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Abstract
This paper studies the magnetoelectricity (ME) of a spherical particulate composite made of
piezoelectric and piezomagnetic phases. The effects of crystallographic orientations and the
volume fraction of inclusion are investigated by a micromechanical approach. The solutions
are in good agreement with predictions by finite element analysis. Based on this
micromechanical method, we show that, for the CoFe2O4–LiNbO3 particulate composite, the
effective ME voltage coefficient can be enhanced at the optimal orientation as compared to
those at normal cut orientation. Further, we observe that the ME coupling is sensitive to the
piezoelectric constant e15. The optimal orientation of the ME voltage coefficient is near that of
the piezoelectric constant e15.

(Some figures may appear in colour only in the online journal)

1. Introduction

Multiferroic materials, which show simultaneously two or
more types of ferroelectric, ferromagnetic or ferroelastic
ordering, have been the focus of research due to their varieties
of microstructural phenomena and overall properties (Wang
et al 2003, Lottermoser et al 2004, Ramesh and Spaldin 2007,
Catalan and Scott 2009). This makes multiferroics particularly
appealing and promising for practical device applications,
ranging from four-state memory cells (Vopsaroiu et al 2007)
and large-area sensitive detection of magnetic fields (Fiebig
2005) to energy harvesting (Bayrashev et al 2004). However,
the magnetoelectric (ME) effect in single-phase materials
is rather weak or cannot be observed at room temperature
(Astrov 1960, Rado and Folen 1961). Composite materials
made of piezoelectric and magnetostrictive/piezomagnetic
phases, on the other hand, offer an alternative option for
improvement of the ME coupling, as explained in recent
reviews by Eerenstein et al (2006), Nan et al (2008) and
Bichurin et al (2010). Basically it was suggested that the ME
effect could be generated artificially as a product property,

magnetoelectric effect =
electric

mechanical
×

mechanical
magnetic

.

This states that an applied magnetic field creates a strain in the
piezomagnetic/magnetostrictive material which in turn creates
a strain in the piezoelectric material, resulting in an electric
polarization.

Motivated by the numerous practical applications and
the indirect coupling through strain, a variety of theoretical
studies have been proposed to predict the effective ME
moduli of the multiferroic composite. Predictions of the
macroscopic properties of ME composites have been obtained
by, for example, the Mori–Tanaka approach (Huang and
Kuo 1997, Li and Dunn 1998a), the Green’s function
and perturbation theory (Nan 1994), the homogenization
technique (Aboudi 2001, Camacho-Montes et al 2009), the
variational asymptotic method (Tang and Yu 2008, 2009)
or finite element analysis (Liu et al 2004, Lee et al 2005).
Further, exact relations among the moduli in an ME composite
with cylindrical geometry were derived by Benveniste (1995).
The local field distribution is also available for periodic arrays
of circular/elliptic fibrous ME composites (Kuo 2011, Kuo
and Pan 2011) and laminates (Srinivasan et al 2001, Bichurin
et al 2003).

Recently, experiments by Yang et al (2006) and Wang
et al (2008) showed that single crystals are attractive and
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the effective ME coefficient of a laminate is sensitive to
the crystallographic orientation of the material. In fact, the
effect of crystal anisotropy on the ME coupling has been
analyzed to certain extent. For example, Li and Dunn (1998b)
used Eshelby’s equivalent inclusion approach to study the
fields in and around inclusions/inhomogeneities in anisotropic
solids exhibiting full coupled field behavior. Later, Li (2000)
proposed a numerical algorithm to calculate the ME Eshelby
tensor for an ellipsoidal inclusion with arbitrary material
symmetry. Srinivas et al (2006) developed a mean field
Mori–Tanaka model to calculate the ME coupling of matrix-
based multiferroic composites, emphasizing the effects of
shape and orientation distribution of second-phase particles.
Further, theoretical frameworks were proposed to optimize
the effective ME response of a piezoelectric–magnetostrictive
bilayer (Kuo et al 2010), multilayers (Kim 2011) and an ME
fibrous composite (Kuo and Wang 2012). The basic concept of
these works is that the induced electric field can be increased
if the poling direction/magnetic axis and volume fraction of
the constituents are carefully chosen. Following this idea,
in this work we investigate the crystallographical orientation
dependent ME voltage coefficient of a multiferroic composite
with spherical particles.

This paper is organized as follows. First the basic
equations and transformation rules regarding the magneto-
electroelasticity are introduced in section 2. In section 3,
we define the effective properties of the composite. We
present a micromechanical model for estimating the effective
moduli of the multiferroic composite in section 3.1, while
the finite element method is proposed in section 3.2. Both
methodologies are illustrated in section 4 using composites
of cobalt ferrite (CoFe2O4) and lithium niobate (LiNbO3)
or barium titanate (BaTiO3). We show that the optimal
orientations can be non-trivial and that the enhancement is
many-fold over the normal orientations. Finally, we observe
that the ME coupling is sensitive to the piezoelectric constant
e15.

2. Formulation

Consider a spherical particulate composite made of piezo-
electric and piezomagnetic materials. The general constitutive
laws for the rth phase are described by the following equations
(Alshits et al 1992):

σ(r) = C(r)ε(r) − et(r)E(r) − qt(r)H(r),

D(r) = e(r)ε(r) + κ(r)E(r) + λt(r)H(r),

B(r) = q(r)ε(r) + λ(r)E(r) + µ(r)H(r),

(2.1)

where σ, D, B, ε, E and H are the stress, electric
displacement, magnetic flux, strain, electric field and
magnetic field respectively. C is the fourth-order tensor
of elastic moduli, e and q are the third-order tensors of
piezoelectric and piezomagnetic constants, κ, µ and λ are the
second-order tensors of the dielectric permittivity, magnetic
permeability and magnetoelectric coefficient. The superscript
t is used to denote the matrix transpose. The symmetry
conditions satisfied by the moduli are given by Nye (1985).

The strain ε, electric field E and magnetic field H are
respectively defined by the displacement u, electric potential
ϕ and magnetic potential ψ via

ε = 1
2 (∇u+ (∇u)t), E = −∇ϕ, H = −∇ψ.

(2.2)

On the other hand, when no free charge or body force
is assumed to exist, the stress, electric displacement
and magnetic intensity satisfy the following equilibrium
equations:

∇ ·σ = 0, ∇ · D = 0, ∇ · B = 0, (2.3)

along with the analogous interfacial conditions

[[σn]] = 0, [[D · n]] = 0, [[B · n]] = 0,

[[u]] = 0, [[ϕ]] = 0, [[ψ]] = 0,
(2.4)

where [[·]] denotes the jump in some quantity across the
interface, and n is the unit outward normal to the interface.

The constitutive laws (2.1), strain–displacement (2.2)
and equilibrium equations (2.3) can be rewritten in a more
compact form as follows (Alshits et al 1992):

6iJ = LiJMnZMn, ZMn = UM,n, 6iJ,i = 0,

(2.5)

where

6iJ =


σij, J = 1–3,

Di, J = 4,

Bi, J = 5,

ZMn =


εmn, M = 1–3,

−En, M = 4,

−Hn, M = 5,

UM =


um, M = 1–3,

ϕ, M = 4,

ψ, M = 5.

(2.6)

The magnetoelectroelastic moduli are expressed as

LiJMn =



Cijmn, J,M = 1–3,

eijn, M = 4, J = 1–3,

qijn, M = 5, J = 1–3,

eimn, J = 4,M = 1–3,

−κin, J = 4,M = 4,

−λin, J = 4,M = 5,

qimn, J = 5,M = 1–3,

−λin, J = 5,M = 4,

−µin, J = 5,M = 5,

(2.7)

where the upper case subscripts range from 1 to 5 and the
lower case subscripts range from 1 to 3. Repeated upper case
subscripts are summed from 1 to 5.

The equations above refer the material properties to the
composite frame x1x2x3. However, the material properties
are commonly described in the crystallographic frame x′1x′2x′3
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and we need to transform them to the composite frame. For
this purpose, the LiJMn can be obtained from their principal
values using tensor transformation rules for second-, third-
and fourth-order tensors,

κij = aimajnκ
′
mn, µij = aimajnµ

′
mn,

eijk = aimajnakoe′mno, qijk = aimajnakoq′mno,

Cijkl = aimajnakoalpC′mnop,

(2.8)

where the transformation matrix aij is given by Arfken and
Weber (2001) asa11 a12 a13

a21 a22 a23

a31 a32 a33

 =
(

cos γ cosβ cosα − sin γ sinα cos γ cosβ sinα + sin γ cosα − cos γ sinβ

− sin γ cosβ cosα − cos γ sinα − sin γ cosβ sinα + cos γ cosα sin γ sinβ

sinβ cosα sinβ sinα cosβ

)
.

(2.9)

Here (α, β, γ ) are the three Euler angles, and the
primed quantities (κ ′ij, µ

′
ij, e′ijk, q′ijk,C′ijkl) denote the material

properties referred to the crystallographic frame.

3. Effective moduli

In this study, we are interested in the macroscopic behavior of
the heterogeneous material. We first recall the basic definition
of the effective magnetoelectroelastic parameter L∗,

〈Σ〉 = L∗ 〈Z〉 , (3.1)

where 〈·〉 = 1/V
∫

V(·) dV denotes the volume average over the
representative volume element (unit cell in the case of periodic
composites). Specifically, an important figure of merit of
the magnetoelectric composite is the ME voltage coefficient,
α∗E,ij, which relates the overall electric field generated in the
composite with the applied magnetic field. It combines the
ME constant and dielectric coefficient, and is defined by

α∗E,ij = λ
∗
ij/κ
∗
ij , no summation. (3.2)

Note that the magnetoelectric coefficient, λ∗ij, is non-zero for
the ME composite even though this coefficient is zero in each
phase, i.e., λij = 0.

3.1. Micromechanical approach

In order to determine the effective magnetoelectroelastic
moduli defined in (3.1), we first turn to the micromechanical
model for this purpose. Due to the linearity, the generalized
strain in the inclusion for a two-phase composite is (Srinivas
et al 2006)

Z = A 〈Z〉 , (3.3)

where A is the generalized strain concentration tensor of
the inclusion, satisfying 〈A〉 = I. Here I is the fourth-order
identity tensor. Substituting equation (3.3) into (3.1), together
with the average generalized stress and strain theorems, the

effective moduli thus can be determined for a two-phase
composite as

L∗ = L(m) + f
(

L(i) − L(m)
)

A. (3.4)

Here f is the volume fraction of the inclusion, and the
superscripts m and i denote the matrix and inclusion,
respectively. The concentration tensor A can be determined
by a variety of models. Among them, the Mori–Tanaka
approach is very powerful. The essence of the Mori–Tanaka
approach is that the averaging field in the rth phase of
the composite is equivalent to the field in a single particle
embedded in an infinite medium (Srinivas et al 2006). Using
this approach, the concentration factor can be determined
as

A = Adil
[
(1− f ) I+ f Adil

]−1
, (3.5)

with the dilute concentration tensor Adil given by

Adil
=

[
I+ S(L(m))−1

(
L(i) − L(m)

)]−1
. (3.6)

Here S is the magnetoelectroelastic Eshelby tensor, which is
a function of the magnetoelectroelastic moduli of the matrix
and the shape and orientation of the inclusion, and is described
by Li and Dunn (1998b)

SMnAb =
1

8π
LiJAb

×



∫ 1

−1

∫ 2π

0
[GmJin(z)+ GnJim(z)] dθ dξ3,

M = 1, 2, 3,

2
∫ 1

−1

∫ 2π

0
G4Jin(z) dθ dξ3, M = 4,

2
∫ 1

−1

∫ 2π

0
G5Jin(z) dθ dξ3, M = 5.

(3.7)

In the above equation, zi = ξi/ai (no summation on
i), ai is the semi-axis of size and ξ1 and ξ2 can be

expressed in terms of ξ3 and θ by ξ1 =

√
1− ξ2

3 cos θ

and ξ2 =

√
1− ξ2

3 sin θ . In addition, GMJin = ziznK−1
MJ(z),

where K−1
MJ is the inverse of KJR = ziznLiJRn. Li and

Dunn (1998a) have obtained the closed-form expressions
of the magnetoelectroelastic Eshelby tensors for fibrous or
penny shaped particles in a transversely isotropic medium.
However, for piezoelectric and piezomagnetic materials with
spherical shapes or with arbitrary poling direction/magnetic
axes as discussed in this work, we should resort to the
Gauss quadrature numerical method to calculate SMnAb. The
integral (3.7) then is approximated by the weighted sum
of function values at certain integration points (Li 2000).

3.2. Finite element method

The analysis carried out in the previous subsection is for
an arbitrary system with a number of particles. Here, we

3
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Table 1. Material parameters of BaTiO3 (Pan 2001), CoFe2O4
(Pan 2001), LiNbO3 (Weis and Gaylord 1985).

Property CoFe2O4 LiNbO3 BaTiO3

C11 (GPa) 286 203 166
C12 (GPa) 173 53 77
C13 (GPa) 170.5 75 78
C33 (GPa) 269.5 245 162
C44 (GPa) 45.3 60 43
C66 (GPa) 56.5 75 44.5
C14 (GPa) 0 9 0
C56 (GPa) 0 9 0
κ11 (nC2 N−1 m−2) 0.08 0.39 11.2
κ33 (nC2 N−1 m−2) 0.093 0.26 12.6
µ11 (µN s2 C−2) 590 5 5
µ33 (µN s2 C−2) 157 10 10
e15 (C m−2) 0 3.7 11.6
e16 (C m−2) 0 −2.5 0
e21 (C m−2) 0 −2.5 0
e31 (C m−2) 0 0.2 −4.4
e33 (C m−2) 0 1.3 18.6
q15 (N A−1 m−1) 550 0 0
q31 (N A−1 m−1) 580.3 0 0
q33 (N A−1 m−1) 699.7 0 0

introduce the finite element analysis to study the case of
periodic arrays of spheres which is used for comparison with
the above micromechanical approach. We first choose an
appropriate representative volume element (RVE), a periodic
unit cell. There are seven crystal systems to pack spheres
in a regular array in space (see Kittel (2005), for instance).
Here we concentrate on the cubic system, specifically the
face-centered cubic lattice.

The basic equations are the same as described in
section 2. Further, due to the periodicity in the composite
structure, the displacement ui, the electric potential ϕ and
the magnetic potential ψ in any point of the unit cell can be
expressed in terms of those at an equivalent point in another
RVE such that the periodic boundary conditions

UM (d, x2, x3) = UM (−d, x2, x3)+
〈
UM,1

〉
2d,

UM (x1, d, x3) = UM (x1,−d, x3)+
〈
UM,2

〉
2d,

UM (x1, x2, d) = UM (x1, x2,−d)+
〈
UM,3

〉
2d

(3.8)

are satisfied for the cubic lattice. Here UM is as defined in
(2.6) and 2d is the length of the unit cell. The comma in the
subscript denotes the partial derivative.

To determine the effective properties of the above
periodic multiferroic composite, the strain εij, electric field
Ei and magnetic field states Hi are applied individually to
the unit cell. For example, by applying a constant uniaxial
electric field 〈ϕ,1〉 = 〈−E1〉 with all of the other averaged
terms zero, one can construct one of the independent boundary
value problems. By applying the twelve independent states to
the RVE, each effective coefficient can be determined by (3.1).
We perform the finite element analysis using the COMSOL
Multiphysics software.

Figure 1. The ME voltage coefficients of the CFO particles in an
LNO matrix in the normal direction versus the particle volume
fraction.

4. Numerical results and discussion

In order to have a better understanding of the theoretical
results above, we consider a variety of systems of interest.
For the piezoelectric (PE) material, we consider the lead-free
ferroelectric LiNbO3 (LNO) (3 m symmetry) as well as
the widely used BaTiO3 (BTO) ceramic (6 mm symmetry).
For the piezomagnetic (PM) material we consider CoFe2O4
(CFO) (6 mm symmetry) which has been studied by other
researchers. We consider face-centered cubic arrays in finite
element analysis. The independent material constants of these
constituents are given in table 1 in Voigt notation, where the
poling direction/magnetic axis is along the x3-direction.

4.1. Piezomagnetic particles in a piezoelectric matrix

We begin with the case of PM particles in a PE matrix.
We first consider lithium niobate as the PE phase. To check
the correctness of our model, we first perform a numerical
computation for CFO particles in an LNO matrix with
magnetic axis/poling direction along the x3-axis. Figure 1
shows the ME voltage coefficients for this composite. The
finite element analysis is estimated for discrete volume
fractions and stops around f =

√
2π/6 = 0.740 when

the inclusions touch for the face-centered cubic lattice.
The prediction of the Mori–Tanaka approach is in good
agreement with the result of the finite element analysis.
The maximum ME voltage coefficients α∗E,11 and α∗E,22 are

−2.1023 V cm−1 Oe−1 at a volume fraction of f = 0.92, while
the maximum α∗E,33 = 0.0619 V cm−1 Oe−1 at a volume
fraction of f = 0.88.

We now turn to investigation of the effect of the
crystallographic orientation angle of this composite. For each
orientation, we follow the procedure developed in the previous
section to obtain the ME voltage coefficient. The reference
volume fraction is chosen as f = 0.92 since this happens
be optimal at the normal cut. The poling direction/magnetic
axes of both constituents are arbitrary. Note that due to the

4
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(a)

(b)

Figure 2. The ME voltage coefficient α∗E,11 of the CFO particles in
an LNO matrix for various orientations of the CFO and LNO. The
subscripts i and m denote the inclusion and matrix, respectively.
Note that this coefficient is independent of the Euler angle αi.

spherical symmetry, we only focus on α∗E,11 in the following
discussion.

Figure 2 shows the ME voltage coefficient α∗E,11 with re-
spect to the crystallographic orientation of CFO and LNO. We
observe that the maximum of −2.6711 V cm−1 Oe−1 occurs
at Euler angles (αi, βi, γi) = (α, 0, γ ) and (αm, βm, γm) =

(30◦, 38◦, 90◦), where α and γ are arbitrary. Here the sub-
scripts i and m denote the inclusion and matrix, respectively.
The degeneracy of the optimal orientation (αi, βi, γi) reflects
the 6 mm symmetry. Further, if α = 0 and γ = 0, it is
equivalent to the magnetic axis along [001]. The optimized
value of −2.6711 V cm−1 Oe−1 is almost 1.27 times higher
than−2.1023 V cm−1 Oe−1, which is the value of the normal
cut where the c axis of the CFO and LNO is along the
x3-axis.

Figure 3(a) shows the effect of the volume fraction f on
the ME voltage coefficient. The PE phase is poled along the
optimized direction (αm, βm, γm) = (30◦, 38◦, 90◦) and the
PM phase is along one of the optimized magnetic axes, say
[001]. The maximum value is obtained at a volume fraction of
f = 0.92 for the ME voltage coefficient α∗E,11. Therefore, the

maximum value of α∗E,11 is −2.6711 V cm−1 Oe−1.

Figure 3. The optimal ME voltage coefficients of the CFO particles
in an LNO matrix for various particle volume fractions. (a)
Diagonal ME voltage coefficients α∗E,11, α∗E,22 and α∗E,33. (b)
Off-diagonal ME voltage coefficients α∗E,23 and α∗E,32.

Further, we observe that there are off-diagonal elements
α∗E,23 and α∗E,32 when the poling direction/magnetic axis
are in the optimal orientation. Figure 3(b) shows how these
coefficients depend on the volume fraction. Remarkably, the
maximum α∗E,23 is 19.6225 V cm−1 Oe−1, while that of α∗E,32

is −10.8744 V cm−1 Oe−1. Both of them occur when the PM
particles almost completely fill the matrix (f = 0.99).

Finally, we replace the PE material by barium
titanate (BaTiO3, BTO) which is uniaxial (i.e. 6 mm
symmetry). The maximum ME voltage coefficient α∗E,11 is

−1.9645 V cm−1 Oe−1 at a volume fraction of f = 0.98
(figure 4). Now, the optimal orientation is also on the normal
cut (i.e. c axis out of plane) (figure 5).

4.2. Piezoelectric particles in a piezomagnetic matrix

We now turn to the composite made of LNO particles in a
CFO matrix. Similarly, we begin with the case of the material
symmetry about the x3 -axis, i.e. along [001]. The maximum

5
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Figure 4. The ME voltage coefficients of the CFO particles in a
BTO matrix in the normal direction versus the particle volume
fraction.

Figure 5. The ME voltage coefficient α∗E,11 of the CFO particles in
a BTO matrix for various orientations of the CFO and BTO. The
optimized constant occurs for both phases poled along the same
direction. Note that this coefficient is independent of the Euler
angles αi and αm.

α∗E,11 and α∗E,22 are−8.0548 V cm−1 Oe−1 at f = 0.38, while

α∗E,33 is −2.0829 V cm−1 Oe−1 at f = 0.39 in their normal
orientation (figure 6).

Figure 6. The ME voltage coefficients of the LNO particles in a
CFO matrix in the normal direction versus the particle volume
fraction.

Figure 7. The ME voltage coefficient α∗E,11 of the LNO particles in
a CFO matrix for various orientations of the LNO and CFO. The
subscripts i and m denote the inclusion and matrix, respectively.
Note that this coefficient is independent of the Euler angle αm.

Figure 7 shows the ME voltage coefficient α∗E,11 as
a function of orientation for the case where the volume
fraction corresponds to the optimal value at the normal

6
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Figure 8. The optimal ME voltage coefficients of the LNO
particles in a CFO matrix for various particle volume fractions.
(a) Diagonal ME voltage coefficients α∗E,11, α∗E,22 and α∗E,33.
(b) Off-diagonal ME voltage coefficients α∗E,23 and α∗E,32.

cut. We find that the maximum coupling coefficient is
−9.5948 V cm−1 Oe−1 with (αi, βi, γi) = (30◦, 33◦, 90◦) and
(αm, βm, γm) = (α, 0, γ ), where α and γ are arbitrary. The
enhancement is 19%. If we choose α = 0 and γ = 0, the
optimized direction is equivalent to [001].

Figure 8(a) shows the effect of the particle volume
fraction on the ME voltage coefficient. For the optimized
volume fraction, the value is −9.5948 V cm−1 Oe−1 (f =
0.38). This is evaluated for its optimal orientation.

Similarly, we observe that there are off-diagonal elements
α∗E,23 and α∗E,32 when the poling direction/magnetic axis
are in the optimal orientation (αi, βi, γi) = (30◦, 33◦, 90◦)
and (αm, βm, γm) = (α, 0, γ ). Figure 8(b) shows how these
coefficients depend on the volume fraction. The maximum
α∗E,23 is 16.1127 V cm−1 Oe−1, while that of α∗E,32 is

13.1806 V cm−1 Oe−1. Both of them occur as the volume
fraction approaches zero (f = 0.01).

Figure 9. The ME voltage coefficients of the BTO particles in a
CFO matrix in the normal direction versus the fiber volume fraction.

Figure 10. The ME voltage coefficient α∗E,11 of the BTO particles
in a CFO matrix for various orientations of the BTO and CFO. The
optimized constant occurs for both phases poled along the same
direction. Note that this coefficient is independent of the Euler
angles αi and αm.

Finally, we replace the PE material by barium titanate
(BaTiO3, BTO). The maximum ME voltage coefficient α∗E,11

is −1.2652 V cm−1 Oe−1 at a volume fraction of f = 0.31
(figure 9), and the optimal orientation is in this principal
direction as well (figure 10).

7



Smart Mater. Struct. 21 (2012) 105038 H-Y Kuo and Y-M Kuo

Figure 11. The ME voltage coefficient α∗E,11 versus the PE’s
piezoelectric coefficients. (a) CFO[0 0 1]/LNO[0 0 1], (b) CFO[0 0
1]/BTO[0 0 1].

Note that although the discrepancy between the
Mori–Tanaka model and finite element method in figures 6
and 8(a), (b) and 9 is larger, the trend is similar for both
methods. One reason for the deviation is that the ME
voltage coefficient is an indirectly calculated value through
equation (3.2). The effective permittivity κ∗ij approaches zero
and hence is sensitive when calculating α∗E,ij. Further, the
ME coefficient λ∗ij of these cases has a larger difference
between the two approaches. This larger discrepancy was also
observed by Lee et al (2005) for three-phase ME fibrous
composites and by Kuo and Wang (2012) for ME fibrous
composites with the poling direction not at the normal cut. For
the sake of comparison with experiments and our theoretical
results, the available data (van den Boomgaard et al 1976,
Harshé et al 1993) for the ME voltage coefficient for the
BTO–CFO composite are also shown in figure 9.

4.3. Relations between the ME voltage coefficient and the
piezoelectric constant

From the above numerical results, we observe that when the
PE phase is LNO, we can enhance the ME effect by rotating

Figure 12. The piezoelectric constant e15 for various orientations
of the PE phase. (a) LNO, (b) BTO.

the poling direction. However, if the PE phase is BTO, the
optimal orientation is in its principal direction. Therefore, we
cannot improve the coupling through the crystal anisotropy
for the latter case. Motivated by this observation, we study
the relations between the ME voltage coefficient and the
piezoelectric constant in this subsection.

We first study how the ME voltage coefficient α∗E,11
depends on the piezoelectric coefficient of the PE phase
in figure 11. It is observed that among all the components
of the piezoelectric coefficients eij, the constant e15 has
a significant effect on the ME voltage coefficient for the
above four cases, CFO/LNO, CFO/BTO, LNO/CFO and
BTO/CFO. We take the two cases of CFO[0 0 1]/LNO[0 0
1] and CFO[0 0 1]/BTO[0 0 1] for example. If we assume
e15 = 0 and all the remaining piezoelectric coefficients are
equal to those of LNO or BTO, the ME voltage coefficient
α∗E,11 of CFO/LNO decreases from −2.1023 V cm−1 Oe−1

to 0.2252 V cm−1 Oe−1 (figure 11(a)), while that of
CFO/BTO decreases from −1.9645 V cm−1 Oe−1 to
0.6321 V cm−1 Oe−1 (figure 11(b)). Both are calculated at
their optimal volume fractions. Similar results can be found
for LNO/CFO and BTO/CFO. For the other piezoelectric
components, they do not influence ME coupling much.

Next we plot the dependence between the LNO or BTO’s
e15 and its Euler angles β and γ in figure 12. It is interesting
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that the contour has a similar trend with a dependence between
the ME voltage coefficient α∗E,11 and the PE phase’s Euler
angles. For instance, the optimal orientation of LNO’s e15 is
at (30◦, 34◦, 90◦) (figure 12(a)), which is close to the optimal
orientation of CFO/LNO, (30◦, 38◦, 90◦) (figure 2(b)), and
LNO/CFO, (30◦, 33◦, 90◦) (figure 7(a)). On the other hand,
the optimal orientation of BTO’s e15 is at its normal cut
(figure 12(b)), which exactly corresponds to the optimal ME
voltage constants of CFO/BTO (figure 5(b)) and BTO/CFO
(figure 10(a)). Therefore, the piezoelectric constant e15 plays
a major role in the determination of ME coupling for the ME
particulate composite.

5. Conclusions

We have presented a micromechanical model for predicting
the effective ME response of a spherical particulate composite
of piezoelectric and piezomagnetic phases. The results are
compared with finite element analysis. Both the magnitudes
and the trends between them are in good agreement.
For CoFe2O4–LiNbO3 and CoFe2O4–BaTiO3 particulate
composites, the effects of crystallographic orientations
and the volume fraction of the constituents on the
ME voltage coefficients are investigated. For the CFO
particles in an LNO matrix, the highest ME voltage
coefficient α∗E,11 in its optimized crystallographic orientation

is 2.6711 V cm−1 Oe−1, which is 1.27 times larger than that
of a particulate composite made with normal cut type CFO
and LNO single crystals. For the LNO particles in a CFO
matrix, the ME voltage coefficient α∗E,11 can be increased by
around 1.19 times compared to the normal cut. For BTO–CFO
particulate composites, however, the principal direction is
their optimal direction. Finally, we have found that the ME
voltage coefficient α∗E,11 is sensitive to the piezoelectric
constant e15, and the optimal orientation of the ME voltage
coefficient α∗E,11 of the ME particulate composite is near that
of the piezoelectric constant e15.

Although various composites consisting of piezoelectric
and magnetic oxide ceramics have been investigated
experimentally in the past decades, at least to the best of
the authors’ knowledge, there is no well-known experimental
result for optimum crystallographic orientations of ME
particulate composites. We believe that this framework will
stimulate new experimental works on ME coupling of
anisotropic heterogeneous media, and be beneficial as design
tools for engineering magnetoelectric composites.
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