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SUMMARY

Tumor suppressor gene silencing through cytosine
methylationcontributes tocancer formation.Whether
DNA demethylation enzymes counteract this onco-
genic effect is unknown. Here, we show that TET1,
a dioxygenase involved in cytosine demethylation, is
downregulated in prostate and breast cancer tissues.
TET1depletion facilitates cell invasion, tumor growth,
and cancer metastasis in prostate xenograft models
and correlates with poor survival rates in breast
cancer patients. Consistently, enforced expression
of TET1 reduces cell invasion and breast xenograft
tumor formation. Mechanistically, TET1 suppresses
cell invasion through its dioxygenase and DNA
binding activities. Furthermore, TET1 maintains the
expression of tissue inhibitors of metalloproteinase
(TIMP) family proteins 2 and 3 by inhibiting their
DNA methylation. Concurrent low expression of
TET1 and TIMP2 or TIMP3 correlates with advanced
node status in clinical samples. Together, these re-
sults illustrate a mechanism by which TET1 sup-
presses tumor development and invasion partly
through downregulation of critical gene methylation.

INTRODUCTION

Tumor growth and cancer formation is controlled by both genetic

and epigenetic events (Dawson and Kouzarides, 2012; You and
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Jones, 2012). Cancer epigenetic events include aberrant DNA

methylation such as localized CpG island hypermethylation

that leads to inactivation of specific tumor-suppressor genes

(Kulis and Esteller, 2010; Taberlay and Jones, 2011). While

DNA methyltransferases have been demonstrated to be onco-

genic by silencing tumor-suppressor genes via cytosine methyl-

ation, whether enzymes with opposing function protect cells

from becoming malignant remains elusive.

The ten eleven translocation (TET) family of proteins, TET1,

TET2, and TET3, were discovered on the basis of TET1 fusion to

themixed lineage leukemia gene in acutemyeloid leukemia (Lors-

bach et al., 2003; Ono et al., 2002). In 2009, TET1 was found to be

a dioxygenase that converts 5-methylcytosine (5mC) to 5-hydrox-

ymethylcytosine (5hmC) (Tahiliani et al., 2009). The same activity

of TET1 and its role in mouse embryonic stem cells was identified

by another independent group (Ito et al., 2010). Moreover, TET

proteins were demonstrated to be capable of further converting

5hmC to 5-formylcytosine and 5-carboxylcytosine, which can

be excised by thymine DNA glycosylase (He et al., 2011; Ito

et al., 2010; Ito et al., 2011; Tahiliani et al., 2009; Wu and Zhang,

2010). Functions of TET proteins are believed to rely on the

CXXC domain for DNA binding in TET1 and on the double-

stranded b helix domain for the 2-oxoglutarate- and Fe(II)-depen-

dent oxygenase activity (Wu and Zhang, 2011a; Xu et al., 2011b).

Importantly, not only are TET proteins potentially involved in the

active DNA demethylation process, they have also been shown

to prevent DNA methylation by physically binding to DNA (Wu

and Zhang, 2011a). Whether TET proteins play any role in cancer

formation remains an intriguingquestion. It has been revealed that

thecatalytic TET2mutationswithdecreased5hmCareassociated

with myeloid cancers (Ko et al., 2010). Loss of TET1 and 5hmC in
s
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Figure 1. TET1 Is Decreased in Human

Prostate Cancer Tissues and Implanted

Prostate Cancer Cells Metastasized from

Mouse Prostate to Lung

(A) IHC detection of TET1 protein in normal and

cancerous human prostate tissues. Shown in

right are three representative examples of normal

adjacent tissues and tumor sections. Original

magnification, 3200 (normal), 3400 (cancer).

(B) TET1 expression inversely correlates with

prostate cancer progression. Relative TET1mRNA

and protein levels in human prostate cancer 22Rv1

cells from mouse prostate at week 2 (2W) or 15

(15W), or from lung at week 15 (lung) after

implantation of 22Rv1 into the prostate of nude

mice are shown as mean ± SD from triplicate

experiments for RT-PCR. p values were measured

by Student’s t test. *p < 0.05; **p < 0.01.
solid tumors is recently reported as well (Haffner et al., 2011; Jin

et al., 2011; Kudo et al., 2012; Yang et al., 2012). However, to

date, the underlying mechanism and target genes involved in the

TET family of proteins’ function in cancer are unknown.

Cell invasion is one of the pivotal steps in both primary tumor

growth and metastasis initiation (Deryugina and Quigley, 2006;

Friedl and Alexander, 2011; Hojilla et al., 2008; Hua et al.,

2011). The matrix metalloproteinase (MMP) family of proteins

and their endogenous regulators, tissue inhibitors of metallopro-

teinases (TIMPs), are key players in the modulation of cell

invasion and epithelial-mesenchymal transition (Bourboulia and

Stetler-Stevenson, 2010; Kessenbrock et al., 2010; Murphy,

2011). For example, MMP2 and MMP9 stimulate cell invasion

by inducing basementmembranedamage and focal degradation

of type IV collagen and laminin (Zeng et al., 1999). Although it is

not completely understood, one of the major functions of TIMP

proteins is to inhibit the activities ofMMPsbybinding to the active

site of MMPs or sequestering the pro-MMP zymogens (Clark

et al., 2008; Murphy, 2011). Interestingly, the expression of

some of the TIMP genes is known to be regulated by DNAmeth-

ylation (Chernov et al., 2009).

In the current study, we demonstrate the suppressive role

of TET1 in both prostate and breast cancer invasion by using

cell-based assays, xenograft models, and human clinical tis-

sue samples. Furthermore, we show that the MMP inhibitors

TIMP2 and TIMP3 are pivotal TET1 downstream effectors

responsible for TET1-mediated invasion suppression.

RESULTS AND DISCUSSION

TET1 Expression Is Downregulated in Prostate Cancer
Given the established role of DNA methylation in cancer, we

investigated whether TET1, a protein recently shown to play
Cell Reports 2, 568–579, Se
a role in regulating DNA demethylation,

is involved in tumor development. In

an examination of TET1 expression in

different human tissues, we found that

TET1 mRNA level was enriched in pros-

tate, breast, and ovary tissues as com-
pared to lung, liver, and colon tissues (data not shown),

indicating that TET1 might have important functions in these

endocrine-related tissues. We then hypothesized that, if TET1

serves as a tumor suppressor, loss of TET1 might play a role in

the development of tumors derived from these TET1-rich

tissues. To test this hypothesis, we first investigated prostate

cancer. Immunohistochemical staining demonstrated that 33%

of 153 prostate cancer patients showed reduced TET1 expres-

sion in cancerous cells as compared to non-neoplastic glands,

while 67% had equal TET1 levels (Figure 1A). Note that the

samples were diagnosed as prostate cancer cells via H&E

staining and stained with rabbit IgG as a negative control (data

not shown). Furthermore, we found that TET1 downregulation

was likely involved in cancer metastasis, as demonstrated in

the following experiments. To evaluate the role of specific genes

in cancer metastasis, we previously developed a mouse system

(Tsai et al., 2009) in which highly invasive and puromycin-

resistant human prostate cancer 22Rv1 cells tagged with a

luciferase reporter gene were orthotopically implanted into the

prostate of nude mice. At different times after implantation, cells

from prostate or lung tissue were evaluated for the expression of

luciferase, followed by isolation with puromycin selection. In this

way, the metastasis of implanted cells can be analyzed. Using

this animal model, we demonstrated that both the mRNA and

protein levels of TET1 were dramatically reduced during the

metastasis of transplanted 22Rv1 cells from prostate to lung

(Figure 1B), indicating that TET1 expression is negatively associ-

ated with the progression of prostate cancer metastasis.

TET1 Suppresses Prostate Cancer Invasion and
Metastasis
To evaluate whether TET1 indeed plays a role in the metastasis

process, we generated a TET1 knockdown shRNA (designated
ptember 27, 2012 ª2012 The Authors 569



-40

0

40

80

1
0

2
0

3
0

4
0

5
0

SC

TET1-K
D

0

200

400

600

800

1000

Tu
m

or
 w

ei
gh

t (
m

g)

P=0.0001 

C

-3

0

3

6

9

R
el

at
iv

e 
ce

ll 
in

de
x

10   20  30  40  50
Time (hr)

B Invasion- LNCaP
SC
TET1-KD

0
5

10
15
20

10   20  30   40  50
Time (hr)

Invasion- 22Rv1
SC
TET1-KD

Time (hr)

SC
TET1-KD

Migration- 22Rv1

10   20  30  40  50

R
el

at
iv

e 
ce

ll 
in

de
x

-10

0

10

20

30

10   20   30  40  50
Time (hr)

Migration- LNCaP
SC
TET1-KD

*****
*** ***

W1       W3      W5      W7      W9      W11        

SC

TET1-KD

Color Bar
Min=7e+05
Max=1e+09

R
el

at
iv

e 
ce

ll 
in

de
x

R
el

at
iv

e 
ce

ll 
in

de
x

A

TET1-KD

SC 1000

400
200

SC     TET1-KDTu
m

or
 w

ei
gh

t (
m

g) ***
D

SC

TET1-KD

E

Color Bar
Min=5e+05
Max=5e+06

SC

TE
T1

-K
D

105

106

107

108

109

1010

L
u

c
if

e
ra

s
e

 a
c

ti
v

it
y

(p
h

o
to

n
s

/s
e

c
)

p=0.04 Liver
Liver

GI GI

Kidney
Kidney

Spleen

Spleen

Pancreas
Pancreas

Diaphragm
Diaphragm

SC TET1-KD
F

SC     TET1-KD

Lu
ci

fe
ra

se
ac

tiv
ity

 
lo

g 1
0

(p
ho

to
ns

/s
ec

)

Figure 2. TET1 Depletion Stimulates Prostate Cancer Invasion and Metastasis In Vitro and In Vivo

(A and B) TET1 knockdown promotes migration (A) and invasion (B) of prostate cancer cells LNCaP and 22Rv1. The migrating or invading cells with scramble

shRNA (SC) or TET1 shRNA (TET1-KD) were analyzed by Roche xCELLigence, and the data are shown as cell index curves with mean ± SD from triplicate

experiments.

(C–E) TET1 knockdown facilitates the tumorigenesis (C and D) and metastasis (E) of LNCaP-derived prostate cancer xenografts in nude mice.

(C) The luciferase images of the cancer cells in representative mice taken at the indicated time. A total of eight and seven mice were analyzed in the control and

TET1-KD groups, respectively.

(D) Left: photograph of dissected tumors from mice taken at week 12 after implantation. Right: relative tumor weight.

(E) Left: bioluminescence images of the host lungs from mice taken at week 12 after implantation. Right: microscopic examination with H&E staining for the

verification of in situ pulmonary metastasis (arrow).

(F) TET1 depletion facilitatesmetastasis of 22Rv1-derived prostate cancer xenografts in nudemice. Left: ex vivo image of the peritoneal organs isolated from each

group of mice at endpoint. Right: quantification of the bioluminescent image on the left.

p values were measured by repeated-measure ANOVA in (A) and (B) and by Student’s t test in (D) and (F). **p < 0.01; ***p < 0.001.
KD1, used throughout the study) and confirmed its efficiency in

depleting TET1 mRNA (Figure S1A) and protein (Figure S1B)

from cells. The TET1 shRNA also increased and decreased the

levels of 5mC and 5hmC, respectively (Figure S1C). Consistent

with a potential role of TET1 in suppressing cancer metastasis,

knocking down TET1 facilitated migration and invasion of both
570 Cell Reports 2, 568–579, September 27, 2012 ª2012 The Author
low (LNCaP) and high (22Rv1) invasive prostate cancer cells in

an in vitro cell-based assay (Figures 2A, 2B and S2). Interest-

ingly, we noted that TET1 depletion slightly increased prostate

cancer cell proliferation (Figure S3). Nevertheless, the fold

increase of migration was more than the fold increase of prolifer-

ation in both LNCaP and 22Rv1 cells depleted of TET1 (compare
s
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Figure 3. TET1 Inhibits Breast Cancer Cell Invasion and Tumor Formation

(A) TET1 knockdown stimulates cell invasion. The invading M10 (left) or MDA-MB-231 (right) cells with or without TET1 shRNA were analyzed by Roche

xCELLigence, and the data are shown as cell index curves with mean ± SD from triplicate experiments.

(B) TET1 overexpression represses cell invasion. The invading M10 or MDA-MB-231 cells with or without expression of Flag-tagged TET1 were analyzed for

invasion ability as in (A).

(C) TET1 suppression of cell invasion requires intact catalytic and CXXC domains. MDA-MB-231 cells expressing TET1 shRNA were transfected with vector

alone, WT TET1 (TET1), catalytic mutant (CD mut), or CXXC-deleted mutant (dCXXC), followed by cell invasion analysis at 24 hr by Roche xCELLigence.

(D) Inducible expression of TET1 inhibits breast xenograft tumor formation. Left: photograph of mammary tumors from 4T1-vector and 4T1-TET1 cells, dissected

at week 3 after implantation. Right: quantification of the bioluminescent image on the left.

Data from (A) to (C) are shown asmean ±SD. p values weremeasured by repeated-measure ANOVA in (A) and (B), and by Student’s t test in (C) and (D). **p < 0.01;

***p < 0.001.
Figure 2A with Figure S3). Therefore, it is unlikely that the

observed increase in migration and invasion of TET1-deficient

cells was simply due to the enhanced cell proliferation.

To substantiate the in vitro observations in vivo, we analyzed

whether depletion of TET1 promotes prostate cancer cell metas-

tasis in mice. To this end, control and TET1-depleted prostate

cancer cells tagged with luciferase were injected into the pros-

tate of nude mice, followed by analysis of proliferation and

metastasis of the injected cells at week 12 after implantation.

The results demonstrated that TET1-depleted LNCaP (Figures

2C and 2D) or 22Rv1 cells (Figures S4A and S4B) formed larger

tumors. Xenograft experiments further demonstrated that elimi-

nation of TET1 facilitated metastasis of transplanted 22Rv1

(Figure S4C) or LNCaP (Figures 2E, S4D, and S4E) cells from

prostate to lung in vivo, as evidenced by the metastasis micro-

scopically observed in lung tissue. Increased metastasis of

TET1-depleted 22Rv1 cells to organs other than the lung was

also observed (Figure 2F). Collectively, the results above indicate

that TET1 most likely inhibits prostate cancer metastasis and the

underlyingmechanismmay involve TET1-mediated downregula-

tion of cell migration and invasion.
Cel
TET1 Inhibits Breast Cancer Cell Invasion and Xenograft
Tumor Growth
Subsequently, we asked whether the role of TET1 in suppressing

prostate cancer metastasis can be extended to breast cancer.

To this end, we eliminated TET1 from normal (M10) and

cancerous (MDA-MB-231) breast cells (Figures S1A and S1C)

and analyzed its effect on cell invasion. The results shown in Fig-

ure 3A and Figure S5A demonstrated that TET1 depletion by

TET1 shRNA KD1 increased the cell-invasion capacity. Using

another independent TET1 shRNA, KD2, we observed a similar

effect in M10 cells (Figures S5B and S5C). Consistently, ectopic

expression of TET1 reduced cell invasion (Figure 3B). Note that

TET1 depletion decreased the proliferation of both M10 and

MDA-MB-231 cells (Figure S5D), ruling out the possibility that

the increased invasion by TET1 shRNA was due to enhanced

cell proliferation. To evaluate whether the invasion suppression

capacity of TET1 requires its enzymatic or CpG binding activity,

we generated a TET1mutant with amino acid substitutions in the

catalytic domain (CD mut) or a deletion in the CpG binding

domain CXXC (dCXXC mut) and expressed the mutants and

wild-type TET1, respectively (Figure S6A). We then used a dot
l Reports 2, 568–579, September 27, 2012 ª2012 The Authors 571
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Figure 4. TET1 Downregulation Correlates

with Advanced Stage and Poor Survival in

Breast Cancer Patients

(A) TET1 is downregulated in the majority of the

breast cancer tissues. The mRNA level of TET1

in human cancerous breast tissue specimens

or adjacent normal tissues was analyzed and

normalized to actin. In 140 sample pairs, 95 (68%)

have decreased levels of TET1 mRNA in cancer

tissues (green), 40 (29%) show equal TET1 mRNA

levels (blue), and 5 (3%) exhibit higher levels of

TET1 mRNA in cancerous tissues (red).

(B) TET1 downregulation positively correlates with

larger tumor and advanced stage of breast cancer.

Patients were grouped into tertiles based on TET1

expression levels. 49 patients with the lowest or

highest expression levels of TET1 in the cancer tis-

sues from 144 breast cancer patients, overlapping

with140patients in (A),were analyzed in termsof the

relationship between TET1 expression and clinical

parameters including age, tumor size, cancer stage,

tumor status, and node status. Stage was deter-

mined according to the AJCC system. p values

were measured according to methods indicated

at the bottom of the panel.**p < 0.01; ***p < 0.001.

(C) TET1 expression inversely correlates with breast cancer patient survival. The same sets of breast cancer patients as in (B) were analyzed. The survival rates of

breast cancer patients were estimated by Kaplan-Meier analysis. Log-rank test was used to compare the survival rates between the upper and lower tertile of

patients on the basis of TET1 expression level.
blot assay to confirm that the CDmut did lose the ability to erase

the cellular 5mC signal, while the dCXXC mut still retained the

ability (Figure S6B). The phenotype of the dCXXC mut is consis-

tent with that observed in a previous study (Frauer et al., 2011).

Results shown in Figure 3C demonstrated that re-expression

of wild-type (WT) TET1, but not the catalytic mutant, suppressed

cell invasion induced by TET1 depletion. In addition, the dCXXC

mut failed to repress cell invasion as efficiently as WT TET1 (Fig-

ure 3C). These results not only support the specificity of the TET1

shRNA used but also demonstrate that both the dioxygenase

and CpG binding activities are pivotal for TET1 function in

invasion suppression. Indeed, TET1 is known to exert its effect

through both enzymatic-activity-dependent and -independent

manners. It has been reported that, in addition to actively deme-

thylating cytosines, TET1 is able to prevent DNA methylation by

physically occupying the unmethylated cytosines (Wu et al.,

2011; Xu et al., 2011b). The importance of the catalytic and

DNA binding domains in TET1 function was recapitulated in the

following experiment. Consistent with the notion that TET1 is

most likely a suppressor of breast cancer invasion, consecutive

selection in an in vitro invasion assay by six rounds greatly

reduced TET1 mRNA levels in 468-6 cells, the highly invasive

fraction of MDA-MB-468 cells (Figure S7A). As expected, re-

expression of WT TET1, but not the enzymatic or CXXC mutant,

inhibited the cell-invasion capacity of 468-6 cells (Figure S7B).

This is consistent with the observation that enzymatic activity

and CpG binding capacity are required for TET1-mediated inva-

sion suppression.

To further understand whether the invasion-suppression func-

tion of TET1 in breast cancer cells can be observed in vivo, we

analyzed tumor development from cells with or without stably

inducible expression of TET1. As shown in Figures 3D and S8,
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mouse mammary carcinoma 4T1 cells with human TET1 expres-

sion generated significantly smaller tumors, further confirming

the tumor-suppressor role of TET1 in breast cancer.

TET1 Downregulation in Breast Cancer Correlates with
Poor Survival Outcomes in Patients
To determine whether the observations above can be verified in

human breast cancer tissues, we analyzed TET1mRNA levels in

140 breast cancer tissue samples and their normal control

tissues by quantitative real-time RT-PCR, using actin as an

internal control (Figure S9). Of the 140 pairs of sample tissue,

95 (68%) exhibited lower levels of TET1mRNA in cancer tissues

as compared with their normal-tissue control counterparts (Fig-

ure 4A). Importantly, the lowest tertile of breast cancer patients

(n = 49) found to have low expression levels of TET1 had larger

tumors with advanced stage (Figure 4B) and poor survival (Fig-

ure 4C) as compared with the highest tertile of patients (n = 49)

with high TET1 expression levels. Similar survival correlation

was observed in another independent cohort of 96 breast cancer

patients. Moreover, in this second cohort, up to 81% and 79%of

patients showed decreased TET1 expression in cancer tissues

when actin and GAPDH, respectively, were used as the internal

controls (Figure S10). Together, these results demonstrated that

the TET1 expression level was inversely correlated with breast

cancer cell invasion and tumor development, indicating that

TET1 might play an important role in suppressing breast cancer

progression.

TET1 Promotes the Expression and Function of TIMP2
and TIMP3
Our data indicate that TET1 very likely suppresses the invasion of

both prostate and breast cancers. To understand how TET1 is
s



involved in this process, we performed microarray studies.

Comparison of gene expression between control and TET1-

depleted M10 cells indicated that 406 genes were differentially

expressed (90 upregulated and 316 downregulated) (Fig-

ure S11A). We confirmed the fidelity of the microarray results

by analyzing representative genes with real time RT-qPCR

(Figures S11B–S11D). Given that TET1 suppresses invasion

and metastasis, particular attention was paid to the TET1-regu-

lated genes implicated in these processes. Among the 406

potential targets, the TIMP family genes TIMP2 and TIMP3 are

of great interest, not only because of their ability to modulate

MMPs (Bourboulia and Stetler-Stevenson, 2010; Kessenbrock

et al., 2010; Murphy, 2011) but also because their expression

is known to be regulated by DNA methylation (Chernov et al.,

2009). The TIMP family comprises the genes TIMP1, TIMP2,

TIMP3, and TIMP4. We found that TET1 depletion in two types

of cancerous prostate cells (LNCaP and 22Rv1) and in normal

and cancerous breast cells (M10 and MDA-MB-231, respec-

tively) resulted in downregulation of TIMP2 and TIMP3 expres-

sion (Figure 5A), indicating that TET1 is a positive regulator of

these two genes. mRNA levels of TIMP2 and TIMP3 were also

found to be diminished in other cells, including human breast

cancer cells MCF7 and MDA-MB-468, when TET1 was depleted

(Figure S11E). In contrast, the TIMP1mRNA level did not seem to

be altered by TET1 in a consistent manner: it was slightly upregu-

lated in M10 and only minimally downregulated in MDA-MB-231

when TET1 was knocked down (Figure 5A). TIMP4 was unde-

tectable in both M10 and MDA-MB-231 cells.

Subsequently, we investigated whether the concurrent

expression of TET1 and TIMP2 or TIMP3 observed in cell lines

can be recapitulated in vivo. As shown in Figure S12, similar to

that of TET1, the TIMP3 mRNA level was also downregulated

in implanted 22Rv1 cells metastasized from mouse prostate to

lung. Furthermore, breast cancer patients with lower levels of

TET1 expression had significantly lower levels of TIMP2 and

TIMP3 expression (Figure 5B). Analysis of the same set of breast

cancer patients with high expression of TET1 and TIMP2 or

TIMP3 or low expression of TET1 and TIMP2 or TIMP3 indicated

that concurrent low expression of TET1 and TIMP2 or TIMP3 is

correlated with advanced node status (Figure 5C). These studies

not only strongly support the hypothesis that TET1 is an

upstream activator for the expression of TIMP2 and TIMP3 but

also provide the clinical link between reduced expression of

TET1, TIMP2, and TIMP3 and breast cancer progression.

Given that one of the pivotal functions of TIMP2 and TIMP3 is

to inhibit the activity of MMPs which in general promote cancer

invasion and metastasis (Clark et al., 2008; Murphy, 2011), we

asked whether TET1 deficiency causes an increase in MMP

function. To this end, we performed reverse zymography anal-

ysis. As a control, only gelatin, the substrate of MMP2 and

MMP9, at the position of TIMP2 (�20 kD) and TIMP3 (�24 kD)

remained intact and stained by Coomassie Blue (Figure 5D,

lane 1). Upon TET1 depletion, the level of gelatin at these two

specific positions was decreased (lane 2), presumably due to

the reduced level of TIMP2 and TIMP3 and the increased activity

of MMP2 and MMP9. This result strongly suggests that optimal

TIMP2 and TIMP3 activities require TET1. Consistently, TET1

knockdown stimulated the total MMP activity, as detected by
Cel
fluorescence generated by a peptide after cleavage by MMPs

(Figure 5E), indicating that TET1 expression is necessary for

the inhibition of MMP activity. Together, these experiments

uncover an essential role of TET1 in maintaining the expression

and function of TIMP2 and TIMP3.

TET1-Mediated Invasion Suppression Requires TIMP2
and TIMP3
To further study whether TIMP2 and TIMP3 directly contribute to

TET1-mediated suppression of cell invasion and metastasis, we

first ectopically expressed TIMP2 or TIMP3 in TET1-eliminated

cells, then performed a cell-invasion assay. As expected, the

exogenously expressed TIMP2 or TIMP3 significantly down-

regulated cell invasion induced by TET1 knockdown (Figure 6A),

indicating that expression of TIMP2 or TIMP3 is capable of com-

pensating for the lack of TET1 in invasion suppression. Next we

knocked down TIMP2 or TIMP3 to evaluate whether they

account for TET1 function in inhibiting invasion. Consistent

with previous results (Anania et al., 2011), depletion of TIMP2

or TIMP3 potentiated cell invasion (Figure 6B, bars 1–3). Impor-

tantly, TET1 elimination-induced cell invasion (bars 4 and 5) was

lost in cells without TIMP2 or TIMP3 (bars 6–9), indicating that

TIMP2 and TIMP3 are major factors responsible for TET1 func-

tion in breast cancer cell-invasion suppression. Similar results

were observed in prostate cancer cells 22Rv1 (Figure S13A). In

another prostate cancer cell line, LNCaP, we observed that

50% and 70% of TET1-knockdown-induced cell invasion was

lost in cells when TIMP2 or TIMP3, respectively, was depleted

(Figure S13B; compare bars 3–6 with bars 1 and 2). Together,

these results suggest that TIMP2 and TIMP3 are likely to be

the major players responsible for TET1 activity in invasion

suppression. In LNCaP, TET1 may function through the collabo-

rated efforts of TIMP2 and TIMP3 as well as other invasion medi-

ators. Given the heterogeneity of cancers and the potential

redundancy in the pathways involved in cell invasion, it is not

surprising that subtle variation across different cell lines was

observed in this case.

TET1 Directly Binds to CpG-Rich Regions of TIMP2
and TIMP3 Genes and Inhibits Their DNA Methylation
After we established that TIMP2 and TIMP3 are important and

essential downstream targets of TET1 in invasion suppression,

the mechanism by which TET1 activates the expression of

TIMP2 and TIMP3 genes was further explored. Given that

TET1 is known to bind to CpG islands (Ito et al., 2010; Williams

et al., 2011; Wu and Zhang, 2011b; Xu et al., 2011b; Zhang

et al., 2010) and that both TIMP2 and TIMP3, but not TIMP1,

genes are enriched in CpG content, we examined the possibility

that TET1 may directly regulate TIMP2 and TIMP3 expression by

binding to their CpG islands. ChIP analysis demonstrated that

exogenously expressed Flag-tagged TET1 bound to the CpG-

rich regions of TIMP2 and TIMP3 genes, but not the upstream

distal site (Figures S14A and S14B). Consistently, the endoge-

nous TET1 bound to the TIMP3 gene through the CpG island,

but not other regions of the TIMP3 gene body or the regulatory

sequences of GADD45 (An et al., 2004) (Figure 7A). The endog-

enous TET1’s binding to the TIMP3 gene was specific, as the

ChIP signals within the CpG island were reduced to less than
l Reports 2, 568–579, September 27, 2012 ª2012 The Authors 573
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Figure 5. TET1 Is Required for Expression and Function of TIMP2 and TIMP3

(A) Relative mRNA levels of TIMP1, TIMP2, and TIMP3 in indicated cells with TET1 shRNA (TET1-KD) compared to control.

(B) TIMP2 and TIMP3 mRNA levels positively correlate with TET1 expression in clinical breast cancer specimens. Of breast cancer patients, 41 representative

patients from each group with the lowest and the highest expression levels of TET1 in the cancerous tissues (Figure S9) were analyzed for TIMP2 and TIMP3

mRNA levels with normalization to actin expression. The mean values are indicated.

(C) Low TET1 and TIMP2, or TIMP3 levels correlate with advanced node status in clinical breast cancer specimens. The same set of samples as in (B) was

analyzed. 41 patients with high or low TET1 expression were split into two groups with high (n = 20) or low (n = 21) levels of TIMP2 or TIMP3 and were analyzed for

node status as in Figure 4B.
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Figure 6. TET1-mediated Invasion Suppression Requires TIMP2 and TIMP3

(A) Exogenous TIMP2 or TIMP3 expression suppresses cell invasion induced by TET1 depletion. MDA-MB-231 cells with TET1 shRNA were transfected with

vector alone or expression plasmid for TIMP2 or TIMP3, followed by cell invasion assay.

(B) TET1 knockdown-induced cell invasion is lost by depletion of TIMP2 and TIMP3. MDA-MB-231 cells with or without TET1 shRNA were transfected with

scramble RNA or siRNA against TIMP2 or TIMP3, followed by cell invasion assay. Data were collected at 42 hr post transfection of siRNA.

Data in (A) and (B) are shown as mean ± SD from triplicate experiments.
50% when the total TET1 mRNA level was downregulated to

around 30% of the initial level by shRNA (Figure 7B). Our result

is consistent with previous reports in which TET1 was found to

be associated with the gene body, in addition to the gene

promoter region and the region around the transcription start

site (Williams et al., 2011; Wu et al., 2011). Note that the relative

position of the transcription start site of the TIMP3 gene shown in

Figure 7A was defined according to NCBI prediction. Indeed, the

structure of TIMP3 promoter is poorly understood and the posi-

tion of its transcription start site is controversial. Nevertheless,

previous reports have shown that the methylation status of the

TIMP3 gene region found in our study to be bound by TET1

correlates with TIMP3 gene expression (Bachman et al., 1999).

Thus, it is likely that TIMP3 has a noncanonical promoter that

is located downstream of the transcription start site. Together

with the data shown in Figure 5, these results suggest that

TET1 potentiates the expression of TIMP2 and TIMP3 by specif-

ically binding to the CpG-rich sequences of TIMP2 and TIMP3

genes.

Given that TET1 is able to convert 5mC to 5hmC, 5-formylcy-

tosine, and 5-carboxycytosine (5caC), which is then removed by

thymine DNA glycosylase (TDG)-coupled base excision repair

(He et al., 2011; Ito et al., 2011), we analyzed whether TET1’s

binding to TIMP2 and TIMP3 genes alters the methylation status

of these two genes. As shown in Figures 7C and S14C, TET1

depletion increased and decreased TIMP2 and TIMP3 gene-

associated 5mC and 5hmC, respectively. Note that in some

TET1-binding regions of these genes, the fold change of TET1-

loss-mediated 5mC increase was not exactly comparable to

the decrease of 5hmC. We reasoned that 5hmC could be under-
(D) TET1 depletion diminishes TIMP2 and TIMP3 activities. The medium collected

zymography assays (see Experimental Procedures). The relative intensity of gela

(E) TET1 knockdown increases MMP activity. The MMP activity of MDA-MB-231

quantified and shown as in (D).

Data in (A), (D), and (E) are shown with mean ± SD from triplicate experiments

***p < 0.001.

Cel
represented because of its conversion to 5caC, which is rapidly

removed by TDG. In the regions of amplicons 3 and 4 inM10 cells

(Figure 7C), TET1 depletion caused only significant decrease of

5hmC, but not increase of 5mC, suggesting that these DNA

regions were decorated with 5hmC instead of 5mC in the pres-

ence of TET1 and that these sites were not methylated when

TET1 was depleted.

Our results so far strongly suggest that cancer-cell-associated

hypermethylation of TIMP2 and TIMP3 genes reported previ-

ously by others (Bachman et al., 1999; Smith et al., 2008) is

most likely due to the loss of TET1 during cancer development.

To further test this hypothesis, we treated MDA-MB-231 cells

with the DNA methylation inhibitor 5-aza-dC, then TIMP2 and

TIMP3 mRNA levels were evaluated. Consistent with earlier

studies (Anania et al., 2011; Bachman et al., 1999), 5-aza-dC

significantly increased TIMP2 and TIMP3 expression (Figure 7D).

Notably, 5-aza-dC abolished TET1-depletion-mediated sup-

pression of TIMP2 and TIMP3 mRNA levels (Figure 7E). Given

that 5-aza-dC did not increase TET1 expression in these exper-

iments (data not shown) and that 5-aza-dC is known to reduce

the DNA methylation of TIMP2 and TIMP3 genes (Bachman

et al., 1999; Cameron et al., 1999), these results support the

notion that TET1 regulates TIMP2 and TIMP3 expression through

its controlling of their DNA methylation level. Collectively, these

studies indicate that TET1 directly binds to CpG-rich regions of

TIMP2 and TIMP3 genes and downregulates their DNA methyla-

tion. Consequently, loss of TET1 in cancer cells most likely leads

to hypermethylation and shutdown of TIMP2 and TIMP3 genes.

Exciting evidence has indicated that TET1 plays an important

role in the suppression of global DNA methylation, maintenance
fromMDA-MB-231 cells with or without TET1 shRNA was analyzed by reverse

tin in TIMP2 and TIMP3 positions was quantified with ImageJ (right).

cells with or without TET1 shRNA was analyzed by generic fluorogenic assay,

. p values were measured by Student’s t test in (B–E). *p < 0.05; **p < 0.01;
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Figure 7. TET1 Binds to TIMP3 and Inhibits Its Methylation

(A) Endogenous TET1 binds to the CpG island of TIMP3. M10 cells were subjected to ChIP with PCR primers (distal, #1, #2, #3, #4, #5, and #6) against the

indicated regions along TIMP3 shown in the diagram above the bar charts. TSS, transcription start site.
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of mouse embryonic stem cell state (Ficz et al., 2011; Ito et al.,

2010; Tahiliani et al., 2009; Wu et al., 2011), and mouse neuronal

activity (Guo et al., 2011). Here, we further provide the first

mechanistic evidence demonstrating that TET1 acts as a

cancer-invasion suppressor by inhibiting essential downstream

gene methylation. In summary, our data indicate that TET1

potentiates TIMP2 and TIMP3 expression, which in turn down-

regulates the MMP activity required for cell invasion. It is likely

that during or prior to cancer development, TET1 expression is

downregulated. Consequently, TIMP2 and TIMP3 levels are

reduced and MMPs are activated, followed by cell invasion

and metastasis. Recent findings point out that the TIMP family

proteins may have MMP-independent functions in inhibiting

cancer formation (Murphy, 2011). Therefore, TET1-mediated

TIMP2 and TIMP3 expression may have a broader impact on

cancer progression. Our work also highlights and provides

detailed data of the two described activities of TET1, its enzy-

matic activity and DNA-binding capability, in TET1-mediated

invasion suppression. In addition, we test our hypothesis that

TET1 is an invasion suppressor not only in vitro but also in vivo,

correlating TET1 expression levels with xenograft tumor forma-

tion and patient outcome. Interestingly, we found that TET1

depletion, in addition to stimulating cell invasion, promoted

prostate cancer cell proliferation and migration (Figures 2A

and S3). In contrast, knocking down TET1 decreased normal

and cancerous breast cell growth and migration (Figures S5D

and S5E) but enhanced their invasion ability (Figure 3) in the

monolayer cell culture system. These results indicate that

TET1 most likely has a differential function in suppressing

cancer formation of different origins. The common step regu-

lated by TET1 in both prostate and breast cancers is ‘‘cell

invasion’’.

Consistent with our results, several recent reports show a

profound loss of TET gene expression and/or 5hmC in cancer

cell lines (Song et al., 2011) as well as in a variety of human

cancers such as breast, prostate, liver, lung, pancreatic, colo-

rectal, gastric, small intestine, brain, kidney, and skin cancers

(Haffner et al., 2011; Jin et al., 2011; Kudo et al., 2012; Yang

et al., 2012). Indeed, loss of gene expression is not the only

way to compromise TET1 function in tumors. IDH1 and IDH2

mutations in glioma are found to generate oncometabolite

2-hydroxyglutarate, a known competitive inhibitor of the

2-ketoglutarate-dependent enzymes such as TET proteins (Xu

et al., 2011a). Together, these studies and ours strongly suggest

that loss of TET1-mediated invasion suppression is most likely

universal among human cancers. Additional studies using the

recently reported Tet1-deficient mice (Dawlaty et al., 2011) will
(B) Controls for TET1 Ab used in the ChIP assays shown in (A). ChIP assays simila

shRNA (gray bars).

(C) TET1 knockdown increases and decreases TIMP3 promoter-specific 5mC an

shRNA were subjected to MeDIP analysis with 5mC or 5hmC Ab. PCRwas carried

in (A). Antibodies used are Flag Ab (a kind gift fromDr. S.C. Lee), TET1 Ab (GeneTe

(Active Motif, #39769).

(D) 5-aza-dC derepresses the expression of TIMP2 and TIMP3.

(E) TET1-depletion-mediated repression of TIMP2 and TIMP3 is lost in the prese

(D and E) MDA-MB-231 cells without (D) or with (E) TET1 shRNA or scramble shR

analysis of TIMP2 and TIMP3 gene expression. In (C–E), p values were measured

SD from triplicate experiments.
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be useful in providing more decisive in vivo evidence in this

regard.

EXPERIMENTAL PROCEDURES

Prostate Cancer Samples and Immunohistochemistry

A total of 153 transurethral resection or prostatectomy specimens of prostate

cancer, which received detailed pathological assessment and regular follow-

up at the National Taiwan University Hospital, were selected for this study.

The study was conducted according to the regulation of the ethics committee,

and the specimens were anonymous and analyzed in a blinded manner. For

immunohistochemistry, the formalin-fixed, paraffin-embedded tissue sections

were deparaffinized and hydrated in a series of graded alcohol to water.

Antigen retrieval was performed by incubation of the tissue sections with

citrate buffer (DakoCytomation) at 125�C for 5 min. Endogenous peroxidase

activity was quenched with 3% H2O2 and endogenous biotin was blocked

with Background Buster (Innovex Biosciences). Tissue sections were then

incubated with TET1 Ab (GeneTex 124207) diluted to a concentration of

1:1000 for 1 hr at room temperature and detected with the STAT-Q IHC

staining system (Innovex Biosciences). After development with the substrate

3,3’ Diaminobenzidine, the slides were counterstained and mounted for light

microscopy analysis.

Cell Migration and Invasion

Migration and invasionweremeasuredwith theReal-TimeCell Analyzer (RTCA)

Dual Plate (DP) system (xCELLigence, Roche Diagnostics GmbH) and indi-

cated by the cell index as defined in http://www.roche-applied-science.com/

sis/xcelligence/index.jsp?&id=xcect_010100. The system monitors cell status

using proprietarymicroelectronic sensor technology. In brief, 23104 to 53 104

of cells were seeded with serum-free medium onto the upper chambers of

the cellular invasion/migration (CIM) plates. These chambers were then placed

on the lower parts of the CIM device, which contained growth medium

supplementedwith 10%FBSas an attractant. As for invasion, upper chambers

were coated with 20 mg of matrigel (BD Biosciences, Cat No. 354234) for 4 hr

before cells were added. Cell invasion and migration were monitored every

15 min for 48 hr.

Animal Experiments

Athymic (nu/nu) nudemice and BALB/c mice (6–7 weeks of age) were obtained

from the National Laboratory Animal Center and housed as described previ-

ously (Tsai et al., 2009). All animal work was performed in accordance with

the protocols approved by the Institutional Animal Care and Use Committee,

Academia Sinica. For orthotopic implantation of human prostate cancer cells,

a nude mouse prostate was exposed with a surgical incision and a suspension

of prostate cancer cells (3 3 105 in 20 ml PBS) was injected into the left side of

prostate. For breast xenograft tumor experiments,mousemammary carcinoma

4T1 cells were orthotopically implanted into the fat pad of BALB/c mice. Biolu-

minescence intensity of implanted tumors was monitored and body weight

measured in living mice weekly. Mice were euthanized and necropsied at the

end of experiments. A portion of each tumor was snap-frozen in liquid nitrogen

and stored at �80�C until needed for western blot analysis of relevant bio-

markers. The remainderwasfixed in 10% formalin overnight. For the acquisition

of prostate cancer cells at different stages, tumorswere harvestedat 2weeksor

15 weeks after implantation from prostate and lung tissues.
r to (A) were performed in M10 cells with scramble shRNA (black bars) or TET1

d 5hmC levels, respectively. M10 or MDA-MB-231 cells with or without TET1

out with four independent pairs of primers with the relative positions indicated

x, #124207), IgG (Abcam), 5mCAb (Eurogentec, BI-MECY-0100), and 5hmCAb

nce of 5-aza-dC.

NA were mock treated or treated with 5-aza-dC, followed by real-time RT-PCR

by Student’s t test. **p < 0.01; ***p < 0.001. In (A–E), data are shown as mean ±
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Human Breast Cancer Specimens

All breast tissue specimens are from the BioBank of the Tri-Service General

Hospital. All patients gave informed consent for participation, and the study

was approved by the institutional review board of the Tri-Service General

Hospital. These patients include individuals with carcinoma in situ and invasive

ductal carcinoma of the breast who are undergoing mastectomy and axillary

lymph node dissection. Stage was determined according to the AJCC system

(American Joint Committee on Cancer, http://www.cancerstaging.org/). All

specimens, including cancerous parts and adjacent normal parts, were

collected during operations and subsequently stored in liquid nitrogen.

Reverse Zymography and MMP Assays

A total of 5 3 105 of MDA-MB-231 cells were seeded onto 6-well plate. After

24 hr, the cells were washed and incubated with serum-free medium for

48 hr. The medium (defined as conditioned medium, CM), was then collected

and centrifuged at 10003 g for 10 min, followed by zymography assays (Clark

et al., 2010). In brief, CM was mixed with nonreducing 53 sample buffer

without boiling and was loaded onto 15% SDS-PAGE containing 0.1% gelatin

and serum-free medium after being cultured with M10 cells. Electrophoresis

was performed at 125 V for 120 min. The gel was then removed and rinsed

twice in enzyme-renaturing buffer (2.5% of Triton X-100, 50 mM Tris-base,

200 mM NaCl, 5 mM ZnCl, 25 mM CaCl2 [pH 7.5]) for 30 min with gentle agita-

tion at room temperature (RT), followed by incubation in the developing buffer

(50 mM Tris-base, 200 mM NaCl, 5 mMZnCl, 25 mM CaCl2 [pH 7.5]) for 30 min

with gentle agitation at RT and again in the same buffer for 16–18 hr at 37�C.
After being washed three times with deionized water, the gel was stained by

coomassie blue staining. Quantification was performed with ImageJ as

described previously (Hu and Beeton, 2010). For MMP assays, a SenoLyte

520 Generic MMP Assay Kit (AnaSpec) was used according to the instructions

provided by the manufacturer. In brief, CM was mixed with an equal volume of

MMP substrate solution in the 96-well black microplate and incubated for 1 hr

at RT. The fluorescence intensity was measured by a Victor 3 1420 multilabel

counter (Perkin Elmer) at Ex/Em = 540 nm/575 nm.

Chromatin Immunoprecipitation

Chromatin immunoprecipitation assays were performed as described previ-

ously (Hsu et al., 2004) except that the eluted DNA was extracted via a

PCR purification kit (QIAGEN). DNA was then analyzed by real-time qPCR

(LightCycler 480, Roche). The amplifications were performed in a reaction

volume of 20 ml containing 2 ml of immunoprecipitatedmaterial. The sequences

of DNA primers for ChIP are listed in the Extended Experimental Procedures.

Methylated DNA Immunoprecipitation

Genomic DNA was prepared with a genomic DNA extraction kit (QIAGEN,

#51304) and sonicated with Bioruptor (Diagenode) to produce random frag-

ments ranging in mean size from 300 to 1,000 bp. 5 mg of fragmented DNA

was denatured for 10 min at 95�C and immunoprecipitated overnight at 4�C
with 5 ml of 5-methylcytidine antibody (Eurogentec) in a final volume of

500 ml IP buffer (10 mM sodium phosphate [pH 7.0], 140 mM NaCl, 0.05%

Triton X-100). The mixture was incubated with 30 ml magnetic beads (Milipore)

for another 4 hr at 4�C and washed three times with 1 ml of IP buffer. Beads

were resuspended with 250 ml digestion buffer (50 mM Tris [pH 8.0], 10 mM

EDTA, 0.5% SDS) containing 5 ml proteinase K (20 mg/ml stock) and shaken

overnight at 56◦C. DNA was extracted with a QIAGEN Kit (QIAGEN, #28106)

and analyzed by real-time PCR.

5-aza-dC Treatment

The demethylation agent 5-aza-dC was added to the culture medium at

the concentration of 10 mM.Cells were harvested and RNAs analyzed by quan-

titative real-time RT-PCR 5 days after 5-aza-dC treatment.

For other methods, please see the Extended Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures and

14 figures and can be found with this article online at http://dx.doi.org/10.
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