subject were acquired on a 1.5 tesla GE MR
scanner (3D-FSPGR pulse sequence, TE = 1.828 ms, TR =
8.54 ms, flip angle = 15°, matrix size = 256 x 256 x 124,
voxel size = 1.02 x 1.02 x 1.50 mm?). The cortical surface
comprising approximately one hundred thousand vertices was
reconstructed from the MR images by FreeSurfer (Dale et al
1999).

2.4.1. Simulated measurements. Five sets of simulated
204-channel MEG data were generated using a forward model
built for the above-mentioned Vectorview MEG system. In
simulations 1, 2a, 2b, and 2c, each dataset had its own
configuration containing two dipoles with known parameters.
In the configuration of simulation 1, two distant dipoles with
parameters @, = {r; q;} and 0, = {r, q,} were placed at
r; and r, and associated with surface-constrained orientations
q; and qq, respectively, as shown in the top left of figure 3.
In contrast, in the configuration of simulations 2a, 2b and
2¢, two close dipoles with parameters 8; = {r; qs} and 6, =
{r4, q4} were deployed at r3 and r4 and associated with surface-
constrained orientations q3 and qq, respectively, as shown in
the top right of figure 3. In the configuration of simulation
3, there were five dipoles with parameters 6y, 8, 63, 4 and
05 = {rs qs}. In simulations 1, 2a, 2b and 2c, the two
temporal profiles, waveforms 1 and 2 shown at the top of
figure 3, were designed as the source activity whereas
waveforms 3, 4, 5 and 6 shown in figure 4(a) were designed as
the source activity in simulation 3. Each temporal waveform
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Figure 3. Setups and results of simulations 1 and 2a. Two dipoles for generating MEG data in simulations 1 and 2a are shown top left and
top right, respectively. Parameters of these four dipoles are denoted by 6, 8,, 65 and 8, and their corresponding lead field vectors are denoted

by lg,, lp,, lp; and ly,, respectively. The top middle illustrates two given

temporal waveforms, in which waveform 1 is associated with dipoles

0, and 6; whereas waveform 2 is associated with dipoles 6, and 8,. The second row shows the averaged MEG measurements and the
corresponding scalp topographies at 200 ms and 400 ms for the two simulations. The bottom shows temporal waveforms and scalp
topographies of the two ICs decomposed from each simulation dataset as well as their corresponding cortical activation topographies. The
ACC between the scalp topography of the kth IC, a;, and the scalp projection of the estimated cortical activation topography, Lf)k, is shown
in the bracket as well as the ACC between the temporal waveform of IC and its corresponding source activity.

consisted of one or two amplitude-modulated cosine waves
formulated as

w,(t) = acos2u f(r — p))G(t: p.o) +n(t:0,),  (13)

where the parameter set p = {a, f, p, o, 0,} contained
the amplitude a (nAm), the frequency f (Hz), and the peak
time p (ms). The amplitude modulation function G(¢; p, 6) =
exp(—(t — p)*/20?) was a Gaussian function with standard

deviation o (ms). The interference ny(t; o,) added to the
cosine wave was the random signal with standard deviation
o, (nAm). Waveforms 1 and 2 were both ensembles of
two amplitude-modulated cosine waves with parameter sets
{{3, 17, 400, 50, 0}, {0.9, 5, 400, 50, 0} } and {{3, 5, 200, 70,
0}, {0.9, 17, 200, 70, 0} }, respectively, as shown in the top
center of figure 3. Waveforms 3, 4 and 6 were all ensembles
of two amplitude-modulated cosine waves with parameter sets
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Figure 4. Configuration and results of simulation 3. The waveforms placed at the five locations ry, r,, r3, r4 and rs are shown in (a) and their
ACCs are shown in (c). The generated measurements and the corresponding scalp topographies at 200, 375 and 400 ms are shown in (b).
The correlation matrix in (d) illustrates the ACCs between the waveforms placed at the five locations and the four ICs decomposed from the
simulation dataset. In (e)—(h), each row displays (f) the cortical activation topography, (g) the scalp topographies, and (h) the temporal
waveforms for each of the four ICs. The enlarged cortical activation topographies are shown in (e). The green nodes within the dashed boxes
colored blue, light green, red, cyan and purple indicate the ground truth dipole locations ry, r,, I3, rs and rs, respectively. Note that the
waveforms of the dipoles located at r; (light green) and r4 (cyan) almost overlap each other because they consist of the same
amplitude-modulated cosine waves and different realizations of the same random noise process.

{{3, 17, 375, 50, 0.1}, {0.9, 5, 375, 50, 0.1}}, {{0.9, 17,
200, 70, 0.1}, {3, 5, 200, 70, 0.1}} and {{1.8, 17, 400, 50,
0.1}, {1.8, 5, 400, 50, 0.1}}, respectively. Waveform 5 was
an amplitude-modulated cosine wave with the parameter set
{4, 17, 400, 60, 0.1}, as shown in figure 4(a). For the six
source waveforms, 1-6, their associated dipole parameters in
each simulation study are listed in table 1. The correlations
between the waveforms used in simulation 3 are illustrated in
figure 4(c).

To simulate the background activity of the brain, 3000
additional dipoles were randomly deployed within a sphere
with a radius of 7 cm centered in the middle of the brain.
In simulations 1, 2a and 3, the amplitude of each random
dipole was drawn from a normal distribution with zero mean
and standard deviation of 0.1 nAm. In simulations 2b and 2c,
the data were designed to have a higher level of background

noise than in simulation 2a. Each added random dipole had
its amplitude drawn from a normal distribution with zero
mean and standard deviation of 1 (simulation 2b) or 10 nAm
(simulation 2c). To simulate sensor noise, random signals
drawn from a normal distribution with zero mean and standard
deviation of 10 fT cm~! were added to each channel of MEG
signals in simulation 3. Table 1 lists the maximum and mean of
the channel-wise signal-to-noise ratio (SNR) for each dipole
source of the five sets of simulation data. The spherical model
was adopted as the head model in the calculation of the
gain matrix. Ten concatenated trials, each with 1000 ms 204-
channel data, were generated in this study. In each simulation
study, we first performed FastICA (Hyvirinen and Oja 2000) to
attenuate interference in the simulated MEG data by removing
noise components and then mixing the remaining components.
Next, the de-noised measurements were again decomposed
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Table 1. Channel-wise SNR (unit: dB) and localization error (LE)
for each dipole source in the simulation studies. When a dipole
source is correlated with multiple components, its LEs are
calculated for each of the estimated cortical activation topographies
of the correlated ICs.

Std of
random Max Mean
dipole Dipole SNR SNR LE
Simulation (nAm) Waveform parameter (dB) (dB) (mm)
1 0.1 1 0, 179 -02 0
2 0, 187 —-05 0
2a 0.1 1 05 151 -0.7 0
2 0, 18.3 1.5 0
2b 1 1 05 —4.9 —-20.7 0
2 0, —1.7 —185 0
2c 10 1 05 —249 —40.7 0
2 0, —21.7 =385 0
3 0.1 3 0, 11.3 =25 0,0
4 0, 115 =150
5 05 15.2 0.2 0,0,0
4 0, 11.6 —-35 14
6 0 82 —54 08

into ICs using FastICA. The proposed method was then
performed to estimate the cortical activation topographies of
these newly obtained ICs.

2.4.2. Gender discrimination experiment. The MEG data
were acquired from a gender discrimination study (Lee ef al
2010). The subject was presented grayscale photographs of
faces showing an angry expression. A total of 72 images
were displayed in a pseudorandom order. To avoid explicit
recognition or categorization of emotional expressions, the
subject was asked to lift her right or left index finger after
recognizing the presented face image as female or male,
respectively. Each trial comprised a 1500 ms exposure to the
image of a face, a 700 ms fixation (a cross), and a 1200 ms
response cue (a question mark).

In this study, we applied the proposed methods to
analyze the dataset acquired in the gender discrimination
experiment. This dataset comprised 60 trials without eye
movement, each with 500 ms measurements starting from the
onset of the display of angry face images. The dataset was
first decomposed using FastICA. To attenuate interference
in the MEG recordings, components with severely low or
high kurtosis values were marked as outlier components and
removed (Barbati et al 2004). Following the removal of outlier
components, the remaining components were remixed as
noise-reduced measurements by multiplying their associated
columns in the mixing matrix A and their associated temporal
waveforms in x(#). The remixed signals were then decomposed
again using FastICA. For all of the resulting 179 ICs, the
proposed method was performed to calculate their cortical
activation topographies. For each of the 179 components, we
computed the parceled activity, with the parameter « set to be
200, in the AAL regions of the cerebrum, AAL 1, AAL2,...,
AAL 90.

3. Results

3.1. Simulation studies

In simulations 1, 2a, 2b and 2c, the de-noised measurements
were decomposed into two ICs: IC; and IC,. The bottom
of figure 3 illustrates the temporal waveforms and scalp
topographies of the ICs as well as the corresponding cortical
activation topographies in simulations 1 and 2a. To evaluate
the goodness of data fit in our simulation results, the scalp
topography of the kth IC, a;, was compared with the scalp
projection a; = Lby of the corresponding cortical activation
topography f)k, k =1 and 2, using the absolute correlation
coefficient (ACC), ACC = |a] ac|/(l|ag| - lak]]). In these two
studies, a; and ai, k = 1 and 2, had the maximum activations
located at the same channel and their ACCs were all higher
than 0.98, indicating that the estimated cortical activation
topographies had scalp projections highly similar to the scalp
topographies of the associated ICs.

To evaluate the accuracy of the proposed method for
estimating cortical activation topography, we calculated the
localization error (LE) for each dipole location, as shown
in table 1. The value of LE is calculated as the squared
Euclidean distance ||ri — f','||2 between the peak position F;
on the estimated cortical activation topography and the ground
truth position r;, i = 1,..., 4. Note that the positions F; and
r; were both located on vertices of the cortical surface. In
simulation 1, the temporal profile of IC; was highly correlated
with waveform 1 (ACC = 0.9985), denoting that IC; was
associated with the dipole source at ry, as indicated by the blue
node in the left panel of figure 3. For IC, the peak position F
coincided with its ground truth position r; and thus its LE was
zero. In addition, IC, had a temporal profile highly correlated
with waveform 2 (ACC = 0.9985) and thus it was associated
with the dipole source at r,, which is indicated by the green
node. The LE of the estimated cortical activation topography
for IC, was also zero. For IC; in simulation 2a, the peak
position 4 coincided with its ground truth position r4, which
is indicated by the green node in the right panel of figure 3.
The estimated cortical activation topography of IC, had its
peak located at r3, which coincided with the ground truth
position of dipole source at r3, as indicated by the blue node
in the cortical activation topography b,. In simulations 2b and
2c, the LEs of the estimated cortical activation topographies
for the two ICs were both zero, as shown in table 1.

In simulation 3, four ICs were decomposed from
the simulated dataset contributed by five dipole sources.
According to the source-IC correlation matrix shown in
figure 4(d), each component had high correlation values with
multiple sources, except for IC4. The waveform of the dipole
placed at r; was correlated to the temporal waveforms of
IC, and ICj (with correlation values higher than 0.2), whereas
the waveform of the dipole placed at r3 was correlated to the
temporal waveforms of IC;, ICs, and IC4 (with correlation
values higher than 0.2). For the dipole sources at r; and rj,
their LEs were calculated in each of the cortical activation
topographies of their correlated ICs. The LEs of the five
sources in simulation 3 are listed in table 1. Figure 4(f) displays
the estimated cortical activation topographies of the four ICs.
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Figure 5. Parceled activity and the determination of dominant regions in the gender discrimination study. The parceled activity of the

179 ICs decomposed from the gender discrimination data is illustrated in (a). The maximum parceled activity of regions is illustrated as the
bar chart in (b) and the corresponding cortical activation topographies are shown in (d). The activity is sorted in descending order and the
cumulative portion of maximum activity is shown in (c). Red bars in (b) indicate the selected dominant regions containing 50% cumulative

portion of the maximum parceled activity.

In figure 4(e), the blue, light green, red, cyan and purple dashed
boxes display the enlarged cortical activation topographies
with the green nodes indicating the ground truth positions ry,
I, I3, 4 and s, respectively. In this study, the ACC values of
a, and 4y, k = 1, 2, 3 and 4, were all higher than 0.98.

3.2. Gender discrimination study

3.2.1. Selected dominant components. Among the parceled
activity of the 179 components (figure 5(a)), the amplitude
of maximum parceled activity for each AAL region was
first identified, as illustrated by a bar chart (figure 5(b)) and
cortical distribution (figure 5(d)). We then accumulated the
amplitude of maximum parceled activity, which was sorted
beforehand in descending order, as shown in figure 5(c).
When the cumulative portion of activity reached 50%, 25
regions were included and specified as dominant regions, as
indicated by the red bars shown in figure 5(b) and listed in
table 2. Mostof the dominant regions were in the superolateral
parietal, superolateral temporal and occipital regions. The
component associated with the maximum parceled activity in
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a dominant region was identified as the dominant component.
The dominant components selected from the 179 ICs are listed
in the rightmost column of table 2. Because several dominant
regions could be associated with the same components, there
were only nine different dominant components in this case.
Figure 6(a) illustrates the temporal waveforms xi(f)
and scalp topographies a; of the nine selected dominant
components, k = 1,2, 8, 22, 24, 26, 58, 150 and 173. IC; with
peak latencies at 78, 140 and 285 ms was associated with
seven dominant regions, including the bilateral precuneus,
superior parietal areas and paracentral lobules, as well as
the right precentral area (table 2). Apart from IC;, each of
the other eight dominant components was associated with
dominant regions located on the unilateral hemisphere. Left
middle occipital gyrus (MOG) was associated with IC;sy with
peak latencies at 87, 130 and 203 ms, whereas right MOG
was associated with ICy73 with peak latencies at 100, 210
and 273 ms. The identified peaks of temporal activity in
the left MOG occurred earlier than those in the right MOG.
The dominant regions in the temporal lobe of the
left hemisphere were associated with IC, (superior)
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Figure 6. Results of the dominant component selection and the extended dominant component selection method in the gender discrimination
study. The temporal waveforms labeled with peak latencies and scalp topographies of dominant components are shown in (a). For ICsg, its
estimated cortical activation topography and the corresponding scalp projection are illustrated in (c) and (b), respectively. The ACC between
the scalp topography asg and the scalp projection of the estimated cortical activation topography Lbs; is shown in parenthesis. For (d) the
right SMG and (e) the right IPL, the remixed signals of their extended dominant components are shown on the left. The scalp topographies
at peak latency are shown in the middle and their corresponding source distributions estimated by the MCB method are shown on the right.

and ICg (middle/inferior), whereas those of the right
hemisphere were associated with IC,, (superior/inferior) and
ICy4 (middle). The estimated cortical activation topography
and the scalp projection of ICsg are shown in figures 6(c) and
(b), respectively. The ACC value between the scalp projection
and the associated scalp topography of ICsg was 0.59. The
ACC values for the nine dominant components in this study
ranged from 0.49 to 0.72.

To reveal the neural network relevant to the selected
dominant regions, we applied the extended dominant
component selection method to incorporate the components
that have a high degree of activity at the given region. There
were 67 and 63 dominant components selected for the right
supramarginal gyrus (right SMG, AAL 64) and right inferior
parietal lobule (right IPL, AAL 62), respectively, in which the
cumulative portion of activity reached 60%. Figures 6(d) and
(e) depict the signals remixed from the dominant components
of the right SMG and IPL, respectively. These two figures
also show the scalp topographies at peak latency of 140 ms
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as well as the source distributions estimated by the MCB
method with the time window centered on the peak latency.
Each of the two estimated source distributions is overlaid on
the inflated cortical surface (Fischl et al 1999). The results
of MCB are shown as F-statistic maps, which depict the
significance levels of brain activity. As illustrated by the F-
statistic map in figure 6(d), the neural network associated with
the right SMG consists of the SMG, superior temporal gyrus
(STG), and Rolandic operculum (RO) in the right hemisphere
as well as the left MOG. The F-statistic map in figure 6(e)
displays the neural network associated with the right IPL,
including the SMG, STG, RO and superior temporal pole in
the right hemisphere, as well as the MOG and IPL in the left
hemisphere.

3.2.2. Selected inter-regional associating components. Inthe
analysis of inter-regional associating component selection, we
found large numbers of common components in the parietal
and temporal lobes, particularly when the left MTG, right
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Figure 7. The inter-regional association values and their significance test results in the gender discrimination study. The normalized
inter-regional associations calculated from the common components of all regional pairs are shown in (c). Panel (a) displays three cortical
distributions of the association values when the left inferior frontal triangle, right RO and right SMG were used as the reference regions. The
p-values of these inter-regional association values are shown in (d), where regional pairs surviving p < 0.001 are displayed. The functional
brain network estimated according to the normalized inter-regional association matrix and their significance level is shown in (b). Two
regions are linked when their inter-regional association value is significant (p < 0.001). The width of each link represents the strength of

association.

SMG, or right angular gyrus (AG) was involved. These
three regions had the maximum diagonal values (139, 136
and 110) in the common component matrix, meaning that
there were many components with primary activity in these
areas. Therefore, most of the ICs extracted from the gender
discrimination data were highly activated on the left MTG,
right SMG, or right anterior AG.

Figure 2(a) illustrates the parceled activity of right RO
(AAL 18) and right SMG (AAL 64) where their common
components are indicated with black dots over the top of
their corresponding activity. The component spectra of the
two regions describe the variations in regional activity across
all ICs. Figure 2(b) illustrates the common component spectra
for right RO and right SMG. Although only 36 ICs (one-
fifth of the total) were selected as the common components,
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their association value (2.00 x 10~%) was nearly half of that
computed from the total 179 ICs (4.69 x 1073).

Figure 7(c) illustrates the inter-regional associations of the
common components for all pairs of regions. In general, the
inter-regional association value is proportional to the number
of common components because the scalar product is used
as the similarity measure. In addition, the association value
in the diagonal of the association matrix generally represents
the power of the activity in a region. The results demonstrate
that the activity in the frontal lobe was lateralized to the left
hemisphere whereas that in the parietal and temporal lobes was
bilaterally distributed. Moreover, high associations were found
between the superolateral parietal, superolateral temporal and
occipital lobes. These regions with high associations were also
found as the dominant regions listed in table 2.
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Table 2. Dominant regions together with the corresponding
dominant ICs decomposed from the gender discrimination data.

Normalized
maximum Dominant

Dominant AAL region

Rank Index Label Side activity (%) component
1 64 Supramarginal R 313 ICsq
2 62 Inferior parietal R 287 ICsg
3 82 Superior temporal R 2.73 ICy,
4 81 Superior temporal L 2.71 1C,
5 66 Angular R 2.68 ICsg
6 85 Middle temporal L 264 ICg
7 58 Postcentral R 2.61 1Cyp,
8 18 Rolandic operculum R 2.57 1Cy,
9 63 Supramarginal L 245 1C,
10 86 Middle temporal R 2.16 1Cyy
11 68 Precuneus R 1.99 1C,
12 67 Precuneus L 1.83 1C,
13 52 Middle occipital R 1.75 1Ci73
14 57 Postcentral L 1.71 1C,
15 51 Middle occipital L 1.55 1C59
16 59 Superior parietal L 1.53 IC,
17 54 Inferior occipital R 1.53 1Cy73
18 60 Superior parietal R 1.51 IC,
19 69 Paracentral lobule L 1.50 1C,;
20 61 Inferior parietal L 1.50 ICy
21 89 Inferior temporal L 1.48 ICg
22 65 Angular L 1.42 ICy
23 70 Paracentral lobule R 1.41 1C,;
24 2 Precentral R 1.40 1C,
25 90 Inferior temporal R 1.39 1C,,

To evaluate the significance of the inter-regional
association value for each regional pair, the p-value
was calculated under a permutation distribution. The
distribution was built from 1000 000 association values which
were calculated from randomly selected components. The
percentages of regional pairs having inter-regional association
values surviving p < 0.05, p < 0.01 and p < 0.001 were 68.4%,
44.0% and 26.4%, respectively. Figure 7(b) illustrates the
weighted undirected network, which was estimated according
to the inter-regional association matrix shown in figure 7(c).
In this graph, each node represents an AAL region and the link
width represents the strength of association. The network only
illustrates significant connections whose p-values are smaller
than 0.001, as shown in figure 7(d).

We overlaid the cortical surface with the association
values when the left inferior frontal triangle, right RO and
right SMG were specified as reference regions, as shown in
figure 7(a). As can be seen, the left inferior frontal triangle
was strongly associated with the left superolateral temporal,
superolateral parietal, middle frontal and inferior frontal areas,
as well as with the right superolateral parietal and superior
temporal areas. The right RO was strongly associated with the
regions in the bilateral parietal and temporal lobes. When the
left inferior frontal triangle and the right RO were specified
as reference regions, most of the regions with the strongest
associations were laterally located in the left hemisphere and
right hemisphere, respectively.

The left MTG, as shown in figure 8(b), was the region
having the highest associations with the left inferior frontal
triangle. The remixed signals of their inter-regional associating
components, the corresponding scalp topography at peak
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latency, source distribution at peak latency estimated by MCB,
are shown in the three columns from left to right. The F-
statistic map in figure 8(b) indicates that the estimated source
activity of the remixed signals was left-lateralized on the
STG, MTG, MOG, SMG, RO, inferior frontal operculum,
inferior frontal triangle, paracentral lobe, cuneus and fusiform

gyrus.

4. Discussion

This work proposes a novel technique to facilitate IC
selection by estimating the associated cortical activation
topography for each IC, which provides spatial information
concerning neural activity, together with its temporal profile
and scalp topography. Moreover, this technique can further
ease IC selection by revealing the dominant components
corresponding to dominant regions, which contain major brain
activity. By specifying a reference region according to the task
of the experiment, this technique can automatically determine
the corresponding set of inter-regional associating components
as well as the significance level of the association between the
reference region and other regions on the cortical surface. Once
the functional components are chosen, they can be remixed
to reconstruct the neuromagnetic signals for further analysis
without the interference of artifactual components.

In the proposed inter-regional associating component
selection method, inter-regional association is the scalar
product of the two common component spectra for a pair
of regions. The value measures the similarity and strength
of the activity across components between two regions. The
weighted undirected network reflects a graphical visualization
of the inter-regional association matrix and may implicitly
represent a functional brain network. Compared to the methods
using temporal correlation (Gaetz et al 1998, Gevins et al
1985), our method focuses on the portion of brain activity
that contributes to the functional brain networks. The temporal
correlation of overall activity may suffer from interference
caused by activity outside the targeted networks. Moreover, the
temporal waveform of an IC is not necessarily a narrowband
signal. Compared to methods using spectral coherence as the
measure of connectivity (Gross et al 2001), the connectivity
constructed using our method would not be constrained within
a restricted frequency range. To sum up, the components for
a pair of regions selected using our method demonstrate a
strong association of network-related activity between these
two regions. The connections of the functional brain network
estimated using our method, as shown in figure 7(b), also
inherit the above characteristics.

The association between a pair of regions is measured
by the scalar product of the common component spectra
but not by the correlation coefficient of these spectra. To
calculate the correlation coefficient, each common component
spectrum needs to be normalized. In this case, a pair of regions
with few common components may have a higher correlation
coefficient value than a region pair with a large number
of common components. However, a larger number of common
components in two regions may be an indication that more
components could have connections between them, and thus
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Figure 8. Source estimation results of (a) the MEG data and (b) the signals remixed from the inter-regional associating components of left
IFG (triangular part) and left MTG. The four columns from left to right illustrate the MEG signals, scalp topographies at peak latency,
source distribution estimated at peak latency, and the pair of regions involved. The black boxes indicate the 20 ms time windows for

estimating brain activation sources using the MCB method.

their connectivity may be stronger in the functional brain
network. The scalar product of spectra applied to the proposed
associating component selection method measures not only
the similarity of the spectra but also the cumulative amplitude
of the potential connectivity.

In the gender discrimination study, the bilateral superior
temporal cortex (STC), bilateral inferior occipital gyrus (I0G),
and right MTG were five of the 25 dominant regions selected
using the proposed method (table 2). These five dominant
regions and the fusiform gyrus (FG) constitute the core system
for face perception (Haxby er al 2000, 2002). Moreover, the
STG, MTG, I0G, together with the frontal operculum and
inferior frontal gyrus (IFG), correspond to the perception
of facial expressions (Engell and Haxby 2007, Ishai 2008,
Said et al 2010). The right SMG was also selected as one
of the dominant regions. The somatosensory-related cortices
comprising the SMG, insula and somatosensory cortex are
crucial for recognizing emotions in faces, as reported in various
studies on lesions (Adolphs 2002, Adolphs et al 1996, 2000).
In this study, the proposed selection strategy facilitated the
identification of the highly activated regions that can be highly
related to visual face perception and early face recognition
processes.

The selection of functional components according to the
estimated association matrix may be able to facilitate focusing
source estimation on brain activity pertaining to specific
functions, such as face processing. Fusiform face area plays
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an essential role in face processing. In the intracranial EEG
study (Klopp et al 2000), the FG has high coherence with the
IFG, MTG, SMG, RO, hippocampus, gyrus rectus, temporal
pole, perirhinal cortex and posterior cingulate gyrus in the
alpha or gamma band. In the fMRI study (Fairhall and Ishai
2007), the FG had a causal influence on the IFG and amygdala
when the visual stimuli contained emotional faces. However,
using the source estimation method, such as the MCB method,
to analyze the original MEG measurements revealed very weak
activity in the FG, as shown by the source distributions in
figure 8(a). A probable reason for this is that MEG sensors
are less sensitive to activity originating from deep regions
than those from superficial regions. FG activity is very likely
covered by superimposed superficial brain activity and is thus
barely detectable in the original MEG measurements. In our
study, the diagonal of the association matrix demonstrated
that the left IFG (opercular and triangular parts) had a high
degree of activity, as shown in figure 7(c). The IFG plays
a crucial role in visual perception with unfamiliar faces, as
demonstrated in the intracranial EEG experiment performed
by Barbeau et al (2008). When the remixed signals of the
associating components of the left IFG (triangular part) and
left MTG were used for source estimation, the activity of the
left FG was revealed, as shown in figure 8(b).

In the extended dominant component selection method,
extended dominant components selected for two close regions
are generally similar. For example, a total number of 46
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dominant components (around 70%) are the same within the
total numbers of 68 and 64 extended dominant components
of the right SMG and right IPL, respectively. Furthermore,
the remixed signals as well as the source estimation results
of the extended dominant components in adjacent regions
were similar, as shown in figures 6(d) and (e). In addition,
the number of common components of adjacent regions is
generally large. As a result, between adjacent regions, the
inter-regional associations would be generally strong due
to the large number of common components. In our study,
when the reference region was the right SMG, the regions
with the four largest inter-regional associations were the four
regions adjoining the right SMG: the right AG, STC, IPL and
postcentral gyrus.

In the simulation studies, either with distant or close
dipoles, the estimation of cortical activation topography is
very accurate in terms of the localization error of peak
position. The hyperparameter A in (12) was set to be small
to achieve low fitting residuals, and thus the scalp projections
of cortical activation topographies were highly similar to the
scalp topographies of the corresponding ICs. Because there
was only one dipole source associated with each component,
the estimated cortical activation topography of each IC was
focally distributed, as illustrated in figure 3. In the gender
discrimination study, however, a single component may consist
of multiple brain activity sources. We used a larger value for
A in (12) to avoid the problem of over-fitting and thereby
smoothing the cortical distribution. Therefore, the scalp
projections of the estimated cortical activation topographies
may deviate from the scalp topographies of ICs in this case, as
shown in figure 6(b).

In the proposed framework, the localization accuracy
might be less affected by a high background noise level in
MEG/EEG data when the noise is highly independent of
source waveforms. At this time, ICA is possible to clearly
separate the brain sources from the noise and thus the scalp
topography of the IC would have lower interference than
the original MEG/EEG measurements. The proposed method
inherently stands a good chance of producing a more accurate
estimate of cortical activation topography. In the simulation
studies, when the standard deviation of the additional random
dipole in simulation 2a was enlarged from 0.1 to 1 nAm
(simulation 2b) or 10 nAm (simulation 2c), the LEs of the
estimated cortical activation topographies corresponding to
waveforms 1 and 2 still remained at zero, as shown in table 1.

In this study, the framework of the proposed method
for estimating cortical activation topography is based on the
l-norm with only one constraint, that is, the minimum norm
constraint on the cortical activation topography. However, the
framework can be extended to a general form based on the
l-norm. When p is large, the estimated cortical activation
topographies tend to be smooth. On the other hand, the /;-norm
is suitable for locating focal sources (Uutela ef al 1999). When
prior information or assumptions about sources (for example,
statistical maps estimated from fMRI data) are incorporated,
additional anatomical or spatial constraints can be included in
this framework to improve estimation accuracy. Moreover, the
spatial Laplacian operator can be imposed to obtain smooth
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cortical activation topographies (Pascualmarqui et al 1994).
Instead of the identity matrix used in this study, a weighting
matrix can be used as the Tikhonov matrix in (10) (Michel
et al 2004) to attenuate the tendency of estimating superficial
sources caused by the minimum norm constraint. For example,
one can use a depth-related weighting matrix based on the
norms of lead field vectors (Fuchs er al 1999). Nevertheless,
it should be noted that solving the linear model with multiple
constraints or based on /,-norm with p # 2 is more difficult
than solving the linear model proposed in this study.

The proposed cortical activation topography estimation
method can also be used to compute the tomographic activity
distribution throughout the entire brain volume, including the
subcortical areas. However, the large number of free variables
would cause instability in estimation as well as high cost
of memory space and computational time. Therefore, this
study estimated the cortical activation topography of source
distributions only on the cortical surface.

In the proposed component selection method, the parceled
activity of each AAL region is the average of a fixed number
of the highest power values in that region. Alternatively,
the parceled activity can be calculated as the average of a
fixed percentage of the highest power values in each region.
However, in this way, the parceled activity calculated for a
large region tends to be lower than that for a small region
when both types of regions have the same number of vertices
with high power values.

Instead of the maximum parceled activity, the dominant
region can be selected according to the average of parceled
activity of all ICs in each region. However, regions with more
highly activated components will be more likely to be chosen
than regions containing fewer components, even with higher
activity. Therefore, the proposed selection method determines
the dominant regions based on the ICs with the maximum
parceled activity. In this way, the region associated with only a
few highly activated components gets a better chance of being
considered as a dominant region.

In the proposed inter-regional associating component
selection method, the first step is to select highly activated
regions for each component so that the cumulative portion
of parceled activity for the selected regions reaches 30%. In
general, a component with a higher degree of activity (strong
component) tends to have more highly activated regions than a
component with a lower degree of activity (weak component).
If this step is neglected, the strong component will be involved
in the inter-regional association calculation for many more
pairs of regions. Because the association value is measured by
the scalar product of component spectra, the associations will
be strongly influenced by the association pattern within strong
components and the association pattern occurring within weak
components will be covered by the strong components.

Errors in cortical parcellation may result in inaccurate
estimation of parceled activity in the proposed component
selection method. Parcellation was performed according to
the anatomical labels of cortical regions in the MR images
of the subject spatially normalized to the template. Therefore,
registration error inevitably influences parcellation accuracy,
particularly for small regions such as the amygdala.
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In addition to FastICA, the proposed methods can
also use other kinds of temporal ICA algorithms to
decompose electromagnetic recordings, such as COM2
(Comon 1994), ICAR (Albera et al 2005), infomax (Bell
and Sejnowski 1995, Lee er al 1999), JADE (Cardoso
and Souloumiac 1993), RobustICA (Zarzoso and Comon
2010), and SOBI (Belouchrani et al 1997). In this study,
FastICA was used to decompose the measurements because
of its high computational efficiency. However, data analysts
should choose the appropriate ICA methods according to
the characteristics of the datasets (Delorme and Makeig 2004,
Kachenoura et al 2008, Makeig et al 2004) and our method
provides this flexibility.

5. Conclusions

This paper presents a framework capable of
selecting functional components according to the
estimated cortical activation topographies of ICs

decomposed by conventional ICA algorithms. Dominant
components and inter-regional associating components
are selected according to the parcellation of the estimated
cortical activation topographies. The associating component
selection method provides the inter-regional association and
its significance level for each pair of regions by measuring
the similarity of their component spectra and strength of
their cumulative regional activity. Simulation was used to
evaluate the accuracy of the proposed method, whereas the
investigation of gender discrimination further demonstrates
its effectiveness and practicability. In the analysis of the MEG
data acquired during the presentation of angry face image
stimuli, our method can provide the functional components
and the functional brain network.
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