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Abstract Herein, we propose a modified version of the Wako-Saitô-Muñoz-Eaton

(WSME) model. The proposed model introduces an empirical temperature parameter for the

hypothetical structural units (i.e., foldons) in proteins to include site-dependent thermody-

namic behavior. The thermodynamics for both our proposed model and the original WSME

model were investigated. For a system with beta-hairpin topology, a mathematical treatment

(contact-pair treatment) to facilitate the calculation of its partition function was developed.

The results show that the proposed model provides better insight into the site-dependent

thermodynamic behavior of the system, compared with the original WSME model. From

this site-dependent point of view, the relationship between probe-dependent experimental

results and model’s thermodynamic predictions can be explained. The model allows for

suggesting a general principle to identify foldon behavior. We also find that the backbone

hydrogen bonds may play a role of structural constraints in modulating the cooperative

system. Thus, our study may contribute to the understanding of the fundamental principles

for the thermodynamics of protein folding.
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1 Introduction

Proteins are complex macromolecules that are synthesized as linear chains of amino acid

residues in cells. Specific primary sequences are encoded at the genetic level, where DNA

is transcribed into RNA; the RNA is then translated into amino acid sequences at the

ribosome, a process that generates polypeptide chains. This biological process is known

as “the central dogma of molecular biology”. Within the physiological environment, a

linear polypeptide chain, made of amino acid residues, can spontaneously fold into self-

organized, usually compact, globular and stable three-dimensional structures, referred to

as the native protein. The protein native state allows these polypeptide chains to perform

intricate biological functions. Anfinsen’s thermodynamic hypothesis states that the native

state is the most stable conformation among a large number of possible conformations

available for a given polypeptide chain [1]. Beginning with Anfinsen’s insights, many

experimental and theoretical researches have been devoted to protein folding and significant

advances have been made over the last few decades [2–8]. However, because of the size and

extreme complexity of the heterogeneous interactions between the surrounding solvent and

amino acid residues, the protein folding mechanism is still not fully understood.

The microscopic approaches to the protein folding problem on a quantum or mole-

cular mechanics level were especially fruitful [9]. However, microscopic simulations of

protein mechanics are still limited to timescales that are orders of magnitude shorter than

biologically relevant timescales. Therefore, simplified statistical mechanical models have

been used to investigate the thermodynamics and kinetics of protein folding [10–18].

These models can be viewed as generalizations of the classical Ising model [19], proved

to be useful in thermodynamic and kinetic studies of complex systems [15, 20–23]. The

tertiary structures of a protein’s native folds have repeating sequences of structural motifs,

α-helices, β-sheets, or hierarchically more complex foldons [5, 24]. At the same time,

experimental studies have revealed that proteins often show two-state behavior [25]. Hence,

Ising-like statistical models can form a theoretical framework to study protein folding. It

is worth noting that more complex multistate models, based on the generalization of the

classical Potts model [19, 26], can also be employed, though rare so far, to study protein

folding [27, 28]. Among the above-mentioned models, the Wako-Saitô-Muñoz-Eaton

(WSME) model has been applied to study the folding of many proteins [6, 7, 18, 29, 30, 33]

and RNA molecules [31, 32]. The WSME model is a topology-based model in which a

protein state is represented topologically by {x1, x2, · · · , xi, · · · xN} ; xi is a binary variable

and xi = 1 and xi = 0 indicate, respectively, the folded (native) or unfolded state at the

ith
local peptide bond. A two-state description for a single structural unit (e.g., a peptide

bond or a residue side-chain) in a protein is used to study the folding and unfolding of

a whole protein from a coarse-grained point of view. “Coarse-grained” herein refers to the

fact that the molecular degrees of freedom for each residue in the protein such as vibrational,

rotational and dihedral motions, among others, have been reduced such that only two states

need to be specified physically (e.g., defined by residue’s φ, ψ dihedral angles [6, 34]).

Note that the folded and unfolded states are used to describe the local physical status for

a given structural unit. This two-state description has been used and interpreted physically

for approximately a decade [6, 35]. The WSME model can be briefly described as follows:

H({x}) =
N−1∑

i=1

N∑

j=i+1

εij�ij

j∏

k=1

xk − T
N∑

i=1

�sixi. (1)
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The first term denotes the contact energy between peptide bonds i and j; this is primarily

attributed to the energetic (or enthalpic; PV work is ignored here) contribution (εij < 0)

in the Hamiltonian, an effective free energy function. This stabilization energy is gained

provided that a contact forms between peptide bonds i and j (�ij = 1 in this case; �ij = 0

otherwise) and all intervening peptide bonds, from bond i to j, are native. Note that

�ij denotes the element (i, j) for a contact matrix �, which embodies the geometric

properties for a protein [36] (e.g., α-helices, β-hairpins). The second term represents the

conformational entropy; this is primarily due to the entropic cost (�si < 0) by ordering

peptide bond i in the native state.

The essence of the WSME model resides in the zipper-like energy component, which was

first proposed by Wako and Saitô as an intra-island-interaction approximation [37, 38]. This

model was further considered by Muñoz and coworkers, who introduced single, double, and

triple sequence approximations [6, 7, 18, 39]. Since the work of Muñoz et al., many papers

on the WSME model have appeared in the literature, including those seeking an exact

solution for the equilibrium thermodynamics [14] and kinetics [40] of this model. While

some of the literature on the WSME model studies the exact solution and its applications, we

re-examine this model using experimental data. As a result, heuristic insights were obtained

that result in the modification of the WSME model. The presented modified WSME model

may be useful in providing experimental insights into the thermodynamics of protein

folding. The concepts underlying this modification are detailed in the next paragraph.

In protein folding, researchers often analyze the thermodynamics of proteins using two-

state models [41–43]. This approach assumes that, from a global structural point of view,

a protein can occupy only two states: folded and unfolded. If the experimental fit for a

result via the simple, two-state model is unsatisfactory, one may attribute the deviation to

an intermediate state. However, when protein folding-unfolding is examined using various

experimental techniques, such as absorption (Abs), circular dichroism (CD), fluorescence

(Flu) and differential scanning calorimetry (DSC), to extract thermodynamic properties of a

given protein (e.g., free energy difference and folding-transition temperature), these thermo-

dynamic analyses may yield different results from experiment to experiment, depending on

the protein studied. Some proteins, which have been examined as multi-state protein folders,

e.g., Cytochrome c, show probe-dependent /site-specific properties and multi-exponential

kinetics due to the existence of folding intermediates, while others are distinguished as

two-state folders, e.g., GB1, SH3, which are characterized by their probe-independent

thermodynamics as well as single-exponential kinetics. However, there has been a debate

on the classification for two-state and downhill folders, which concerns primarily the

existence of a folding barrier. Previously, the probe dependence issue has been analyzed

and discussed, primarily for detecting downhill protein folding [39, 44–47]. Although the

community used multi-probe spectroscopy and other techniques all together to elucidate

local and global structures of proteins, the relationship between experimentally measured

local structures and their corresponding thermodynamic properties was rarely discussed.

Herein, a brief discussion on this issue follows. Cytochrome c (Cyt c) is a small, single

domain, soluble protein, which has been widely studied using various experimental tech-

niques and its thermodynamic properties are highly dependent on the particular technique

used [48–55]. The free energy difference (�G = Gu − Gn) obtained from the literature

[48–55] is typically from 4 to 13 (kcal/mol) under physiological conditions, depending

on the experimental techniques. The enthalpy difference (�H = Hu − Hn), which can be

directly measured from DSC, is approximately 100 (kcal/mol). One may conclude, ac-

cording to the Gibbs free energy equation (�G = �H − T�S), that the entropy difference
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(�S = Su − Sn) is large enough to compensate for the gain in �H. However, upon careful

examination of the �S calculated via spectroscopic measurements (e.g., Abs, CD, Flu),

the value of �S is less than inferred from the DSC measurement (e.g., ∼0.3 kcal/mol K

from DSC, ∼0.2 kcal/mol K from Flu and CD, ∼0.15 kcal/mol K from Heme Abs). It

is this contradiction between the DSC-inferred and spectroscopy-inferred �S that drew

our attention to experimental probe dependence. Thus, we hypothesize that, for protein

folding, the derived �G and �H measured using spectrometry actually describe local

properties because a spectroscopic probe investigates only local properties. Thus, it is likely

that different spectroscopic methods probe different positions in a protein and thus may

generate different thermodynamic results. The �H measured by DSC is, however, a global

property and its derived �G and �S should be discussed and interpreted on a global scale.

Another example includes a β-hairpin. In their recent review, Scheraga and coworkers

discussed a disagreement on the determination of the folding-transition temperature for β-

hairpin-forming peptides [8]. They concluded that the disagreement arose because different

structure-related features were monitored using different methods. All the above examples

are heuristic observations that motivated us to include probe-dependent properties into a

revised WSME model. This may serve as a model framework to clarify the relationship

between multi-state, two-state, and downhill protein folders.

Five foldons in Cyt c were identified by Englander’s group using hydrogen exchange

(HX) experiments with site-specific monitoring of the exchange rates for the backbone

amide hydrogen [5, 56–58]. A foldon originally referred to a discrete, contiguous section

of a polypeptide chain consistent with the principle of minimum frustration [59]. This term

was later extended to include any nucleation-competent sub-motif in a protein [60]. Herein,

a foldon refers to a highly cooperative group that shows independent thermodynamic and

kinetic behaviors; thus, one may classify, according to its thermodynamic behavior, the

residues belonging to the same cooperative group as a macro-unit, referred to as a foldon

by Englander [5, 56–58]. The foldon behavior for Cyt c was also confirmed by Shiu et al.

using spectroscopy, such as UV-vis Abs, Flu, CD and small angle X-ray scattering (SAXS)

[48]. Since the discovery of the foldon structure, there have been some related studies in the

literature, including a zipper-like model involving non-additive coupling for Cyt c [16], a

molecular dynamics (MD) simulation for Cyt c foldon behavior [61] as well as a hierarchical

thermodynamic analysis of the global folding-unfolding transition and local cooperative

fluctuations [62]. All of these results suggested that protein folding may be characterized

as a hierarchy, that is, as a global and local folding scheme [48, 57]. To examine this

hierarchical point of view, both the probe-dependent studies and the corresponding site-

specific thermodynamic properties should be considered. The “protein foldon theory”,

though a decade old, is likely to close the gap between the probe-dependent and site-specific

thermodynamic disparities. In other words, the site-specific thermodynamic behavior shown

in the HX experiments should be related to the probe-dependent results [48, 63]. It should

be noted, however, that so far the statistical mechanical foundation of the foldon theory

has rarely been investigated. For this purpose, we propose to modify the original WSME

model so that it can provide more insights into the probe-dependent and site-specific

thermodynamic behaviors. This is equivalent to providing a statistical mechanical theory

for the foldon picture.

This article primarily concerns the difference in the site-specific thermodynamic be-

havior between the two models: the WSME model and the model proposed herein; the

latter accounts for site-dependent properties in terms of foldon units. The global folding

scheme refers to the free energy balance throughout the entire protein (�G = �H − T�S)
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[6, 7, 18, 39, 44–47]. Within the local folding scheme, this balance is described for effective

units (e.g., foldon units in the protein). The proposed model introduces an empirical

temperature parameter T1/2 for foldon units in the protein [see Appendix A for details], and

the resulting enthalpic factor is used to balance the entropic cost from ordering each foldon.

The balance for foldons gives rise to the local folding phenomenon. Thus, in principle, the

temperature parameter can be measured directly from experiments. This type of information

is missing from the original WSME model, which may render it difficult to properly

associate local energetics with probe-dependent experiments. One may argue that a local

foldon unit cannot fold or unfold without interacting with other units. Indeed, if one has to

map a foldon physically to a residue unit such as a peptide bond or a side chain, its local

folding seems to be unphysical. However, this physical-insight driven concept may not be

easily linked to the interpretation of these probe-dependent experimental results since the

relationship between the correlation (coupling) effect among residue units and experimental

signals is unclear. On top of this, the original WSME model does not take into account

the solvation effects, which so far have never been explicitly treated in the model. To

empirically include these complicated solvation effects, the novel coarse-grained concept,

foldon, is used to represent an effective unit, i.e., a structural unit, a motif, or even a whole

protein, which implicitly accounts for all solvation-related and other fundamental forces that

result in a folding-unfolding phenomenon. Our approach makes use of phenomenological

parameters; thus, protein folding can be discussed practically and with greater experimental

insights. Furthermore, the folding curve [see Fig. 1] for local folding shows nothing but

the relative folded fraction of a foldon, not a ‘real’ folded state of the whole protein. In

other words, all the coupling interactions such as electrostatic interactions, van der Waals

force and H-bonds are implicitly included in the thermodynamic parameters. Therefore,

these two approaches (the WSME model and our proposed model) should not contradict

each other on this point—whether a single unit can fold without interactions. Note that the

source of the entropic cost balancing discussed above differs from the WSME model [see

Section 2], which globally attributes the entropic cost balancing to the interaction contact

energy. Moreover, our model also retains the zipper-like contact energy from the original

WSME model. Before examining more complicated protein systems, we first investigate a

relatively simple system: β-hairpins, which have been extensively studied for their simple

structural topology [64].

Fig. 1 The schematic diagram

for the temperature-dependent

two-state folding-unfolding

process. The protein

folding-unfolding behavior is

associated with a sigmoidal

transition, in which the mid-point

temperature is characterized by

T1/2 (as commonly observed

from experiments). At T1/2, the

fractions of both the folded and

unfolded states are half of unity

(i.e., 1/2). Note that the condition

�S0
(
T1/2

)
> 0 is used for

this plot
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The primary topics to address are: 1. We hope to gain a better understanding of protein

local folding and the site-dependent thermodynamic behavior and, in particular, to compare

the predictions for the thermodynamic behaviors of the two models mentioned above.

The thermodynamic investigation is conducted by examining the thermodynamic folding

fraction generated from both models using a different number of effective foldon units [see

Section 2]. 2. For the comparison with experiments, the fluorescence and calorimetric data

for the GB1 C-terminal β-hairpin (41–56) and the FRET data for a GB1 variant, GB1-m3p

β-hairpin peptide, were numerically fit to both the WSME model and the model proposed

herein. The goal is to show that the modified model provides a better connection to probe-

dependent thermodynamic behaviors.

The paper is organized as follows. Section 2 introduces the basic concepts in protein

folding thermodynamics and their relation to our proposed model; in Section 3, we report

our numerical results; the implications of this study are discussed in Section 4; and finally,

the conclusion is given in Section 5.

2 The model

Conventional protein folding thermodynamics Before we discuss the details of the pro-

posed model, we briefly review the conventional treatment of the thermodynamics of

protein folding. In the study of protein folding thermodynamics, the two-state model

commonly used is characterized by a folded and unfolded state and can be written as a

simple two-state reaction:

N � U (2)

where N denotes the folded (or native) state and U, the unfolded state. It follows that

fu
fn

= 1 − fn
fn

= K, (3)

and that

fn = 1

1 + K
= 1

1 + e−�G0/RT , (4)

where K = exp
(−�G0/RT

)
; fn is the fraction of the folded state and K is the equilibrium

constant of the reaction. Note that the temperature dependence of �G0
can be expanded

as follows:

�G0 (T) = �G0
(
T1/2

) +
(

∂�G0

∂T

)

T1/2

(
T − T1/2

)
(5)

or

�G0 (T) = −�S0
(
T1/2

) (
T − T1/2

)
(6)

where �G0
(
T1/2

)
is defined as the free energy of transition. From (6) and (4), it follows

that

fn = 1

1 + e�S0(T1/2)(T−T1/2)/RT
. (7)

A schematic diagram for temperature-dependent protein folding and unfolding is shown

in Fig. 1.
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The conventional treatment discussed above provides a crucial implication in formu-

lating our proposed model, which includes a consideration of the local folding-unfolding

behavior for each foldon unit in a protein [see Appendix A for details]. Our model is detailed

in the following paragraph.

The modified WSME (M-WSME) model and contact-pair treatment of the β-hairpin The

modified WSME (M-WSME) model is formulated as follows:

H ({x}) =
N−1∑

m=1

N∑

n=m+1

εmn�mn

n∏

k=m

xk +
N∑

i=1

�si
(
T − T1/2

)
xi, (8)

where N (distinct from the native state) is the total number of foldon units (e.g., number

of effective units), not the number of residues (or peptide bonds) and is expected to be a

small number herein; εmn denotes the interaction between the mth
and the nth

foldon units (it

is assumed that this energy is enthalpic, just like an enthalpic constraint, e.g., backbone H-

bond formation/disruption and its accompanying effect such as burial/exposure of -NH and

-CO to the interior/solvent); �mn is the contact matrix that defines the protein’s geometrical

properties. For the second term, a characteristic temperature T1/2 is included for each foldon

unit; there is no physical equivalent of T1/2 in the WSME model.
1

Herein, T1/2 is physically

related to the mid-point temperature observed in two-state protein folding thermodynamics

and is considered the same for all foldon units. It is possible that T1/2 can be generalized

as Ti so that Ti can be different for different foldons to allow flexibility. In other words, we

generalize the two-state thermodynamic behavior for each foldon unit in a protein to provide

a link to probe-dependent experimental results. Furthermore, �si is defined with a sign

opposite (�si > 0) to that in the WSME model, indicating the entropic cost for maintaining

two-state folding-unfolding behavior for the foldon unit within a relevant temperature range

(not a conformational entropy as appeared in the WSME model). Note that the second term

in (8) was formulated based on (6) and that all foldon units involved should be characterized

with an individual local folding-unfolding property. It should be noted that, under a thermal

equilibrium condition for a given protein, neither of the two states (the folded and unfolded

states) exist exclusively; instead, a thermodynamic fraction of the folded (or unfolded) state

can be specified for foldon units in the protein. The fraction is then adopted to examine

the relative stability of the states on the free energy level from the local folding scheme.

The local folding-unfolding behavior of a foldon unit can be analogous to applying an

external field to an effective spin unit, generating a degeneracy factor (more microstates

are available) for the spin unit [65] [see (6) in the given reference]. Moreover, it should be

noted that the contact energy terms in the WSME model shown in (1) were primarily used to

account for hydrophobic interactions [6, 7, 18]. For the M-WSME model, the contact energy

terms account for the enthalpic constraints, primarily backbone H-bonds; thus, only where

the contact forms does a contribution from the binding energy appear. It is well-known

that β-hairpins form a considerable number of backbone H-bonds. Additional interactions,

such as hydrophobic and electrostatic salt-bridge interactions, among others, are implicitly

attributed to the second term in (8). In other words, �si in the M-WSME model is not only

a conformational entropy, as in the WSME model, but also a phenomenological parameter

1
Garcia-Mira et al. [39] adopted a concept of temperature of convergence in the WSME model, similar to the

free energy expansion used herein. However, our approach emphasizes the local folding behavior for foldon

units rather than native stretches.
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Fig. 2 A schematic

representation of the geometrical

shape for a β-hairpin with an odd

N. The β-hairpin is described

via (a) contact pair notation

(see text) and (b) the classified

regions

that implicitly accounts for all other interactions beyond H-bonding during folding. In this

simplified model, one can assess the effect of the enthalpic constraint (most likely backbone

H-bonds) on the system. This is the first step toward understanding the effect from one of

the fundamental interactions in protein folding using statistical mechanics. Note that when

T1/2 approaches zero, we obtain the original WSME model as a limiting case (with its sign

of �si opposite to that of the M-WSME model).

For β-hairpins, taking foldons as effective units, the following criteria describe the

contact matrix [36]:

�mn

{= 1, if m + n = N + 1

= 0, otherwise
. (9)

Given that N is odd,
2

a schematic representation of the system is illustrated in Fig. 2(a).

In Fig. 2(a), α is a new index used to symbolize the position where the foldon, located in

the middle of the turn, mediates the two parallel β-strands on the sides. Thus, the first

contact forms between the foldon pair α − 1 and α + 1 and the second contact forms

between the pair α − 2 and α + 2 and so forth. It is known that the condition N =
2α − 1 is satisfied. The M-WSME model for the β-hairpin (with an odd N) can be recast

as follows:

H =
α−1∑

j=1

[
εα− j,α+ jxα

j∏

k=1

xα−k · xα+k + (T − Tα− j)�sα− jxα− j + (T − Tα+ j)�sα+ jxα+ j

]

+ (T − Tα)�sαxα (10)

where subscript j denotes the index in which the jth
foldon contact pair is formed and the

summation accounts for corresponding configurations of the system with 1, 2, . . ., α − 1

sequential contact pairs formed, respectively. Note that in (10), �α− j,α+ j = 1 is used

according to (9) and the subscript of Tα− j, Tα+ j and Tα emphasizes a possible generaliza-

tion for a heterogeneous case; we assume that Tα− j = Tα+ j = Tα = T1/2 herein. For the

M-WSME model, (10) will be useful in calculating the partition function for the β-hairpin.

The treatment for (10) is referred to as the contact-pair treatment, which is detailed in the

following paragraph.

2
Where N is even, and the foldons in the turn region of the β-hairpin may form an energetically unfavorable

steric hindrance. Therefore, this case is not of interest (at least for the study herein).
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The partition function with the Hamiltonian from (10) is expressed as

Z =
(

∑

xα

Bxa
α

)(
∑

xα−1

∑

xα+1

Cxα xα−1xα+1

1
Bxα−1

α−1
Bxα+1

α+1

) (
∑

xα−2

∑

xα+2

Cxα xα−1xα+1xα−2xα+2

2
Bxα−2

α−2
Bxα+2

α+2

)
· · ·

· · ·
(

∑

x1

∑

xN

Cxα xα−1xα+1xα−2xα+2···x1xN
α−1

Bx1

1
BxN

N

)
(11)

where

Bi = (
e�si/k)T1/2/T−1

(12)

and

C j = e−εα− j,α+ j/kT. (13)

Note that in (11), the partition function, Z, includes many parentheses and each paren-

thesis includes factors that represent weights for the configurations for either a foldon

or a foldon pair. For instance, in the first parenthesis, the summation (1 + Bα) indi-

cates the sum of weights over the configurations 0 and 1, respectively, for the αth

foldon. Next, the second parenthesis accounts for the configurations of the foldon pair

(α − 1, α + 1) and its summation reads
(
1 + Bα−1 + Bα+1 + Cxα

1
Bα−1 Bα+1

)
; the third

parenthesis describes the configurations for the foldon pair (α − 2, α + 2), which reads(
1 + Bα−2 + Bα+2 + Cxα xα−1xα+1

2
Bα−2 Bα+2

)
and so forth. Thus, clearly the value from the

latter parenthesis depends on the configuration in the former parenthesis. For example, the

weights for the pair (α − 1, α + 1) depend on the configuration of the αth
foldon and the

weights for the pair (α − 2, α + 2) depend on the configuration of the αth
, (α − 1)

th
and

(α + 1)
th

foldons and so forth. This dependency is a key observation, which facilitates an

analytical formulation and calculation of the partition function [see Appendix B for details].

Therefore, the partition function can be expressed in terms of individual components, which

unambiguously describe their physical values. All of these components are summarized as

follows:

Z = Z0 + Z1 + Z2 + · · · + Zj + · · · + Zα−2 + Zα−1 (14)

Z0 =
α−1∏

k=1

(1 + Bα−k) (1 + Bα+k) + Bα (1 + Bα−1 + Bα+1) ·
α−1∏

k=2

(1 + Bα−k) (1 + Bα+k)

(15)

Z1 = C1 Bα Bα−1 Bα+1 (1 + Bα−2 + Bα+2) ·
α−1∏

k=3

(1 + Bα−k) (1 + Bα+k) (16)

Z2 = C1C2 Bα (Bα−1 Bα+1) (Bα−2 Bα+2) (1+ Bα−3 + Bα+3) ·
α−1∏

k=4

(1+ Bα−k) (1+ Bα+k) (17)

...

Zj =
( j∏

i=1

Ci Bα−i Bα+i

)
Bα

(
1 + Bα− j−1 + Bα+ j+1

) ·
α−1∏

k= j+2

(1 + Bα−k) (1 + Bα+k) (18)
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[for j= 1 to (α − 3)]
...

Zα−2 =
(

α−2∏

i=1

Ci Bα−i Bα+i

)
Bα (1 + B1 + BN) (19)

Zα−1 =
(

α−1∏

i=1

Ci Bα−i Bα+i

)
Bα (20)

where Z0, Z1, Z2, . . ., Zj, . . ., Zα−2 and Zα−1 denote the reduced partition functions that

have, respectively, 0, 1, 2, . . ., , . . . j, (α − 2) and (α − 1) sequential contact pairs.

Finally, we derive an averaged quantity 〈xi〉, which is a very important physical quantity

that describes the site-dependent properties of the folding-unfolding process for each foldon

unit. This quantity is expressed as

〈xi〉 = zi (1)

Z
= zi (1)

z (0) + zi (1)
= 1

1 + zi(0)

zi(1)

, (21)

where zi(0) and zi(1) denote the reduced partition function where the configuration for the

ith
foldon unit is xi = 0 and xi = 1, respectively. Note that

Z = zi (0) + zi (1) . (22)

It follows from (21) that N = 1

〈x〉 = 〈x1〉 = (1)

1 + B−1

1

. (23)

For N = 3, given that B1 = B2 = B3 = B (�si is the same for all the three units),

〈x〉 = 〈x1〉 = 〈x2〉 = 〈x3〉

= 1

1 + (1+B)2

B(1+B)+B2(1+C1 B)

. (24)

Equations (21) to (24) relate the thermal quantities for a system in relation to its partition

function. The expression for the case with higher N is somewhat complicated and is not

detailed herein.

Although the description of the system with a different number of foldon units seems

to be arbitrary, the number is important to present some special thermodynamic behaviors

pertaining to the β-hairpin topology of the system [see Fig. 5 for an example when N = 13].

In fact, the case N = 1 is equivalent to conventional two-state folding thermodynamics [see

Appendix C], from which more detailed thermodynamics for the β-hairpin can be further

investigated using a different N (i.e., N = 3, 5, . . .). Note that the maximum value for N
should not exceed the number of peptide bond units (or residues) in the system; otherwise,

the excess of foldon number may become meaningless. In addition, a more complicated

quantity, such as the correlation between units (e.g., 〈x1x2 . . .〉) can, accordingly, be treated

numerically.
3

3
The numerical calculations for this study were performed using MATLAB version 7.6.0 (The MathWorks,

Inc.).
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Note that in the formulation and calculation of the partition function as well as its related

thermodynamic quantities, the WSME model is equivalent to the M-WSME model where

Ai is substituted for Bi, that is,

Ai = e�si/k, for the WSME model, (25)

and

Bi = AT1/2/T−1

i for the M-WSME model. (26)

3 Results

Three-foldon description (N = 3) for the folding of the β-hairpin Since a standard

protocol (or experimental support) to identify the optimal number of effective foldon units

for the β-hairpin is still not available, it is of interest to investigate thermodynamics using

a different N. It turns out that the case N = 3 meets the minimal requirement for the foldon

description with a coupling constant (between unit 1 and 3). In addition, the minimal

case allows us to provide an analytical expression for the heat capacity equation [see

Appendix D]. Thus, it is of interest to begin with this particular case. To understand the

difference in thermodynamic behavior between the WSME and M-WSME models for the

β-hairpin, we investigate the thermodynamic behavior for both models. First, a homoge-

neous version for both models was investigated; we assumed that �s1 = �s2 = �s3 = �s.

This resulted in an identical thermodynamic quantity 〈xi〉; that is, 〈x1〉 = 〈x2〉 = 〈x3〉 = 〈x〉
for both the WSME and the M-WSME model. This average quantity 〈x〉 as a function of

temperature for the β-hairpin (N = 3) is presented in Fig. 3. As shown in Fig. 3, each panel,

given a specific value for the interaction
4 ε13 = 0, −1.1 or −3.0 (kcal/mol), contains a plot

of the curves with |�s| = 0.0032, 0.01 and 0.04 (kcal/mol K) [see Appendix C], indicating

that, respectively, small, middle, and large values are assumed in the system. Note that

ε13 accounts for the coupling interaction (enthalpic constraint) between unit 1 and 3 in the

study. The results indicated that where ε13 = 0, there is no sigmoidal curve for the WSME

model and no folding-unfolding transition [see Fig. 3(a)]; however, for the M-WSME

model, we obtained a sigmoidal curve and the smoothness (or sharpness) of the transition

was characterized by the selected �s [see Fig. 3(d)]. Note that no coupling interaction

between units means the absence of the enthalpic constraint, while other interactions such as

electrostatic, van der Waals and H-bonding (both backbone-water and backbone-backbone)

are implicitly included in the thermodynamic parameters, as has been explained in Sec. II.

In this case, the H-bonding can be accounted for through the entropic effect. For example,

it was found that the net effect of switching from backbone-water H-bond to backbone-

backbone H-bond is mainly entropic for the α-helix [17].

Given that ε13 �= 0, the impact of the enthalpic constraint (i.e., the backbone H-bond)

on both the WSME and M-WSME models was also examined. The results showed that

the mid-point of the sigmoidal curve (the temperature at which the fraction of the native

state is 1/2) for the WSME model was shifted significantly toward high temperatures,

4
The value ε13 = −1.1 (kcal/mol) was referenced to the paper published by Muñoz et al. [7].
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Fig. 3 Comparison of the thermodynamic native state fraction of each foldon unit for the WSME and M-

WSME models with the minimal requirement (N = 3) for the β-hairpin. In each panel, the blue solid, red
dash-dotted and green dashed lines denote, respectively, |�s| = 0.0032, 0.01, and 0.04 (kcal/mol K). The

WSME model: (a), (b) and (c) with ε13 = 0, −1.1 and −3.0 (kcal/mol), respectively. The M-WSME model:

(d), (e) and (f) with ε13 = 0, −1.1 and −3.0 (kcal/mol), respectively; T1/2 = 300 K was used. Note that the

homogeneous condition (see text) is applied to (a)–(f)

with decreasing |�s| and characterized by a distinct change in the transition sharpness.

However, for the M-WSME model with the same |�s| and ε13, we observed a sigmoidal

curve that behaved smoother than that from the WSME model. In addition, we observed

a temperature-crossing point, characterized by T1/2 in the M-WSME model. These results

demonstrated the significant differences resulting from our modifications for the M-WSME

model. Our analysis suggests that the folding behavior from the WSME model relies on

the interactions between units; therefore, the folding phenomenon requires a ‘trigger’ from

these interactions. However, for the M-WSME model, the folding behavior is attributed

to the free energy balance of each foldon unit; that is, the energetic and entropic factors

simultaneously govern the local folding behavior of foldons in the system.

Presumably, the coupling interactions between units in the M-WSME model play an

auxiliary role in forming the global native state and these interactions do not change the

sigmoidal behavior of the curve significantly. This statement is consistent with the result
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[see Appendix C], as the enthalpic constraints are not necessary for folding in the M-WSME

model. Interestingly, it can be argued that the existence of backbone H-bonds may not play

a deterministic role in the formation of native proteins (if backbone H-bonds contribute to

most of the enthalpic constraints). From our investigation, it may only have a minor effect

on the structural stabilization for β-hairpins.

Size effect As the total number of foldon units, N, increases (suggesting a longer β-

hairpin), it can be expected that the thermodynamic behavior (the fraction of the native

state) for each foldon varies with it. This dependency also reflects the special topology

for the β-hairpin. In a homogeneous condition, �s1 = �s2 = · · · �s and εα− j,α+ j = ε, all

of the foldons in the β-hairpin can be classified into different regions according to their

thermodynamic behavior. For example, the thermodynamic behavior at the (α − 1)th , αth

and (α + 1)th
foldons share the same folding-unfolding pattern, as does the pair (α − 2)th

and (α + 2)th
and so forth. This consistent thermodynamic behavior stems from the

symmetric shape and topology of the β-hairpin itself.

Thus, the β-hairpin can be divided into the following different regions: the h1 region

(the turn region, where the first enthalpic constraint forms), the h2 region (where the

second enthalpic constraint forms) and the . . ., hα − 1 region (where the (α − 1)th
enthalpic

constraint forms) [see Fig. 2(b)]. The fraction of the native state of each foldon with a

different N for both the WSME and M-WSME models are shown in Fig. 4 (only the

behavior at h1 and h2 is shown). Figure 4, in principle, shows that, given the following

parameters: |�s| = 0.04 (kcal/mol K), ε = −1.1 (kcal/mol) and T1/2 = 300 K, as suggested

in Appendix C, the temperature range for the sigmoidal transition in the WSME model

[Fig. 4(a) and (b), 5–20 K] is significantly different compared with the M-WSME model

[Fig. 4(c) and (d), 200–400 K], regardless of the h1 and h2 regions. Moreover, our results

also show that the curve shifts in the case of the WSME model [Fig. 4(a) and (b)] as the

number of units increases, whereas in the M-WSME model [Fig. 4(c) and (d)], the slope

of the curve becomes larger (near the lower temperature area, the higher temperature area

remains nearly intact) when the number of units increases. The convergent thermodynamic

behavior observed for the M-WSME model may provide insights into the special topology

of the β-hairpin, which deserves further study. Note that in Fig. 4(b) and (d), the case N = 3

is not specified because the h2 region does not exist in this case.

In addition to investigating the effect on increasing the total number of units, we also

examined thermodynamic behavior at different positions for a system with a fixed number

of foldon units (N = 13). The idea is to investigate a system with its number of foldons

equivalent to the number of peptide bonds existing in a short β-hairpin peptide as a limiting

case; a foldon in the system can be seen as a peptide bond. The result is shown in Fig. 5,

which shows that a convergent thermodynamic behavior, similar to that shown in Fig. 4,

was also observed. This result further illustrates the influence of the special topology of

the β-hairpin on its thermodynamic behavior and that experimental results with single

residue resolution, such as NMR experiments, can be explained using our model. Under

this assumption, we also suggest that the different thermodynamic behavior at different

positions in the low-temperature range is associated with the foldon behavior discovered by

Englander et al. [5, 56–58] using HX experiments. In other words, the free energy diversity

observed for Cyt c’s foldon behavior in the low-temperature range [58] may be associated

with the special topology of local folding in the protein. Herein, our result shows that the

M-WSME model can provide a statistical mechanics interpretation to a foldon’s divergent

behavior as a function of temperature.
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Fig. 4 The native state fraction of foldon unit in the β-hairpin at the h1 and h2 regions (see text). In each

plot, the cases with a different N are compared; the solid, dashed, dotted and dash-dotted lines denote N =
15, 11, 7, and 3, respectively. The WSME model: (a) the h1 region and (b) the h2 region. The M-WSME

model: (c) the h1 region and (d) the h2 region. The parameters used in the calculations are as follows:

|�s| = 0.04 (kcal/mol K), ε = −1.1 (kcal/mol) and T1/2 = 300 (K)

Comparison between the WSME and M-WSME models in the folding of a real β-hairpin
In the experimental studies of β-hairpin folding, the GB1 C-terminal β-hairpin (41–56) and

its derivatives have been widely investigated [6, 7, 66–73]. The formation of the β-hairpin

was thought to be associated with the formation of a hydrophobic cluster, which consists

in the following four residues: Trp43, Tyr45, Phe52, and Val54. Thus, the population of the

cluster (i.e., the correlation between these four residues) was used to approximate the

population of the β-hairpin at an equilibrium condition [6, 7, 74]. Note that whether

the experimental signals can reflect faithfully the correlation between the four residues in

the cluster is beyond our discussion.

Herein, we compared the WSME and M-WSME models in the folding of the hair-

pin peptide using the approximation mentioned above. We compared the site-dependent

thermodynamic properties from both models. The experimental data were from Muñoz

et al. [7] and were digitized for numerical fitting. In our treatment, the cluster population

was represented by 〈x3x5x11x13〉 because peptide bonds were used as our foldon units.
5

5
The method is somewhat different from that of Bruscolini et al. [74], who used 〈x3x5x12x14〉 as the

population of the hydrophobic cluster formation, as they adopted the residue as the index.
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Fig. 5 The native fraction of the β-hairpin (N = 13) at different positions for the M-WSME model. The

fractions from the different positions are color-coded sequentially; the red line (leftmost) denotes the h6

region, which includes the 1st and 13th foldon units; the green line denotes the h5 region, which includes the

2nd and 12th units; the blue line denotes the h4 region, which includes the 3rd and 11th units; the cyan line
denotes the h3 region, which includes the 4th and 10th units; the magenta line denotes the h2 region, which

includes the 5th and 9th units; and the black line (rightmost) includes the h1 region, which includes the 6th

and 8th units. Note that �s = 0.04 (kcal/mol K), ε = −1.1 (kcal/mol) and T1/2 = 300 K for all units (the

homogeneous condition)

A schematic diagram of the β-hairpin with the peptide bond as the index is shown in

Fig. 6(a) and the fitting results
6

are shown in Fig. 6(b) and (c). For the WSME model,

�s = −0.0036 kcal/mol K and ε = −2.47 kcal/mol were calculated and for the M-WSME

model, �s = 0.0139 kcal/mol K, T1/2 = 342.4 K and ε = −0.30 kcal/mol were obtained

[see Table 1]. Note that the value of T1/2 predicted for the M-WSME model is somewhat

unreasonable. This may be due to the use of the cluster assumption that we discussed

above; thus, the prediction for T1/2 is not of interest. To physically compare between both

models, the number shown in the parentheses in Table 1 denotes the absolute value of the

conformational entropy, which is originally defined in the WSME model while it is not in

the M-WSME model. However, an inferred value can be obtained according to the two-

state nature of the entire system, which assumes homogeneous �s for each unit. Thus,

the conformational entropy for the M-WSME model can be approximately obtained from

the ratio �s/N. The result shows that the conformational entropy obtained from the M-

WSME model is almost four times smaller than that from the WSME model, suggesting a

significant difference in the interpretation of the folding-unfolding sigmoidal transition. The

WSME model emphasizes the coupling effect between units (−2.47 for GB1), which serves

as an essential driving force in cooperative folding-unfolding; thus, its free energy balance

requires more entropic cost (0.0036 for GB1). However, the M-WSME model attributes the

6
The least-square fitting procedure was conducted using Matlab Curve Fitting Toolbox 1.2.1 (The

MathWorks, Inc.).
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Fig. 6 Comparison between the WSME and M-WSME models in the unfolding of the β-hairpins selected

(see below). (a) The schematic diagram of the β-hairpin with the peptide bond index. Note that the arrows
highlight the positions of side-chain residues. (b) The WSME model. (c) The M-WSME model. The dots are

digitized directly from Muñoz’s paper (GB1 peptide) [7], which were derived from a two-state analysis of

their fluorescence experiments and associated with the population of the hydrophobic cluster: Trp43, Tyr45,

Phe52 and Val54. The red line denotes the numerical fit results from the thermal quantity, which represents

the correlation among these corresponding peptide bond units. The black lines represent the site-dependent

native fractions for all sites, which are aligned in order, according to the direction of the arrow: region h7,

. . ., h2, h1 [see Fig. 2(b)]. Similarly, the fit results for the other peptide, the GB1-m3p, are given in (d) the

WSME model and (e) the M-WSME model. Note that the dots are normalized from FRET efficiency from

Du’s paper (GB1-m3p) [73] (see Table 1 for the parameters fit by both models)
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Table 1 The thermodynamic parameters fit for β-hairpin peptides using the WSME and M-WSME models

Model/Peptide T1/2 (K) �s (kcal/mol K) ε (kcal/mol)

WSME/GB1 – −0.0036 (0.0036) −2.47

M-WSME/GB1 342.4 0.0139 (0.0009) −0.30

WSME/GB1-m3p – −0.0055 (0.0055) −3.96

M-WSME/GB1-m3p 357.8 0.0256 (0.0017) −0.30

*Goodness of fit:

WSME/GB1: R-square = 0.9990

M-WSME/GB1: R-square = 0.9995

WSME/GB1-m3p: R-square = 0.9942

M-WSME/GB1-m3p: R-square = 0.9936

*Note that ε was fixed at bound −0.3 in the M-WSME/GB1-m3p fitting

cooperative transition to the two-state nature of the protein system on the foldon level, that

is, the coupling effect is minor (−0.3 for GB1) and so is the entropic cost (0.0009 for GB1).

Which of these two versions is more reasonable? Herein, we offer an alternative way to

examine this question. Figure 6(b) and (c) reproduce the site-dependent thermodynamic

properties of the WSME and M-WSME models, respectively, fit from the hydrophobic

cluster population. The WSME model shows a pattern of divergent behavior, suggesting

an entirely different behavior among all the sites; however, the M-WSME model shows a

more convergent behavior. Although both models demonstrate site dependence, the WSME

model does not show a complete unfolding curve at local sites (i.e., the curve levels off to

a non-zero constant). The lack of complete unfolding may be due to high dependence on

the coupling effect among all units, as can be understood by comparing the black lines

[Fig. 6(b)] with the complete unfolding curve (red line) [Fig. 6(b)] generated from the

population of the hydrophobic cluster. It can be seen that the complete unfolding behavior, to

some extent, requires exact correlation (a product,〈x3x5x11x13〉) among the four hydrophobic

residues (units); this can explain the feature of the high coupling effect of the WSME model.

We think these differences are interesting, as the formation of the β-hairpin is thought to

be cooperative and certain corresponding site-dependent folding-unfolding completion is

an expected observation. However, the results from the WSME model suggest that this

model may not have considered the site-dependent behavior that we examined. Therefore,

we believe that our proposed M-WSME model may provide an alternative way to study

protein folding, as this modified model can capture the two-state nature along with protein’s

site-dependent features. As to the coupling effect in the M-WSME model, it may play a role

of non-ideal behavior in thermodynamics [15] (with respect to the no-coupling, ideal case).

This statement is based on our effective treatment on the foldon level. Note that we did

not include parameters for the hydrophobic interactions in the WSME model fitting, as was

originally included in Muñoz’s approach [7]. These parameters were omitted in an attempt

to directly relate the WSME model to the M-WSME model, where no correspondence to the

hydrophobic interactions is specified [see Section 2]. However, by examining the �s value

(−0.0036) from our fitting results and comparing it with the value (−0.0032) fit by Muñoz

et al. [7], it seems that our fitting is reasonable to a certain extent, despite the omission of a

hydrophobic interaction description.

In addition to the GB1 C-terminal β-hairpin, a similar comparison was made for its

variant, the GB1-m3p β-hairpin. The GB1-m3 peptide was designed with a much better

thermal stability than the parent GB1 peptide [70]. Tucker et al. designed a new FRET pair

on the GB1-m3 peptide by replacing the single Phe residue with a non-natural residue,
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PheCN, where a cyano group is added at the para position of the Phe side chain [75].

The FRET pair is therefore formed between the PheCN (donor) and the Trp (acceptor). We

compared the site-dependent thermodynamic properties of GB1-m3p from both models via

the same protocol as the fit for the GB1 peptide. The experimental data (FRET efficiency)

were from Du et al. [73] and the data were further normalized to the folding population for

numerical fitting.
7

The fitting results are shown in Fig. 6(d), (e) and the parameters fit by

both models are also summarized in Table 1.

The goodness of all the fits is given below in Table 1. The high R-square value (∼0.99)

calculated from the fitting of both the WSME and M-WSME models suggest that both

models can successfully capture the feature of the folding-unfolding transition. Thus, one

may not be able to judge which of the two versions is more reliable merely from the

measures of fit quality.

Fitting a β-hairpin peptide to calorimetric data To provide a direct connection between

the experiments and models discussed, calorimetric data from the GB1 C-terminal hairpin

(41–56) were used to perform the least-square fit
8

to the models. Calorimetric data are from

a differential scanning calorimetry (DSC) [55] experiment, which provides an important

physical quantity: heat capacity as a function of temperature. The DSC data for the β-

hairpin peptide were digitized
9

from the paper published by Honda et al. [68]. Results from

the numerical fit to the heat capacity formulas, derived from the models [see Appendix D],

are shown in Fig. 7. A comparison of the parameters fit by both the WSME and

M-WSME models are listed in Table 2. Note that herein we assumed that the entire

peptide behaves effectively as the number of foldons that we used for the system (i.e.,

N = 1, 3, . . .). Although this is unrealistic compared with a real β-hairpin peptide, it serves

as a preliminary test to examine the difference in the thermodynamic interpretation between

the M-WSME and WSME models. Our results showed that, when N = 3, the values fit

for ε13 from WSME (−11.27) and M-WSME (−0.74) are different, suggesting an entirely

distinct thermodynamic interpretation for the peak transition in the DSC diagram. For the

WSME model, the heat of transition (total enthalpy absorbed during transition) is obviously

attributed to the interaction ε13, while ε13 is small for the M-WSME model and the heat

of transition is primarily due to the intrinsic enthalpic contribution from each foldon unit

[see Appendix D]. This result is consistent with the discussion in the previous paragraph,

where the enthalpic binding constraint may play only an auxiliary role in peptide folding. By

examining results fit using a different N (N = 1 and 3) in the M-WSME model, we found

that �s and �h decrease as N changes from 1 to 3. A change in these values is intuitive

given that the heat of transition is equally distributed among all of the foldon units available

in the system. Thus, �h for each unit should decrease upon increasing the number of units.
10

7
The normalization procedure was performed according to the equation, (Yu − Yobs)/(Yu − Yn), where

Yobs denotes the observed FRET efficiency; Yu (unfolded baseline) and Yn (folded baseline) are assumed to

be linearly dependent on temperature.

8
The least-square fitting procedure was conducted using MATLAB Curve Fitting Toolbox 1.2.1 (The

MathWorks, Inc.).

9
The software Engauge Digitizer 4.1 was used to extract data points from the published papers.

10
Whether the equivalence of heat and van’t Hoff enthalpy is valid is not discussed herein.
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Fig. 7 The numerical fit results from both the WSME and M-WSME models (N = 3) for the GB1 β-

hairpin peptide. (a) The dots denote the experimental data adapted from the paper published by Honda et al.

[68]. Only the first trace (heating) is shown in the figure (there were six DSC traces in total, including

three heating and three cooling experiments). The solid line denotes the numerical curve fit for the M-

WSME model; the dashed line denotes the fit for the WSME model. (b) A demonstration of all the heat

capacity components in the M-WSME model (N = 3) [see Appendix D]. The black dots and solid line are,

respectively, the experimental data and fit results, which are also shown in (a). The solid, dashed, dotted and

dashed-dotted blue lines represent, respectively, the first, second, third, and fourth components in the heat

capacity equation (see Table 2 for the parameters fit by both models)

We also found that the ε13 value had only a minor effect (−0.74) in magnitude compared

with �h (6.2). This result supports the proposition that the interaction between the foldon

units may not be a determining factor in forming global native topology (discussed in the

beginning of this section for the thermodynamic investigation of the N = 3 case).
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Table 2 The thermodynamic parameters fit for the calorimetric data from the GB1 β- hairpin peptide

(41–56) using the WSME and M-WSME models. Note that only the cases for N = 1 and N = 3 are

considered in this study

Model WSME (N = 1) WSME (N = 3) M-WSME (N = 1) M-WSME (N = 3)

�s (kcal/mol K) – −0.012 0.038 0.021

T1/2 (K) – – 304 300

�h (kcal/mol) – – 11.5 6.2

ε13 (kcal/mol) – −11.27 – −0.74

Note that �h = T1/2 × �s
Note that the first column is absent (marked by “–”), as there is no fit equivalent for the WSME model when

N = 1; this is also true for the other entries in the second and third columns

The fit parameters are the averaged values from the fitting results, in which experimental data were from six

DSC traces [68]

Each fit was performed by adding a linear temperature-dependent function a + b · T to the heat capacity

equations [see Appendix D] to adjust the baseline. a and b are constants (fit results not shown)

4 Discussion

Although the findings from this study are preliminary for the proposed M-WSME model,

with the β-hairpin topology, several thermodynamic implications can be drawn. From

the investigation of the β-hairpin, different regions can be identified according to their

thermodynamic behavior. This behavior is closely related to the symmetric property of the

β-hairpin. These findings suggest that the mean-field approach could be used to further

simplify the system and that the possibility of its application should be examined. The

mean-field theory has been widely used to study protein systems, including the relationship

between probe-dependent experiments and models [15, 16, 48]; the free energy landscape

and the dynamic behavior of the WSME model [36]; and the thermodynamic properties of

the Galzitskaya–Finkelstein (GF) model and its applications [74, 76]. It is worth noting

that, in some cases, the mean-field approach can relate thermodynamics and statistical

mechanical models, thereby adding insight into the relationship between experimentally

determined parameters and theoretical models [15]. It will be interesting to study the mean-

field version of the present study.

Moreover, the findings on the diversity of the thermodynamic behavior in different

regions of the β-hairpin concur with previous temperature-dependent HX studies [58] in

explaining the thermodynamic behavior of each residue within a foldon, although quanti-

tative comparison is not yet available. In addition, a MD simulation study on a β-hairpin

further demonstrated the diversity of the thermodynamic behavior among all the backbone

H-bond pairs, based on the calculation of their end-to-end distances (Tsai, M.Y., Yuan, J.M.,

Yamaki, M., Lin, S.H.: Molecular dynamics insight into thermodynamics of a beta-hairpin

peptide (2012, unpublished)). All these results suggest that β-hairpins may be described

thermodynamically at the foldon level. Further investigation is required to examine a

quantitative description of the local thermodynamic behavior and its related energetics.

Although the system (β-hairpin) in this study is small, the following recommendations

could serve as general principles to identify foldon behavior using Ising-like statistical

mechanical models. 1. Perform an investigation on the thermodynamic behavior of the

local units in the system. 2. Group the units that show similar thermodynamic behavior.

However, the model in its current form cannot predict which stretches belong to different

foldons. In this study, we observed that similar thermodynamic behavior could be identified

within the regions that maintain a specific geometrical symmetry (β-hairpin). The result



Thermodynamics of protein folding using a modified WSME model 563

could be used to build a thermodynamic pattern for the site-dependent behavior of a β-

hairpin, which we believe may provide an insight into the identification of a β-hairpin in

proteins. It is thought that the relatively simple model system can be further improved and

generalized to investigate more complex systems, such as a system with α/β motifs, thereby

providing greater insight into the thermodynamic interpretation of detailed foldon behavior.

The findings herein are a step in the direction of establishing a theoretical approach to

interpret the experimental results for probe-dependent protein folders. As potential multiple

pathways of protein folding can be understood by the energy landscape theory [77], it is

worth noting that some proteins, such as the lambda repressor and WW domain, can be

tuned by mutations to become different types of folders [78, 79] e.g., two-state, three-

state and downhill etc. Because some of the mutants have been experimentally confirmed

to demonstrate probe-dependent thermodynamics, it would be interesting to apply the M-

WSME model to study the thermodynamic properties of these mutants.

Finally, a cooperative effect from the formation of the β-hairpin should be discussed.

It was assumed that the source of the cooperativity of a β-hairpin primarily results from

the contact interaction between the peptide bond units (e.g., backbone H-bond interactions

and hydrophobic clustering) in the WSME model. However, this explicit treatment for the

hydrophobic effect may yield an imperfection in the description of the site-dependent local

properties. As shown in Fig. 6(b) and (d), the unfolding curves from the WSME model at

the local sites generate rather divergent and incomplete folding-unfolding behaviors, which

may not explain the cooperative behavior at the thermodynamic level. Our results from

the M-WSME model introduce an assumption that the cooperative effect may be attributed

to the two-state thermodynamic properties for each foldon unit (an enthalpic factor as the

compensation for the entropic cost at the foldon level), which demonstrates the validity

of the local folding behavior, verified from the probe-dependent thermodynamic behavior

measured from experiments. In other words, in the M-WSME model, the cooperative

phenomenon for the β-hairpin may be explained by the two-state nature of protein folding

on the thermodynamic level, a combination of complex interactions (e.g., hydrophobic

and salt-bridge interactions) implicitly considered in �si for each foldon as a result of

solvation effects. Using this approach, as the backbone H-bond interactions were defined

solely as enthalpic constraints, our results show that backbone H-bonds only have a

minor effect on the sigmoidal behavior (cooperative behavior) because of their small free

energy contribution. This result is consistent with Scheraga and his coworkers, who pointed

out that no clear evidence supports the presence of backbone H-bonds in non-turn regions

[8, 66, 67, 80–84]. In other words, the backbone H-bond interaction may not contribute

as much as expected in the cooperative formation of β-hairpins but may play only a

structural as well as energetic constraint in modulation of the cooperative system [see Fig.

6(c) and (e)]. Recently, Bruscolini et al. [30] extended the original model to the WSME-

S model, which includes solvation effects explicitly. The authors addressed the solvation

effects using an expression of the temperature-dependent parameters in the original WSME

model, which can be adjusted to the phenomenological behavior of the heat capacity

of any protein conformation. Interestingly, the model includes structural quantities (e.g.,

solvent accessible surface areas) in the novel expression for the heat capacity of any model

configuration. However, the M-WSME model does not address the solvation effects in terms

of structural information, which may play intricate roles during protein folding. Instead, the

solvation effects during folding-unfolding are implicitly treated in terms of the free energy

change up to the first order of temperature at local foldons (Taylor expansion with respect

to the transition temperature). The advantage is that this approach makes use of probe-
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dependent properties measured directly from various spectrometers. Thus, a general feature

about the protein’s local folding behavior can be easily obtained. Although the WSME-S

model uses detailed structural quantities and the novel heat capacity expression to account

for solvation effects, it may not be sufficient in providing quantitative folding-unfolding

features (e.g., shape of curves), from various kinds of probe-dependent spectroscopic

techniques, with sufficient accuracy. This is due to the fact that different residue-dependent

(or site-dependent) thermodynamic behaviors are not easily reproduced from a single fit

to the heat capacity, unless the model itself ensures the inclusion of sufficient structural-

related features for any given experimental probes. Another important point to address is

hydrophobic clustering. Many studies have examined the hydrophobic effect in the stability

of β-hairpins: experimental studies [66, 73, 85], MD simulation [86] and MC simulation

[87]. A proper explicit description of the hydrophobic clustering effect will help to clarify

its role in cooperativity and the M-WSME model may also benefit from such a description

to provide a local view of the hydrophobic effects in the β-hairpin.

5 Conclusions

In this study, we proposed a modified version of the Wako-Saitô-Muñoz-Eaton (WSME)

model, which includes a phenomenological parameter T1/2 in the description of protein

folding. The new parameters should provide a connection between the model and various

probe-dependent thermodynamic behaviors, which can elucidate site-specific thermody-

namic behavior of proteins. It is worth mentioning that the heterogeneous case of T1/2 for

different foldons may be a possible generalization used to treat more complicated systems.

In a system with β-hairpin topology, the thermodynamics of both the proposed model (the

M-WSME model) and the original WSME model were investigated and compared. Our

results showed that, without the coupling interactions (enthalpic constraints) between foldon

units, no complete folding-unfolding transition (1-to-0 sigmoidal curve) is observed for the

WSME model, while the M-WSME model showed complete folding-unfolding behavior.

This result suggests that the folding behavior from the WSME model strongly relies on the

interactions between units, such as backbone H-bonds or hydrophobic clustering, which are

explicitly treated as contact energy. However, the M-WSME model primarily attributes the

folding transition behavior to the intrinsic properties of the foldon units (i.e., effective units),

in which all interactions under solvated conditions are implicitly included in �si and the

coupling interactions between units are used to account for some enthalpic constraints such

as backbone H-bonds. Furthermore, our comparison suggests that the backbone H-bond

interactions may not play a determinate role in the stabilization of β-hairpins; instead, it may

be involved in modulating the cooperative formation of β-hairpins. Furthermore, our results

showed that a small homogeneous β-hairpin demonstrates diversity in thermodynamic be-

havior at different regions; in addition, convergent thermodynamic behavior was observed

at high temperature. These findings imply the possibility that mean-field approaches can

be applied to this system and that β-hairpins may be thermodynamically described at the

foldon level. Based on the results studied herein, we recommend an approach that defines

a foldon by examining the thermodynamic behavior of the local effective units in the

system, when they function as a unified group. To conclude, the thermodynamics of the

M-WSME model reported in this paper have demonstrated that this new model may be

practically implemented and has provided adequate results for the small β-hairpin examined

herein. These findings may highlight the need for research to investigate many of the
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issues raised above and, in particular, the physical interpretations of the proposed M-WSME

model.
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Appendix A: The phenomenological parameters

From (6), the free energy equation can be recast as

�G0 (T) = �H0
(
T1/2

) − T�S0
(
T1/2

)
, (27)

where �H0
(
T1/2

) = T1/2 · �S0
(
T1/2

)
. Both the enthalpy and entropy differences are

constant and are characterized by the transition mid-point T1/2. These two factors regulate

the linear temperature dependence of free energy, thereby facilitating the folding-unfolding

behavior. In the statistical mechanical models discussion, we replaced �S0
(
T1/2

)
and

�H0
(
T1/2

)
with �s and �h, respectively, for convenience; thus, �h can also be represented

as T1/2 · �s. It should be noted that in the WSME model, entropy is the only concern for

individual peptide bond units, as illustrated in (1). However, the M-WSME model uses the

free energy equation from (6) to account for the folding of foldons; therefore, for local

folding, the entropic cost is balanced by the newly added enthalpic factor for each foldon

unit in the system. This is referred to as the “local-folding scheme” in terms of foldon

units. In short, the enthalpy part and entropy part both have entropic interpretation and the

resulting free energy change is generalized for each effective foldon unit in the system.

Appendix B: The contact-pair treatment—supplement

From (11), we briefly enumerate the configurations for the system as follows.

Z = (1) ·
{(

∑

xα−1

∑

xα+1

Bxα−1

α−1
Bxα+1

α+1

)
· · · · · ·

(
∑

x1

∑

xN

Bx1

1
BxN

N

)}

+ (Bα) ·
{(

∑

xα−1

∑

xα+1

Cxα−1xα+1

1
Bxα−1

α−1
Bxα+1

α+1

)
· · ·

· · ·
(

∑

x1

∑

xN

Cxα−1xα+1xα−2xα+2···x1xN
α−1

Bx1

1
BxN

N

)}
. (28)

The above equation accounts for the αth
peptide bond configurations; that is, the first

term (see the first curly braces) denotes that xα = 0 and the remaining configurations

(xα−1, xα+1, · · · , x1, xN) are to be determined, while the second term (see the second curly

braces) denotes that xα = 1 and the remaining configurations are to be determined. Note that

the first bracket in the second curly braces includes the configuration weights for the first

contact pair (1 + Bα−1 + Bα+1 + C1 Bα−1 Bα+1), which denote, respectively, the weights for

the configurations (0, 0), (1, 0), (0, 1) and (1, 1). These weights are then divided into two
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groups: the group with the configuration (1, 1) and the other group with the remaining

configurations: (0, 0), (1, 0) and (0, 1). Multiplying them out, it follows that

Z = (1) ·
{(

∑

xα−1

∑

xα+1

Bxα−1

α−1
Bxα+1

α+1

)
· · · · · ·

(
∑

x1

∑

xN

Bx1

1
BxN

N

)}

+ (Bα) (1 + Bα−1 + Bα+1) ·
{(

∑

xα−2

∑

xα+2

Bxα−2

α−2
Bxα+2

α+2

)
· · · · · ·

(
∑

x1

∑

xN

Bx1

1
BxN

N

)}

+ BαC1 Bα−1 Bα+1

{(
∑

xα−2

∑

xα+2

Cxα−2xα+2

2
Bxα−2

α−2
Bxα+2

α+2

)
· · ·

· · ·
(

∑

x1

∑

xN

Cxα−2xα+2···x1xN
α−1

Bx1

1
BxN

N

)}
. (29)

where Z0 denotes the summation of the first and second terms, as shown in Section 2.

Similarly, the same expansion performed on the curly braces of the third term and

accounting for the configurations of the second contact pair (α − 2, α + 2), Z1 is identified

and so forth.

Appendix C: The single foldon unit case

The thermodynamic two-state model is one of the simplest thermodynamic models for

protein folding thermodynamics [see Fig. 1]. It correlates with statistical thermodynamics

via (7) and (23). In other words, the two-state model in protein thermodynamics corresponds

effectively to the single foldon unit case (N = 1) in the M-WSME model.

In the case where N = 1, the interaction terms are excluded and only �s is specified.

Three different values
11

(|�s| = 0.0032, 0.01 and 0.04 kcal/mol K) were used in our

investigations, which indicate, respectively, small, middle, and large values assumed for the

protein system. Note that �s < 0 is defined for the WSME model and �s > 0 for the M-

WSME model and the definition does not change the thermodynamic interpretation of 〈xi〉,
given that their absolute values are consistent. More specifically, �s = −0.0032, −0.01

and −0.04 (kcal/mol K), when the WSME model was investigated; while �s = 0.0032,

0.01 and 0.04 (kcal/mol K), when the M-WSME model was studied. The thermodynamic

fraction of the native state compared between the WSME and M-WSME models is given

in Fig. 8. Our results show that there is no sigmoidal curve for the WSME model in

any case that we studied; instead, a constant value for the fraction was observed and

determined using �s. However, the M-WSME model showed a sigmoidal curve and the

�s can be used to manipulate the sharpness (or smoothness) of the transition; the larger

the |�s| we use, the steeper the transition curve we obtain. The above results suggest that

the WSME model cannot be used to describe protein folding in the single unit case due to

the imbalance in the entropic cost for a single foldon unit. Therefore, the folding behavior

is not shown. However, if the free energy balance is considered for each single foldon unit

in the system (the local folding scheme), the folding behavior can be observed for a single

11
The value |�s| = 0.0032 (kcal/mol K) was referenced to the paper published by Muñoz et al. [7].
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(a) (b)

Fig. 8 Comparison of the thermodynamic native state fraction for the WSME (left) and M-WSME (right)
models (N = 1). In each panel, the blue, red, and green solid lines denote, respectively, |�s| = 0.0032, 0.01

and 0.04 (kcal/mol K). (a) The WSME model. (b) The M-WSME model with T1/2 = 300 K

foldon. Herein, we emphasize that the sigmoidal behavior from our treatment of a single

foldon does not describe the exact form for the folded state in either a local or global sense.

In other words, the sigmoid is a thermodynamic behavior, and it describes the folded

fraction, which fits the behavior observed from experiments, thus it can be used to trace

the equilibrium folding-unfolding process. Thus, this description does not contradict the

argument that a single foldon never folds without the aid of interactions with other foldon

units. It should be noted that, given |�s| = 0.04 (kcal/mol K), the M-WSME model showed

a complete sigmoidal curve within the temperature range for biological relevance. This

value could be used as a reference for other investigations in this paper.

Appendix D: The heat capacity equations

The heat capacity is a thermal-related physical quantity that can be obtained directly from

the statistical mechanical relation

C =
(

dE
dT

)

= kB

⎡

⎣ 1

Z
· d

dT

(
T2

dZ
dT

)
−

(
T · dZ

/
dT

Z

)2
⎤

⎦ (30)

where E is the internal energy of the system,
12 Z denotes the partition function of the

system and kB is the Boltzmann constant. Note that E = kBT2
(
d ln Z

/
dT

)
is used in (30).

According to the set of reduced partition functions derived and shown from (14) through

(20), the heat capacity equations for systems with a different N can, in principle, be derived.

12
We assume that the effect of volume change on the energy (H = E + PV), during protein folding-unfolding

is negligible; therefore, H ≈ E. Similarly, there is no need to distinguish Cp =
(

dH
dT

)

p
from Cv =

(
dE
dT

)

v
;

therefore, C = Cp = Cv .
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For N = 1 (the M-WSME model),

C = (�h)2

RT2
P1 (1 − P1) , (31)

where R is the gas constant (in kcal/mol K), �h = T1/2 · �s and C denotes the heat

capacity per mole. P1 denotes the probability of the folded state (x1 = 1); thus, the product

P1(1 − P1) indicates the transition probability from the folded (x1 = 1) to the unfolded state

(x1 = 0).

For N = 3 (the M-WSME model),

C = C1 + C2 + C3 + C4, (32)

where

C1 = (ε13 − �H)2

RT2
[P111 × (1 − P111)] , (33)

and �H = 3�h. The product P111 × (1 − P111) denotes the transition probability from the

state (x1, x2, x3) = (1, 1, 1) to (x1, x2, x3) = (0, 0, 0). Note that the other components, C2,

C3 and C4, which denote certain complicated transitions among all the configurations, are

not detailed here.

For N = 3 (the WSME model),

C = (ε13)
2

RT2
P111(1 − P111). (34)

Herein, we do not intend to show the detailed derivation of C2, C3 and C4 shown in (32).

Instead, we have focused on our preliminary derivation, which may be used to distinguish

the thermodynamic interpretations of the M-WSME model from those of the WSME model.

The detailed derivations are now in progress and will be published elsewhere.
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