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Abstract—A generalized EEG-based Neural Fuzzy system to
predict driver’s drowsiness was proposed in this study. Driver’s
drowsy state monitoring system has been implicated as a causal
factor for the safety driving issue, especially when the driver
fell asleep or distracted in driving. However, the difficulties in
developing such a system are lack of significant index for detecting
the driver’s drowsy state in real-time and the interference of the
complicated noise in a realistic and dynamic driving environment.
In our past studies, we found that the electroencephalogram
(EEG) power spectrum changes were highly correlated with the
driver’s behavior performance especially the occipital component.
Different from presented subject-dependent drowsy state monitor
systems, whose system performance may decrease rapidly when
different subject applies with the drowsiness detection model
constructed by others, in this study, we proposed a generalized
EEG-based Self-organizing Neural Fuzzy system to monitor and
predict the driver’s drowsy state with the occipital area. Two
drowsiness prediction models, subject-dependent and general-
ized cross-subject predictors, were investigated in this study for
system performance analysis. Correlation coefficients and root
mean square errors are showed as the experimental results and
interpreted the performances of the proposed system significantly
better than using other traditional Neural Networks ( -value
0.038). Besides, the proposed EEG-based Self-organizing Neural

Fuzzy system can be generalized and applied in the subjects’
independent sessions. This unique advantage can be widely used
in the real-life applications.

Index Terms—Drowsiness, drowsy state monitoring, electroen-
cephalogram (EEG), neural fuzzy system, prediction.
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I. INTRODUCTION

T HE development of a human drowsy state monitoring
system for drivers has become a major focus in the field

of safety driving and accident prevention because drivers’
fatigue has been implicated as a causal factor in many car
accidents. The 2009 Sleep Report of National Sleep Foundation
(NSF) in America poll shows that 1% or as many as 1.9 million
drivers have had a car crash or a near miss due to drowsiness
in the past year. Even more surprising, 54% of drivers (105
million) have driven while drowsy at least once in the past year,
and 28% (54 million) do so at least once per month [1]. Hence,
the development of countermeasures against a serious threat to
driver safety is an urgent necessity. Such an in-vehicle system
requires the capabilities of continuously monitoring the arousal
state of the driver, accurately predicting the potential impact
on the driving performance, and delivering a timely warning
before dropping asleep.
Many studies related to drowsy state monitoring and detec-

tion technologies have been developed during the last decade.
Kozak et al. [2] and Rimini-Doering et al. [3] proposed a
similar lane-departure warning system via tracking lane marks
by camera systems for the assisted drivers. A different ap-
proach is to monitor the activities of the drivers themselves
such as yawning, head positions, or eye blink duration by using
optical sensors or video cameras [4], [5]. However, image-
or video-based techniques are sensitive to external weather
conditions, e.g., rain or snow, and are easily influenced by the
driver’s posture inside the car. McGregor et al. [6] introduced
a technique to monitor the drivers’ physiological states by
directly acquiring and analyzing subject’s heart-rate variability
(HRV) and electrooculography (EOG) [7] signal, which can
overcome the system disadvantages mentioned above. Never-
theless, the minute-length scale of HRV and EOG analyses limit
the monitoring system to a low-temporal-resolution output.
Recently, numbers of studies in neural engineering are de-

voted to explore the informative index of scalp EEG activities
engaging with the particular cognitive task. With the high-tem-
poral-resolution of the sampling rate and the portability of the
hardware, the EEG has been shown as a promising approach
to effectively assess the physiological states. Review of the
existing studies related to the low performance, fatigue, or
drowsiness [8]–[26], the changes in EEG power spectrum
are regarded as the robust index for the change of the cogni-
tive state. Beatty et al. [8] demonstrated the phenomenon of
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increasing occipital theta (4–7 Hz) power when the radar op-
erators were less vigilant. Huang et al. [9] demonstrated tonic
EEG power increase in low-frequency bands in the occipital
cortex during high-error periods in a continuous visual tracking
task, and they also showed similar tonic EEG power increase
in low-frequency bands in the occipital cortex in simulated
driving experiments [10]. In addition, Lin et al. [11] have
shown the high correlation between alpha (8–11 Hz) and theta
(4–7 Hz) band power and driving error, which is defined as
the mean deviation from lane center in each moving window
in the virtual-reality (VR) environment. Besides, the research
[12] showed that changes in EEG spectra in the theta band and
alpha band reflect changes in the drowsy state and memory
performance. Other studies also showed that the EEG power
spectra in the theta [13] and/or alpha [14] bands are associated
with drowsiness, and EEG power spectrum has largely linearly
related to subject’s driving performance. According to these
fundamental findings, several algorithms and systems are
proposed [11], [15]–[22]. Our research [11], [15]–[19] have
demonstrated an automatic drowsy state prediction system
with EEG power spectra by constructing a linear regression
model. In [17], an independent component analysis-based
(ICA-based) Fuzzy Neural Networks was proposed based on
the independent sources instead of the scalp EEG activities.
Moreover, the comparison of three neural networks based
monitoring system was shown in [23]. The performance could
reach a low prediction error across subjects while using the
occipital component. Subasi et al. [20], Kiymik et al., [21]
and Vuckovic et al. [22] also successfully demonstrated an
automatic recognition algorithm to classify alertness level with
the combination of EEG power bands among 1–30 Hz.
However, most of the proposed models are a subject-de-

pendent system, i.e., the parameters of the system are not
a generalization solution for each individual. Consequently,
the performance might be unreliable. Hence, based on the
discoveries in the researches mentioned above, this study
proposes a generalized EEG-based Self-organizing Neural
Fuzzy Inference Network (SONFIN) system to monitor the
occipital theta- and alpha-band power and further predict the
driver’s reaction time (RT) to an unexpected event. Two kinds
of drowsiness prediction models, the subject-dependent and
generalized cross-subject ones, were investigated. The system
performances of SOFIN are compared with three benchmark
systems including the Multi-Layer Perceptron Neural Net-
work (MLPNN), the Radial Basis Function Neural Network
(RBFNN) and Support Vector Regression (SVR) with Radial
Basis kernel. Experimental results indicate that the proposed
system performs better than other systems in correlation anal-
ysis and prediction error especially for the cross-subject model.
It advantages the development of in-vehicle protocol to the
real-life applications for the publics.

II. EXPERIMENTAL SETUP

A. Virtual Reality (VR)-Based Dynamic Driving Simulator

The experiments in this study used a VR-based highway-
driving environment shown in Fig. 1. This simulator was de-
veloped in our previous studies [17], [18] to investigate the

Fig. 1. VR-based highway driving environment. (a) Driving simulator, (b) six
degree-of-freedom motion platform, and (c) illustration of driving task, adapted
from [9].

changes of the driver’s drowsy state during long-term monot-
onous driving at a fix speed of 100 km/hr. The experimental en-
vironment includes a 3-D surrounding view projected by seven
projectors, and a real car mounted on a six-degree of freedom
Stewart platform [22]–[25], as Fig. 1(a) and (b) shown. All
scenes move depending on the displacement of the car and the
subjects maneuvering of the wheel during the driving experi-
ments, making drivers feel like they are driving a real car on a
real road.

B. Event-Related Lane-Departure Experiment

This study implemented the event-related lane-departure par-
adigm [10] on the driving simulator. The simulator automati-
cally and randomly drifts the car away from the center of the
cruising lane as shown on Fig. 1(c). The subjects were instructed
to keep the car in the third lane using the steering wheel when-
ever the occurrence of a lane-departure event. During an hour-
long experiment, this unexciting and monotonous task easily
makes drivers fall asleep. Each lane-departure event (or “trial”)
captured the acquired EEG data, deviation distance, and time la-
tency for analysis. Three important time points (see Fig. 2(a)) in
this experiment were recorded to determine the driving trajec-
tory [10]: (1) deviation onset—the time at which the car starts to
drift away from the cruising lane, (2) response onset—the time
at which the subject starts responding to the car-drifting event,
and (3) response offset—the time at which the car returns to
the center of the third lane. The lane-departure event repeated
5–10 s after the “response offset of the preceding lane-departure
event.” In Figs. 2(b) and (c), the EEG data recorded 1-s before
the “deviation onset” was served as the baseline period of the
driver’s physiological state inside the brain, and the time du-
ration from “deviation onset” to “response onset” was defined
as the RT to represent the driver’s arousal state. When subjects
were alert, their RT to the random drift was short, resulting in
a small deviation from the center of the lane. When the sub-
jects were drowsy, the RT and resulting lane deviation was long.
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Fig. 2. (a) Event-related lane departure paradigm, (b) recoreded RT for all
trials, (c) 1-s epoch EEG data of the occipital activation before the deviation
onset (the baseline part during the cruising period), and (d) signal processing
procedures of the spectral feature extraction including 128-pts Hamming
window, 256-pts FFT, and zero-padding for each 1-s epoch. The output is a
paired data set including the spectral power and the corresponding RT.

Based on this relationship between EEG and RT, we attempt to
design a monitor system to process a 1-s EEG data continuously
and to predict the RT for real-world applications.

C. Subjects and EEG Data Recording

The six volunteer subjects (aged 20 to 40 years) participated
in the VR-based highway-driving experiments. All subjects in-
volved in this study had good driving skills and were trained
with the VR-based highway-driving for one day extra for fa-
miliarization before completing the testing section. Previous
study [26] showed that people often become drowsy after one
hour of continuous driving after lunch. These results indicate
that drowsiness is not necessarily caused by long-hours driving.
Hence, to maximize the chance of obtaining valuable data for
this study, all the experiments were conducted in the early after-
noon after lunch. On the first day, participants were instructed
regarding the general procedures of the driving task. In addi-
tion, the participants completed an informed consent form. They

Fig. 3. Flowchart of the proposed drowsiness predictor, and the system perfor-
mance is vertified by correlation coefficient analysis and RMSE of the recoreded
RT and predicted RT.

Fig. 4. The scalp topographies of the occipital component of six subjects.

began a 15- to 45-min practice session to learn how to keep
the car in the center of the third cruising lane using the steering
wheel. Participants were allowed to unlimited practice. On the
test day, the participants were wired with an EEG cap. The EEG
data acquisition process used 33 sintered Ag/AgCl EEG/EOG
electrodes with a unipolar reference at right earlobe and 2 ECG
channels with a bipolar connection placed on the chest. All the
EEG/EOG electrodes were placed according to a modified In-
ternational 10–20 system, and referred to the right ear lobe. Be-
fore data acquisition, the contact impedance between EEG elec-
trodes and cortex was calibrated at less than 5 . ANeuroScan
NuAmps Express system (Compumedics Ltd., VIC, Australia)
simultaneously recorded the EEG/EOG/ECG data, lane devia-
tions, and the RT. The EEG data was recorded with 16-bit quan-
tization at a sampling rate of 500 Hz. Subsequent EEG data
processing procedures employed 250 Hz down sampling to de-
crease the calculation load.

III. DATA ANALYSIS

In this study, the EEG data analysis and signal processing
were implemented by scripts running in MATLAB (R2007a)
and the EEGLAB Toolbox (ver. 5.03) developed by the Swartz
Center for Computational Neruoscience, the University of Cali-
fornia SanDiego (UCSD) [27]. The flowchart of data processing
procedures was illustrated in Fig. 3 that consists of Independent
Component Analysis (ICA), power spectra analysis, feature ex-
traction, drowsiness predictor model and correlation coefficient
analysis and root mean square error (RMSE) for system perfor-
mance estimation.

A. ICA

The blind source separation (BSS) problem [28], [29] de-
serves to be solved in the EEG signal which is usually con-
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Fig. 5. Prediction models. Structure of the (a) SVR, (b) MLPNN, (c) RBFNN and (d) five-layer SONFIN.

taminated by various artifacts including eye movement and in-
door power-line noise [30], [31]. One of the popular methods
was applied ICA to find the linear projections that maximizes
the mutual independences of estimated components. The gen-
eral representation of ICA model can be simply denoted as

, where presents the in-
dependent sources, is the back-projection weighting ma-
trix, and is the observed signals.
The purpose of ICA algorithm is to find out the back-projection
weighting matrix, , to have a maximum statistically inde-
pendency of the separated components, . Then, the occipital
component [8]–[13], , was selected by the weighting distri-
bution of the scalp topography, which is rendered by [32],
as the region of interest for power spectra analysis and feature
extraction. The scalp topographies shown on Fig. 4 are the oc-
cipital component selected from six subjects.

B. Power Spectra Analysis and Feature Extraction

As shown in Fig. 3, the selected IC, , related to occip-
ital component were taken for power spectra analysis. In the
first step of the spectral transformation, each 1-s length epoch
(250 data points) was divided into several 128-point subepochs
by Hanning windows. Then, we perform 256-point FFT with
zero-padding for each subepoch to obtain the power spectral
density. Finally, the average of spectral powers of subepochs
was used for the spectral representation of this 1-s length occip-
ital activation. Here, only the spectral powers of the -band (4–7
Hz) and -band (8–12 Hz), which is reported as the significant
index for the driving error [11], with the corresponding RT were
used as the dataset pair to establish the prediction model.

C. Performance Estimation

To estimate the performance among different predictors, the
Pearson Product-Moment Correlation Coefficient (PPMCC)
and Root-Mean-of-Square-Error (RMSE) were applied in this
study.
In this study, the PPMCC, denoted by , between the esti-

mated RTs and recorded RTs was obtained by

(1)

where is the number of trials. The and are the av-
erage of recorded RTs and the estimated RTs, respectively. If
is high, it can be claimed that two variables have a strong linear
relationship and the performance of the predictor is better [12],
[18], [19].
The RMSE was another popular and useful index for as-

sessing the performance of the predictor [33]. The RMSE could
be estimated as the following:

(2)

where a smaller RMSE presents a better prediction for the pro-
posed model.

IV. DROWSINESS PREDICTION MODELS

This paper adopts four models for drowsiness prediction: (1)
SVR, (2) MLPNN, (3) RBFNN, and (4) SONFIN. Here, all
of the proposed approaches predict an unseen RT while con-
fronting an unexpected event in terms of the spectral features of
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TABLE I
OBSERVING LANE-DEPARTURE EVENT NUMBER FOR EACH SUBJECT

TABLE II
CORRELATION COEFFICIENTS COMPARISONS FOR SUBJECT-DEPENDENT DROWSINESS PREDICTION

the occipital activation. The following section briefly describes
the structure of each predictor.

A. SVR

The support vector machine is a popular approach for solving
the problem of multidimensional function estimation and has
been applied to various fields such as classification and regres-
sion. When SVM is employed dedicatedly for solving the prob-
lems of function approximation and regression estimation, it
was denoted as the support vector regression (SVR). Fig. 5(a)
shows the graphical overview for all steps. The SVR is a com-
plicated and heavy-computation implementation of prediction
algorithm based on structuring risk minimization principles to
obtain a good generalization capability [34], [35]. For -SVR,
it is formulated as minimization of the (3) as the following:

(3)

In this study, a library of LIBSVM [36] was used for SVR
model construction with the radial basis function applied as its
kernel function.

B. MLPNN

The MLPNN is the most commonly used neural-network ar-
chitecture because of its capability to learn and generalize rel-
atively small training-set requirements, fast operation, and ease
of implementation [37], [38]. The MLPNN structure includes

one input layer, one output layer, and a couple of hidden layers,
as Fig. 5(b) shows.
For the -layer, -PE (processing element) output, can be

written as

(4)

where is the activation function, is theweight from -PE
to -PE and denotes the bias value for . The MLPNN
estimates the weights to minimize the cost function using a back
propagation-learning algorithm

(5)

The Gaussian activation function in (6) applies to all hidden
layers, while the output layer uses a linear activation function

(6)

This study employs a 5-layer MLPNN with [10 6 5] processing
elements (PEs) of hidden layers and 8-layer MLPNN with [10
6 5 4 3 2] PEs of hidden layers for subject-dependent and gen-
eralized cross-subject drowsiness prediction, respectively.

C. RBFNN

The radial basis function nerual network (RBFNN) is de-
signed for (nonlinear) function approximation problem with a
high-dimension space. The RBFNN provides a best fitting curve
of the training data, and its implementation is much simpler
than the perceptron approach while retaining the major property
of universal approximation of functions [39]. The RBFNN is a
3-layer feed forward neural network structure that consists of
an input layer, a single hidden layer with a nonlinear (Gaussian)
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TABLE III
RMSE COMPARISONS FOR SUBJECT-DEPENDENT DROWSINESS PREDICTION

Fig. 6. Subject-dependent drowsiness predictor ten-fold cross-validation anal-
ysis structure, where means the -th fold of the -th subject.

RBF activation function and a linear output layer, as Fig. 5(c)
shows.
The output can be written as

(7)

where is the linear combinational weight, is the center
of the Gaussian RBF and is its variance. The Orthogonal
Least-Squares (OLS) and gradient descent learning algorithms
[40]–[45][52] were employed to minimize the error cost func-
tion

(8)
The RBFNN employed 30–40 and 300–500 neurons for sub-

ject-dependent drowsiness prediction and generalized subject-
independent drowsiness prediction, respectively.

D. SONFIN

The SONFIN [43] combines the nodes with a finite “fan-in”
of connections represented by weight values from other nodes,
and a “fan-out” of connections to other nodes. The integration

function f combines information, activation, or evidence from
other nodes, and is denoted as

(9)

where are inputs to this node, and
are the associated linking weights. The

superscript in this equation indicates the layer number.
The output for each node is an activation function value of its
net input, , where represents the activation
function.
The functions of the nodes in each of the five layers of the

SONFIN structure are briefly described as follow.
Layer1: Transmit inputs to the next node directly, without
computation.

(10)

Layer2: Calculate the output of Layer 1 into a fuzzy set.

(11)

Layer3: Perform a fuzzy rule with an AND operation.

(12)
Layer4: Normalize the firing strength calculated in Layer
3.

(13)

Layer5: Integrate all the actions from Layer 5 to defuzzify
the results. Each node in this layer corresponds to one
output variable

(14)
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Fig. 7. Correlation coefficient boxplot comparison of subject’s drowsy state testing evaluation for subject-dependent drowsiness prediction experiment with SVR,
MLPNN, RBFNN and SONFIN. The boxes have three lines to present the values for lower quartile , median (red line), and upper quartile for column
data. Two addition lines at both ends of the whisker indicate the maximum and minimum value of a column data.

Fig. 8. Examples of testing data evaluation results of subject-depen-
dent drowsiness prediction experiment with SONFIN for (a) subject 2

, and (b) subject 6 . The red dashed line and bule
dashdot line present the golden testing data and estimated evaluatioin result
respectively.

The average rule numbers derived for subject-dependent
drowsiness prediction and generalized cross-subject drowsiness
prediction was less than 10.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this study, a total of six normal healthy subjects partici-
pated in the VR-based highway-driving experiments described
in Section II-A. The observing driving events of each subject
are consisted of 224 to 335 lane-departure events and the EEG
data length for subject 1 to 6 used for ICA decomposition are
44.7 min, 44.7 min, 30.4 min, 29.9 min, 31.5 min and 31.5 min.
The occipital components from six subjects were selected the
region of interest for establishing the prediction model. In total,
we collected about 1594 trial samples as shown in Table I. The
observing data are fed into FFT to transform into EEG power

Fig. 9. Generalized cross-subject drowsiness predictor analysis structure,
where means the -th subject.

spectra, which are served as the inputs to the SVR, MLPNN,
RBFNN and SOFIN predictors. This study applied two vali-
dation approaches to verify the performance and robustness of
these predictors. The subject-dependent drowsiness prediction
using ten-fold cross-validation was first utilized to evaluate the
average single-subject performance. In this evaluation, 90% of
the trials for each subject were used for training, while the re-
maining ten-percent of the trials were used for testing. The other
validation approach is to evaluate the generalized cross-sub-
ject drowsiness prediction performance which was developed
to be compared with the performance of the subject-dependent
models. In the cross-subject drowsiness prediction regime, the
EEG power spectra from randomly selected five subjects are
used for training, and the remaining subject was used for testing
samples.

A. Subject-Dependent Drowsiness Prediction

The performan This drowsiness-prediction procedure is de-
picted in Fig. 6. From statistical point of view, each subject com-
pleted a 10-round ten-fold cross-validation, in which 90% of
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Fig. 10. Correlation coefficient boxplot comparison of subject’s drowsy state testing evaluation for generalized cross-subject drowsiness prediction experiment
with SVR, MLPNN, RBFNN and SONFIN. The boxes have three lines to present the values for lower quartile , median (red line), and upper quartile
for column data. Two addition lines at both ends of the whisker indicate the maximum and minimum value of a column data.

the trials were randomly selected as the training set and the re-
minding 10% of the trials as testing set The averages of PPMCC
and RMSE between the actual and estimated RTs is shown on
Tables II and III, respectively. The PPMCC on the training and
testing sets obtained by SVR, MLPNN, RBFNN, and SONFIN
are 96.8%, 96.6%, 95.4%, 96.7% and 95.2%, 96.2%, 94.8%,
97.2%, respectively The RMSE of training and testing data ob-
tained by SVR, MLPNN, RBFNN, and SONFIN are 0.088 s,
0.089 s, 0.074 s, 0.071 s and 0.130 s, 0.084 s, 0.103 s, 0.076
s. Fig. 7 depicts the boxplot of the PPMCC of subject-depen-
dent drowsiness prediction with 10-fold cross-validation using
SVR, MLPNN, RBFNN and SONFIN. Take Subject 1 for ex-
ample, the median, upper and lower quartile, maximum and
minimum PPMCC for subject-dependent drowsy state predictor
with SONFIN are 96.0%, 95.6% and 97.2%, 98.0% and 90.2%,
respectively. Fig. 8 shows one sample result of RT estimations
on the testing data with constructed SONFIN model for (a) sub-
ject 2 , and (b) subject 6 . The
PPMCC of training data validation for subject 2 and subject 6
in the sample results depicted above are 96.3% and 98.5% re-
spectively.
ces of all four predictors are comparable in subject-depen-

dent drowsiness prediction, and SONFIN has a better PPMCC
and a smaller RMSE value on testing data in this experiment
( and ). However, subject-dependent
prediction system is not applicable in real world to be general-
ized for other users. Developer must record user’s EEG data in
advance and only the recorded user can achieve that high per-
formance . Therefore, a generalized cross-subject
drowsiness prediction system shall be constructed.

B. Generalized Cross-Subject Drowsiness Prediction

The procedure of generalized cross-subject drowsiness pre-
dictor analysis is depicted in Fig. 9. The EEG data from five

Fig. 11. Examples of testing data evaluation results of generalized cross-sub-
ject drowsiness prediction experimant with SONFIN for (a) subject 2

, and (b) subject 6 . The red dashed line and bule dashdot
line present the golden testing data and estimated evaluatioin result respectively.

subjects were used as the training data, and the remaining sub-
ject was reserved as the testing pattern. Tables IV and V shows
the averages of PPMCC and RMSE performance in comparison
with the actual and estimated RTs. The PPMCC on the training
and testing sets using obtained by SVR, MLPNN, RBFNN, and
SONFIN are 98.0%, 96.8%, 99.3%, 98.4% and 61.6%, 61.3%,
47.9%, 78.3%, respectively. The RMSE values for training and
testing evaluation with SVR, MLPNN, RBFNN, and SONFIN
are 0.06 s, 0.04 s, 0.01 s, 0.06 s and 0.37 s, 0.42 s, 1.01 s, 0.36 s,
respectively. Fig. 10 shows the boxplot of the PPMCC for cross-
subject drowsiness prediction using SVR, MLPNN, RBFNN,
and SONFIN. Take Subject 1 for example, the median, upper
and lower quartile, maximum and minimum PPMCC for cross-
subject drowsy state predictor with SONFIN are 77.0%, 82.9%
and 74.6%, 84.0% and 74.5%, respectively. Fig. 11 shows one
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TABLE IV
CORRELATION COEFFICIENTS COMPARISONS FOR GENERALIZED CROSS-SUBJECT DROWSINESS PREDICTION

sample result of RT estimations on the testing data with con-
structed SONFIN model for (a) subject 2 , and (b)
subject 6 . The correlation coefficients of training
data validation for subject 2 and subject 6 in the sample re-
sults depicted above are 99.3% and 98.6% respectively. Com-
pared to the subject-dependent drowsiness results, the averaged
PPMCC between the actual and estimated RTs on training data
with these four predictors maintained sound results. However,
the PPMCC obtained by the generalized cross-subject drowsi-
ness prediction showed a significant performance decline on
the test data ( -value 0.038). Only SONFIN still maintained
a better PPMCC between actual and estimated RTs at 78.3%
than other predictors. Furthermore, the SONFIN produced the
lowest RMSE (0.36 s) on the testing data in this experiment. Ac-
cording to safety distance between vehicles reported by CEDR
[44] and RSA [45], a rule thumb of 2-s braking distance under
dry ground conditions with additional reaction distance of 18.3
m at a 100 km/hr car speed is recommended. The RMSE of pro-
posed cross-subject drowsiness predictor with SONFIN is 0.36
s or 10 m at a 100 km/hr car speed in average, which does not
violate the recommended reaction distance requirement of 18.3
m. Therefore, the proposed cross-subject drowsy state predictor
with SONFIN showed a promising model for real-life applica-
tions.

C. Discussion

The reason for this drastic performance drop in generalized
cross-subject drowsiness prediction using SVR, MLPNN, and
RBFNN is that EEG data characteristics between distinct sub-
jects usually vary widely. A model constructed by training data
from individuals might not be generalized to others. Therefore,
it is difficult to predict subject’s behavior with others subjects’
EEG without more adaptive features like SONFIN can provide.
The SVR, MLPNN, and RBFNN provide a good system perfor-
mance for subject-dependent drowsiness prediction due to the
small power variation within the same subject. Fig. 12 demon-
strates the 14 RT estimation rules automatically generated by
generalized cross-subject drowsiness prediction with SONFIN.

Fig. 12. One example of rules generated by SONFIN with generalized cross-
subject drowsiness prediction.

The red dash line is the mean of these rules. Denote the rules
triggered over this mean line is Low Performance (LP) rules,
while the rules triggered below LP are denoted as High Per-
formance (HP) rules. Two test samples with ‘ ’ (LP state) and
‘.’ (HP state) sign were fed into this model, and the rules trig-
gered here are mostly by LP and HP, respectively. This is the
evidence engaging with the previous studies to use theta- and
alpha-band for indexing the arousal state, and furthermore the
derived fuzzy rules perform in the same manner with the trend
of spectral powers.

VI. CONCLUSION

The amplitude of an EEG signal fluctuates on the microvolt
level, making the EEG signal extremely noise-sensitive and
easily influenced by artifacts. In addition, the EEG features
between different subjects usually vary widely, making it
difficult to apply and generalize results from one individual to
another. The proposed EEG signal-processing procedures and
SONFIN method in this study overcome these two limitations.
Signal-processing methods based on ICA and time-frequency
analysis successfully excludes the EEG contaminations and
extracts the EEG features related to task performance. For each
experiment, 1-s baseline theta- and alpha-band power spectra
of the activations of the occipital component, along with RTs
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TABLE V
RMSE COMPARISONS FOR GENERALIZED CROSS-SUBJECT DROWSINESS PREDICTION

of trials, were used to build an RT prediction model. This study
tests four predictors, SVR, MLPNN, RBFNN, and SONFIN,
for drowsiness prediction. Experimental results of this study
showed that it is feasible to estimate subject’s reaction times
based on 1-s EEG power spectra before the onsets of lane-de-
parture events. A comparison between subject-dependent and
cross-subject prediction models showed that the subject’s RTs
could be better estimated by an individualized RT prediction
model. Furthermore, SONFIN outperformed SVR, MLPNN,
and RBFNN in terms of PPMCC and RMSE especially for the
cross-subject case. This demonstration might lead to a practical
system for noninvasive predicting and monitoring subject re-
sponses to critical events in real-world applications. However,
some notifications and limitations shall be highlighted here
before applying proposed system to a practical environment.
The proposed SONFIN system shall be applied only to the
environments that are not dangerous even if an operation error
occurs. It can be implemented just as a passive and assistive
alert system to warn the driver if he/she is becoming exces-
sively drowsy and could fall asleep while driving.
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