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The oscillation model of the circular membrane is used to calculate the effective refractive index of the two-
dimensional triangular photonic crystal at normal incidence within the second photonic band. Negatively
effective refractive indices deduced from this model match those calculated by equifrequency surfaces very well.
The result reveals that the field distribution has relation with the effective refractive index at certain frequency
regions. Besides, the field distribution described by the Bessel function is more compact than the Fourier series

expansion. © 2012 Optical Society of America
OCIS codes:

1. INTRODUCTION

The photonic crystal (PhC) is formed with dielectric periodic
structure, which has the photonic band structure (PBS) and
exhibits new electromagnetic phenomena [1,2]. Two of them
are the superprism effect [3] and negativelike refraction
[4-11]. The former has been demonstrated experimentally by
Kosaka et al. in 1998 [3]. They found that the refracted angle of
a light beam in the PhC is very sensitive to the incident angle
and wavelength. The basic explanation of the superprism ef-
fect is the anomalous dispersion characteristics of the PBS of
the PhC. As we know, the propagation direction of light in the
PhC is the same as the direction of the group velocity, which is
determined by and parallel to the equifrequency surface (EFS)
[11]. Given the incident wave vector with a corresponding
frequency and an incident angle, the refracted wave vector
as well as the refracted angle can be determined.

Recently, negativelike refractions in PhCs have attracted
much attention [4-11]. They discussed optical properties of
PhCs by considering the frequency-dependent permittivity
&(w), permeability u(w), and negative refractive index n(w) de-
fined as —./e(w)u(w). These often take place in higher photo-
nic bands. In our previous works [13-15], we focused on the
effective refractive index within the first photonic band only.
The Bloch wave inside the PhC is very close to that in the ef-
fectively homogeneous medium so the replacement is very ac-
curate. However, it is not true in the higher photonic bands
because the compositions of the Bloch waves are more com-
plicated. More and more nonignored Fourier terms enter into
the Bloch waves and display anomalously optical properties.
Even the effective refractive index can simply explain refrac-
tions in higher photonic bands; however, the field distribution
is far away from this simple concept. Although the field dis-
tribution is very complicated, it is possible to extract some
information about optical performances from the field distri-
bution. For example, we can deduce the negatively effective
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refractive indices from the field distributions as we do in this
paper. Traditionally, the effective refractive index is calcu-
lated from EFSs. The more are the Fourier series added,
the more accurate effective refractive index we obtain. But
it needs a lot of time to obtain the effective refractive index
this way. If the equation of the effective refractive index
for the higher photonic bands can be obtained, it benefits
the applications of the PhC and also reduces the computation
time explicitly.

In this paper, we extend attention to the part of the second
photonic band of the two-dimensional (2D) triangular PhC,
where the effective refractive index is negatively defined.
By observing field distributions, the oscillation model of the
circular membrane is proposed. The field distribution in the
PhC is replaced with the amplitude of the circular membrane.
Then we can deduce the negatively effective refractive index
at normal incidence by this model.

2. 2D PHOTONIC CRYSTAL CASE

A. Photonic Band Structure and Equifrequency Surfaces
We consider a 2D PhC composed of a triangular array of air
cylinders with dielectric constant ¢, = 1.0 laid on the x-y
plane. These cylinders are embedded into a background med-
ium of which the dielectric constant ¢, = 1.0 is 12.25. The lat-
tice constant of the triangular array is a, and the radius r of air
cylinders is 0.42a The PBS of this PhC is shown in Fig. 1(a), in
which the bold curve denotes the second photonic bands. A
total of 5041 plane waves are used in calculations and errors
are below 0.5%. The same number of plane waves is also used
to calculate EFSs from 0.345 to 0.365(c/a) as shown in
Fig. 1(b). In order to investigate the field distribution in the
PhC, the case of the Gaussian wave normally incident from
air into a finite PhC is calculated by the finite-difference
time-domain (FDTD) method [16]. The interface between
air and the finite PhC is along the 'K direction, and the
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Fig. 1. (a) PBSofa2D triangular photonic crystal with e, = 12.25, ¢, = 1.0, and » = 0.42a. The bold curve denotes second photonic band. (b) EFSs
in the first Brillouin zone where frequencies are uniformly between 0.345 and 0.365(c/a) from the outermost curve to the innermost one.

propagation direction of the Gaussian wave is along the I'M
direction, where the I'M and I'K directions are parallel to
x- and y-axes, respectively. Because the EFS shrinks as the
frequency increases in this photonic band, the effective refrac-
tive indices are principally negative except for the bottom of
this band.

B. Field Distribution in the Photonic Crystal

First, we investigate the field distributions in the PhC by uti-
lizing the FDTD method. A TM-polarized (E-field is parallel to
the cylinder) Gaussian wave of 0.36(c/a) is normally incident
on the PhC, where c is the speed of light in vacuum. This fre-
quency is close to the top of the second photonic band and its
EFS as well as other frequencies are shown in Fig. 1(b). The
innermost curve corresponds to 0.365(c/a), and the outmost
one corresponds to 0.345(c/a). The frequency uniformly in-
creases from the outmost to the innermost, where the interval
is 0.005(c/a). After propagating enough distance in the PhC,
the incident wave becomes the Bloch wave as shown in
Fig. 2(a). The periodic length of the field or the Bloch wave-
length Agjoen is about 10.4a. Here the Bloch wavelength is
found from the field distribution as shown in Fig. 2(a). It re-
presents the period of the field distribution in the propagation
direction and is 27/kgjocn, Where kgioon is the Bloch wave vec-
tor. As seen from the E.-field distribution, the Bloch wave in-
cludes many periodic units. Figure 2(b) is an enlarged
rectangular region in Fig. 2(a). Each unit has six similar parts,

Apioci=10.4a

(a)

Fig. 2. (Color online) (a) E,-field distribution of the TM-polarization
Bloch wave with frequency 0.36(c/a) in a 2D triangular PhC. Some air
holes are denoted as black circles; (b) Field distribution of the rectan-
gular region in (a). Each unit can be covered by a circle.

which are repeated after rotating clockwise or counterclock-
wise by an integral multiple of 2z/3. All these parts can be
covered by a circle with a radius 7., and the field at the bound-
ary of the circle is almost zero. The diameter 27, is about
1.80a. It is found that the field distribution in a unit is very
close to the amplitude distribution of an oscillation mode on
the 2D circular membrane [17]. In Section 3, according to the
above investigation, we use the oscillation model of the circu-
lar membrane to approximately represent the field distribu-
tion in a circular unit of the Bloch wave. Then we obtain
the effective refractive indices at normal incidence from its
phase velocity. Finally, these results are compared with those
calculated by EFSs.

3. OSCILLATION MODEL OF THE
CIRCULAR MEMBRANE

A. Wave Solution Of the Circular Membrane

In this section, we deduce the effective refractive index from
the modes of the 2D circular membrane. The wave ¥ distri-
buting on the 2D circular membrane satisfies the following
equation [18,19]:

2 10 1 92 1 92
(i o) ¥ = e @

where 7 is the radius and ¢ is the polar angle in the polar co-
ordinate, and v, is the radial velocity. The wave satisfies
the boundary condition ¥(r,, ¢,t) = 0. Using the separate
variable method, the wave can be expanded as the product
of three independent functions; that is, W(r,¢,t) =
R(r)®(¢)T(t). Then Eq. (1) can be further divided into three
independent equations:
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where both m and n are sets of the nonnegative integer, and
Qpy, 1s a positive value. Equation (4) is the mth-order Bessel
differential equation. If * = a,,,r is substituted into Eq. (4),
the solution of R(r) is the first kind mth-order Bessel function
Jm(@). Considering the boundary condition J,,(a,,,7.) = 0,
then we have a,,,r, = K,,,,, where K,,,, is the nth zero (n =
1,2,3...) of the Bessel function J,,(x). The general time-
independent solution of the wave satisfying boundary
condition ¥(r,, ¢) = 0 is

Yo =33, (’”) Do COS(N) + Gy SINOM)],

m=0n=1 Te
5)

where p,,, and gq,, are the corresponding coefficients,
respectively.

B. Effective Refractive Index In The Negative Refraction
Region

After observing the field distribution at 0.36(c/a) in Fig. 2, it is
found that the field distribution is much like the amplitude dis-
tribution in the circular membrane. Since the wave equations
of the circular membrane and the PhC are the same except for
the propagating velocity on the right-hand side of Eq. (1), we
replace the field distribution of the PhC with the amplitude
distribution of the circular membrane, that is, the Bessel func-
tion J3. So the phase velocity of the circular membrane is
transferred into the phase velocity of the PhC at the same
time.

The closest solution of the wave ¥ to our case is the mode
of m = 3 and n = 1. The first zero root of the Bessel function
J3is K3; = 6.3802. From Eq. (2), the solution of the time func-
tion is T'(t) = A cos(as;v,t + 6), where A and § are the ampli-
tude and phase constant determined by the initial condition,
respectively. The a3v, represents the angular frequency w,;
that is,

a3V, = Kg10./7, = o, = 2xf, ©6)

where f, is the oscillation frequency of the circular mem-
brane. Then the phase velocity v, is

vy = f2nr./Ks, )

By replacing the wave function ¥ with the E.-field, one thing
that should be noticed is that Eq. (7) is also the phase velocity
of the Bloch wave in the PhC because the E-field distribution
inside the circular unit is a part of the Bloch wave. The phase
velocity v, is defined by v, = ¢/|n|, where n is the effective
refractive index. When v, is known, the effective refractive
index can be determined simultaneously. From Fig. 2(b),
we have obtained 7, = 0.90a. The only unknown parameter
is f,. It is the frequency of the circular oscillating membrane
and can be found from Figs. 2(a) and 2(b). In a range of Agoep,
there are about Ao /27, = 5.9 units. Besides, the horizontal
distance of two repeated field distributions in a circular unit is
about 11/16 times the diameter as shown in Fig. 2(b), so the
wavelength on the circular membrane is approximated as this
distance. Finally, the oscillation frequency f, approximates to
5.9 times the frequency of the Bloch wave, then multiplies by
16/11, which results in the value of 3.09(c/a). Substituting f
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into Eq. (7), and using the relation between v, and n, the
effective refractive index of the PhC at this frequency is

In| = 11K31a/16ﬂf/11310ch~ ®

where fc/a is the frequency of the incident light. The wave-
lengths of Bloch waves from 0.345 to 0.365(c/a) are shown in
Fig. 3. Each wavelength is determined by the FDTD calcula-
tion as the Bloch wavelength is obtained in Fig. 2(a). After
fitting the curve of the Bloch wavelength, an approximate re-
lation between the frequency and the Bloch wavelength is

ABloch = Aa/ (fedge _f ) (9)

where f eage = 0.37 is the top edge frequency of the second
band, and A = 0.3238 is a fitting constant. This relation is rea-
sonable and ensures that the definition of g, is meaningless
in the photonic band gap between the second and third photo-
nic bands as shown in Fig. 1(a). The curve fitting of Eq. (9) is
also shown in Fig. 3. Substituting Eq. (9) into Eq. (8), the ef-
fective refractive index can be related to the wave frequency
and the band edge frequency only. It is

n| = 11K3 (feage —f)/167Af (10)

In Eq. (10), the effective refractive index has no definition
when the frequency is higher than fedge. In order to check
the accuracy of this oscillation model, the effective refractive
indices calculated by using Eq. (8), Eq. (10), and EFS are all
shown in Fig. 4(a). When f = 0.36 and g, = 10.4a, both
Eq. (8) and Eq. (10) obtain |n| = 0.373, which is close to the
value calculated from EF'S, which is |n| = 0.350. It also shows
that Egs. (8) and (10) match each other after 0.355(c/a), so
Eq. (10) can substitute for Eq. (8) near the top of second band
very well. In Fig. 3, the Bloch wavelength increases quickly as
the frequency increases, but the effective refractive index de-
creases in its absolute value. Furthermore, the inversely effec-
tive refractive indices calculated by EFSs approximately
satisfy the Bloch wavelengths multiplied by f/1.311a. The
similarly multiplied factor extracted from Eq. (8) is f/1.396a.
Both multipliers are very close to each other. The oscillation
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Fig. 3. Wavelengths of the Bloch waves from 0.345 to 0.365(c/a)
calculated by the FDTD method.
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Fig. 4. (Color online) (a) Effective refractive indices from 0.345 to 0.365(c/a) calculated by Eq. (8) and EFSs, respectively. (b) Field distribution in

an elliptic unit at 0.345(c/a).

model well deduces the effective refractive index near the top
of the second band and gives the field distribution of the cir-
cularly repeated unit.

The field distribution in the circular unit is described by the
Bessel function J3 combined with the sine and cosine func-
tions, which is much more concise than the expansion of a
lot of Fourier series. However, the difference between EFS
and Eq. (8) in Fig. 4(a) becomes explicit as the frequency de-
creases. It is the reason that the unit of the Bloch wave cannot
be covered by a circle perfectly. As a result, the effective re-
fractive indices calculated from EFSs are smaller than those
from Eq. (8). An appropriate shape to cover the unit region is
an ellipse. A demonstration at 0.345(c/a) is shown in Fig. 4(b),
where the unit is lengthened in the I'M direction.

Our model proposed here shows the relationship between
field distributions and effective refractive indices at higher
photonic bands. This proposal tries to give another way,
which is different from the plane wave expansion (PWE)
method and EFSs, to obtain the effective refractive index.
We focus on the kind of the circular unit and deduce the equa-
tion of the effective refractive index from the Laplace equation
in the polar coordinate. Traditionally, the propagation mode
in the PhC is given by the PWE method in terms of infinite
Fourier series. This model gives another expression in terms
of Bessel functions. The cases of noncircular units would be
analyzed by the perturbation theory based on the basis of
Bessel functions. In general, the corresponding frequency
of the circular unit often exists at the photonic band edge
as the case near the top of the second photonic bands, so
the results give another point of view to discuss the physics
or optics near band edges.

Furthermore, the reason this oscillation model can deduce
the effective refractive indices close to those calculated from
EFSs is that the E.-field inside the circular unit is like the am-
plitude on the membrane because both obey the same form of
the 2D Laplace equation. Due to the periodicity of the field
distribution as shown in Fig. 2, the E field can be solved
in a circular unit, which is actually the same as that obtained
from the PWE method. In Fig. 2(a), the neighboring fields be-
tween two adjacent Bloch wavelength areas and at the middle
of each Bloch wavelength area have something different from

the displays shown in Fig. 2(b). It is the fact that the Bloch
wavelength at 0.36(c/a) is not an integral multiple of the per-
iodicity of ~/3a in the I'M direction. The diameter of each cir-
cular unit is 1.80a, which is a little longer than +/3a. Because a
Bloch wavelength range equals to about 5.9 circular units, the
field distribution distorts explicitly at phase angles of the
neighborhood of 0°) 180°, and 360°. Although it has a little dis-
tortion at these phase angles, the field distribution in a circular
unit matches that calculated by the PWE method. This means
this model as well as the PWE method can be used here.

C. Group Velocity

Finally, the averaged group velocities are calculated by both
data in Fig. 4(a). The group velocity in the dispersive medium
is [20]

c
= 11
Y = W T flan/dp). (1)
where f is the frequency. For the purpose of the numerical
calculation, dn/df is approximated as An/Af, and n and f
in Eq. (11) are chosen as the averaged values of two contin-
uous data. The averaged group velocities corresponding to
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Fig. 5. Group velocities from 0.3475 to 0.3625(c/a) calculated by
data in Fig. 4(a).
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EFS and Eq. (8) from 0.3475 to 0.3625(c/a) are shown in Fig. 5.
The results tell us that both values are close to each other,
except for 0.3575(c/a). The averaged velocity in this fre-
quency region is about 0.13c.

4. SUMMARY

In summary, we use the oscillation model of the circular mem-
brane to deduce the effective refractive indices near the top of
the second photonic band. It is based on the same Laplace
equation in both cases of the membrane and the PhC, and
the field in the circular unit of the Bloch wave is approxi-
mately equal to the amplitude on the circular membrane. This
model not only gives the inverse relation between the Bloch
wavelength Agj,.n and the effective refractive index n, but also
displays that the effective refractive index can be related to
the wave frequency and the band edge frequency. It gives an-
other way to calculate the effective refractive indices of high-
er photonic bands directly and concisely, and displays the
field distributions in terms of the Bessel function, which is
more compact than the traditional one by the PWE method.
Also largely repeated units of field distributions in PhCs are
not like the circular case in this paper; however, it is a good
beginning to discuss the relationship between the effective
refractive index and the field distribution. Furthermore, the
results are applicable to the oblique cases as long as the field
distributions have circularly repeated units.
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