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We propose a stabilizationmethod to numerically calculate the dispersion relations and quality factors of optically
confined finite structures. For the coupled resonator optical waveguide (CROW) made in a photonic-crystal slab
(PCS) used as an example, the dispersion curve is normally not well defined due to the appearance of disconti-
nuities, which do not occur in a two-dimensional CROW with infinite slab height. Therefore, there is less effort
devoted to the calculation of quasi dispersion curves of the CROW in a slab. The dispersion relation of the PCS
CROW can only be obtained by theoretical fitting to the experimental data under the tight-binding approximation.
Here, we demonstrate the use of a stabilization method to calculate the quasi dispersion relation of a PCS CROW
accurately. From the stabilization graph, we can calculate the quality factor for an eigenfrequency and properly
choose the size of the simulation cell to avoid coupling the CROW modes with the unconfined modes and to
accurately calculate the dispersion curve of the PCS CROW using the plane-wave expansion method. The pro-
posedmethod and results not only provide important information for designing practical photonic devices such as
slow-light optical waveguides and nonlinear photonic devices for the PCS CROWs but also can be applied to
compute the quality factors and resonance frequencies of microcavities or nanocavities. © 2012 Optical Society
of America

OCIS codes: 200.4490, 230.1150, 230.5298, 230.7400.

1. INTRODUCTION
Photonic crystals (PCs) [1] are periodic structures that give
rise to bandgaps, which can be used to modify light propaga-
tion [2]. The coupled resonator optical waveguide (CROW)
[3–6] or coupled cavity waveguide [7–9], which is a promising
slow light device, can be fabricated by creating some point
defects or cavities periodically along the wave propagation
direction in a PC. Because the speed of light in a CROW is
largely reduced [10,11], the nonlinear effect is largely en-
hanced [10,12,13] and the quantum dynamics of atoms em-
bedded in CROWs are quite different from the Markovian
decay [14]. Especially after the experimental demonstration
of an ultraslow pulse propagation and a long group delay
in a CROW by Notomi et al. [15], the practical optical devices
[16,17] fabricated by CROWs become realizable.

The dispersion relation of a CROW is usually derived by the
tight-binding method (TBM) [3] or transform matrix method
(TMM) theoretically [18], which provides an analytical equa-
tion to further analyze the properties of a CROW, such as the
pulse propagation within it or the interaction between light
and material when quantum dots or nonlinear materials are
added inside the defects [4,12,13]. To calculate the dispersion
of a CROW by the TBM or TMM, the properties of a single
cavity, such as electric field distribution and eigenfrequency,
must be well defined. It is quite easy in a two-dimensional (2D)
case, in which the height is supposedly infinite. However, in a

practice device, the height of the PC slab (PCS) is finite and
comparable to the lattice constant [19], and the simulation of a
point defect becomes time consuming. In addition, the eigen-
frequency of a point defect cannot be exactly defined [20,21]
due to the finite quality factor unless the resonant frequency
and the spectral width of the defect are both known in ad-
vance. Therefore, numerical studies of the dispersion curves
of CROWs are mostly restricted to the 2D cases, and to our
knowledge, a numerical method to calculate the dispersion
relation of the CROW in a PCS is still lacking and the disper-
sion curves of CROWs are typically obtained by theoretical
fitting to the experimental data [15]. The main difficulty is that
the simulation results vary with the simulation condition, and
the dispersion relation of the CROWs cannot be exactly ob-
tained, so there only exists a quasi dispersion curve in the
CROW. However, the dispersion relation determining the per-
formance of the device should be known before fabricating a
practice device. Therefore, it is desirable to have a method
that can rigorously calculate the quasi dispersion curves
and the properties of a PCS CROW.

In this paper, we first use the plane-wave expansionmethod
(PWEM) [22] to calculate the dispersion curves of guided
modes for a PCS CROW. Because the simulation super cell
must be chosen to prevent field overlapping under the peri-
odic boundary condition, it has an air cladding encompassing
the PCS structure in the z direction (slab height) and a large
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enough dimension in y direction, which is transverse to the
CROW propagation (x) direction, as in Fig. 1. With this super
cell, there are three kinds of optical modes, i.e., cavity-guided
mode (CGM), slab-confined modes (SCMs), and unconfined
modes (UCMs), existing in the super cell of a CROW made
of a PCS for numerical simulation. For the CGM, its electric
field is not only confined by the slab but also localized around
the cavity (point defect) region without extending far into
either the air cladding or the perfect photonic-crystal region.
Here, we also named it the CROW guided mode, for this mode
reveals the physical properties of the CROW structure. The
SCM is a slab waveguide mode, which is confined in the z di-
rection (slab height) via the total internal reflection (TIR), but
it extends over the entire slab in the x and y directions except
the cavity region. The optical field of the UCM extends over
the entire super cell and is actually a radiation mode.

From the simulation results done by the PWEM, we found a
distinct jump in the dispersion curve for some particular sizes
of simulation cells, and the location of the frequency jump var-
ies with the choice of simulation cell size. It indicates that
the jump in the dispersion curve is a result of coupling of the
CROW guided modes or CGMs to the UCMs in the air. The
resonant coupling between the CGM and UCM can happen
when the incident optical wave approaches the degenerate
eigenfrequency of these two modes; it causes the energy
transfer from the CGM to the UCM and anticrossing of the
dispersion curves. The resonant coupling leads to energy
leakage of the CGM to the UCM and eventually to the air
as it propagates along the PCS CROW.

The leakage of electromagnetic (EM) waves into the air re-
sults in a quasi dispersion curve with a finite spectral width in
an eigenfrequency. In order to evaluate the eigenfrequency

and quality factor of the CROW guided mode, we adopt a
stabilization method [23,24] that has commonly been used
in the field of condensed matter physics. This stabilization
method can be used to calculate the eigenfrequency and qual-
ity factor of an optically confined finite structure. From know-
ing the stabilization characteristics of PCS CROW, we can
properly choose the size of the simulation cell to calculate
the dispersion curve of the PCS CROW using the PWEM by
avoiding the dispersion discontinuities caused by coupling
of the CROW modes with the UCMs. Finally, the results are
also compared with the 2D cases to discuss their physical in-
sight and to give a primary design concept of CROWs by only
doing 2D simulation.

2. QUASI DISPERSION CURVES
We consider CROWsmade of either finite dielectric rods or air
holes in a dielectric slab of thickness tz, as shown in Fig. 1, in
which the lattice constant of the perfect PCs is a and the dis-
tance between two adjacent defects of the CROWs is aL.
There exists a bandgap in TM-like mode for dielectric-rod
structures and TE-like mode for the air-hole structures [20,25],
so we shall only consider the polarization that gives rise to a
bandgap.

To realize the CROW guided modes within the PCS whose
dispersion curves lay below the light line (LL) [19], we first
consider a CROW having a period aL � 2a, which is made
from a 2D PC (with rod radius r � 0.2a and rod dielectric con-
stant ε � 12 in a square lattice) by shrinking the rod radius to
rd � 0.09a for every other rod in the middle row [see
Fig. 1(a)]. Its dispersion curve in the extended Brillouin zone
is shown in Fig. 2(a). For the CROW with aL � 2a, there
should be two dispersion curves in which the EM wave
may localize in the defects. The breaking of translation sym-
metry with lattice constant a of the PC in the propagating (x)
direction leads to the result that the two dispersion curves do
not cross at kx � π ∕ aL. In this CROW structure, because the
partition rods between the defect rods in the PCW are iden-
tical to those made of the PC, one of the dispersion curves
embeds in the dielectric band (below the bandgap). Thus
we only observe one dispersion curve of the CROW guided
mode in Fig. 2(a) located within the bandgap, which falls be-
tween kx � 0.65 and 1 (2π ∕ aL). For the CROW with aL � 2a,
the first Brillouin zone (FBZ) boundary is located at π ∕ aL, and
both the dispersion curve and LL can be folded into the FBZ.
After the zone folding, the CROW guided modes exist for wave
vectors in the range kx � 0–0.35 (2π ∕ aL). The simulation
approach for the CROWs withaL ≥ 3a is similar to that with
aL � 2a, so in the following we only consider the CROW
having aL � 2a.

The dispersion curves of a PCS CROW with slab thickness
tz � 2a are shown in Fig. 2(b). The super cell has the dimen-
sions 2a × 9a × 4a. It can be seen from the left inset of Fig. 2(b)
that the electric field for the guided mode (solid curve) is lo-
calized within the defect rod and confined inside the slab.
However, we also found the other modes within the photonic
bandgap (dotted curves) in which the electric fields are not
localized around the defect rod and extend over the entire
super cell, as illustrated in the right inset in Fig. 2(b). The fre-
quencies of these modes would be highly sensitive to the size
of the chosen simulation unit cell or the boundary condition,
and thus those are indentified as the UCMs. These UCMs will

Fig. 1. (Color online) Structures of the coupled resonator optical
waveguide (CROW) made of photonic-crystal slabs with (a) dielectric
rods and (b) air holes. a and aL are the lattice constants of photonic
crystals and CROWs, respectively.
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interfere with the CROW guided mode or CGM, leading to a
discontinuity (jump) in the dispersion curve of the guided
mode for a PCS CROW (solid curve). The breaking translation
symmetry with lattice constant a in the propagating direction
leads to the dispersion curve of the guided mode folding into
the FBZ that interacts with those UCMs. In other words, the
jump of the dispersion curve is caused by the coupling of cav-
ities with the air through the UCMs extending outside the slab
into the air.

Near the frequency where the jump occurs, the EM field
becomes delocalized and extends outside the cavities. In or-
der to realize the interaction strength between the cavities and
the air, we use a stabilization method [23,24] to calculate the
dispersion curve and quality factor of the CROW guided mode.
Because the eigenfrequency of the guided mode at a fixed
wave vector should be independent of the size of the chosen
simulation cell, but the UCMs with delocalized fields do de-
pend upon the size of the chosen cell, we can obtain a stabi-
lization graph, f �z�, which plots the eigenfrequency at kx � 0
as a function of the height of the super cell with fixed 7a in the
y direction as shown in Fig. 3(a). The flat curves correspond
to the resonant frequency of the guided mode or other con-
fined modes that barely change as the size of the simulation
cell varies, unlike other curves corresponding to the UCMs
that decrease with increasing simulation cell size. Here we dis-
tinguish the flat curves into two categories. One is the CGM or
CROW guided mode, in which the EM wave localizes near the
cavities and propagates inside the waveguide, e.g., the flat dis-
persion curve around f � 0.389 c ∕ a in Fig. 3(a). The others are

the SCMs, in which the EM wave mainly localizes within the
slab, except the cavity region. The existence or number of
these SCMs depends on the magnitude of the simulation cell
in the y direction. The wave vectors of the reciprocal lattices
in the y direction provide a tangential moment to allow the EM
wave inside the slab. Note that the UCMs interact less with
these SCMs but interact highly with the CGM, because the
EM waves in the SCMs locate outside the cavity having trans-
lation symmetry of the lattice constant a in the propagation
direction and the CGMs do not have this translation symme-
try. Therefore, we can reduce the modification of the defects
from the perfect rods or holes in the CROW to reduce the
interaction by preserving the translation symmetry.

Fig. 3. (Color online) (a) Dispersion relation of the CROW at kx � 0
using a simulation cell 4–12a in the z direction and (b) its resonant
density. The flat curves in (a) are contributed by one cavity-guided
mode (CGM)with f around 0.389 c ∕ a and several slab-confined modes
(SCMs) in the allowed bands. The curves vary with simulation cell
contributions from the unconfined modes (UCMs). (c) The eigenfre-
quency and spectral width Δf at each wave vector.

Fig. 2. (Color online) Dispersion curves of a CROWmade of (a) a 2D
dielectric-rod photonic crystal and (b) a photonic-crystal slab (PCS)
calculated using a super cell of size 2a × 9a × 4a. The insets in
(b) illustrate the intensity distribution of the electric field.

2512 J. Opt. Soc. Am. B / Vol. 29, No. 9 / September 2012 Huang et al.



The stabilization method is based on calculating the size-
averaged density of states (SDOS) by varying the length, z,
of the simulation cell at a particular dimension shown in
Fig. 3(b). The SDOS can be defined as [24]

ρz�f � �
1
Δz

Z
z0�Δz ∕ 2

z0−Δz ∕ 2

X
i

δ�f − f i�z��dz

� 1
Δz

X
i

����df i�z�dz

����
−1

f i�z0��f
: (1)

Here
P

iδ�f − f i�z�� is the density of state of the frequency f at
simulation cell length z, i is the index of the calculated dis-
crete eigenfrequencies shown in Fig. 3(a), z0 is the simulation
length, which contributes the density of state at frequency f ,
and Δz is the total simulation length, with which we calculate
the density of state at each eigenfrequency. We have used

Z
dzδ�f − f i�z�� �

���� df i�z�dz

����
−1

f i�z0��f
; (2)

with z −Δz ∕ 2 < z0 < z�Δz ∕ 2 in Eq. (1). The Δz must be
long enough to have the sufficient number of eigenfrequencies
satisfy the criterion f i�z0� � f to avoid statistical error. From
Eq. (1), it is clear that there are two methods to calculate the
SDOS. In the first method, the SDOS at f is calculated by
counting the number of eigenfrequencies at the entire simula-
tion length f i�z�, which has the same frequency as f . In the
second method, the SDOS at f can also been obtained by
taking the derivative of every frequency curve respectively
to the simulation length z at f . The calculated SDOS consists
of two types of contributions [23]:

ρz�f � � ρPz �f � � ρQ�f �; (3)

where ρPz �f � denotes the background contribution (due to
being coupled with modes of far away resonant frequencies),
which varies smoothly with frequency and is relatively weak
compared with ρQ�f � near the resonant frequency. ρQ�f � de-
notes the resonant contribution that can be well fitted by
the Lorentzian form,

ρQ�f �∼ Δf ∕ 2

�f − f 0�2 �Δf 2 ∕ 4
; (4)

because this kind of SDOS is contributed by the photon spon-
taneous emission outside the cavity. Here, f 0 is the eigenfre-
quency and Δf is the spectral width for a given wave
vector kx.

Using this Lorentzian fitting to the SDOS in Fig. 3(b), we can
obtain an accurate evaluation of the resonance frequency and
its spectral width of the CROW guided mode to 0.389 c ∕ a and
0.00128 c ∕ a at kx � 0, respectively, corresponding to a quality
factor of 304. It indicates the PCS CROW is still a high quality
waveguide, although the dispersion curves of the CROW can-
not be accurately obtained by the conventional method due to
the finite quality factor of this waveguide. The spectral width
increases as kx increases, as shown in Fig. 3(c). This is because
the dispersion curves approach the LL at large wave vectors
and atwhich theEMwave is no longerwell confined in the slab.

As we discussed above, the spectral width of the quasi dis-
persion curve of the CROW caused by the CGM interacting
with UCMs can be diminished by reducing the radii difference
or dielectric constant difference between the perfect rods and
defect rods. However, the difference between the perfect rods
and defect rods cannot be too small, because it leads the dis-
persion curves too close the dielectric band edge and the
photonic band confinement becomes weak, which leads the
EM wave leakage in the x and y directions. The other method
to diminish the spectral width of the dispersion curve is to
enlarge the size of the cavities, i.e., by using more than one
defect rod (holes), to provide larger modal volume, because
generally the quality factor of a cavity is proportional to the
modal volume.

This stabilization method can be applied to numerically
calculate the quality factors and resonant frequencies of any
microcavities or nanocavities by varying magnitude of a one-
dimensional simulation cell by adding the air outside the cav-
ity. Furthermore, the stabilization graph in Fig. 3(a) can also
provide a guideline for properly chosen dimensions to prevent
coupling of the CROW cavity mode with the UCMs. For in-
stance, one could choose 9a in the z direction and 7a in
the y direction, because the eigenfrequency of the CROW cav-
ity mode is well separated from those of the UCMs. Thus, one
can calculate the quasi dispersion curve of the PCS CROW
CGM by using PWEM with a properly chosen super cell.

3. SIMULATION RESULTS OF PCW CROWS
In this section, we use the PWEM to calculate the CGM of the
CROW by choosing properly and having a large enough super
cell to avoid interaction with the UCM and cross talk between
two CROWs due to the periodic boundary condition. In Fig. 4,
we show a comparison of the CGM dispersion curves of 2D
CROWs with those of PCS CROWs made of the dielectric rods
and air holes calculated with a properly chosen simulation cell
(which avoids the coupling of the guidedmodewith theUCMs).
We found from Fig. 4(a) the dispersion curves of the CROWs
made from dielectric-rod PCSs shift to the higher frequency
nearly rigidly as compared with the 2D counterparts (with
the same radii as the defect rods). This is because the evanes-
centwaveswould extend outside the slab,making the effective
indices for the slab modes lower than their 2D counterparts,
while the group velocity of the PCS CROW guided mode or
CGM is approximately the same as that of the 2D counterpart.
However, to obtain accurate dispersion curves for PCS
CROWs, the 3D simulation by the PWEM is still needed.

For the CROWs made of defect holes with enlarged radii in
the air-hole PCS or 2D PC, their dispersion curves are no long-
er parallel to each other, as shown in Fig. 4(b). The magnitude
of the group velocity of the 2D CROW guided mode is larger
than that of the PCS counterpart, as illustrated in the inset of
Fig. 4(b), due to less confinement of the electric field in the
defects. Because the electric field is not so localized within the
defect holes but spread out in the dielectric region between
the defect holes, the coupling between the next-neighbor de-
fects [26] should be taken into consideration in the tight-
binding theory, and it makes the dispersion curves bend
downward at large wave vectors.

In Fig. 4(c), we note that when the defect holes are shrunk
or replaced by a dielectric rod, the CROW becomes a
two-mode waveguide with two crossing dispersion curves.
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The intensity distributions of two CROW guided modes are
shown in the inset of Fig. 4(c). At low kx, the low frequency
mode is a longitudinal mode (having a longitudinal field dis-
tribution), whereas the other one is a transverse mode. The
coupling strength of the longitudinal mode is larger than that
of the transverse mode, and the stronger coupling strength
gives rise to a higher group velocity.

4. CONCLUSION
We observe that the guided modes in CROWs made from a
PCS have a finite lifetime, and thus can only be described
by quasi dispersion curves with a finite width. By using the
stabilization method, we can obtain the finite spectral width
of the guided mode, which typically has a high quality factor
so the EMwave can still propagate well in the CROWwith low
leakage into the air. The spectral width of the guided mode
can be reduced by diminishing the breaking of the translation
symmetrically along the propagation direction. By properly
choosing the simulation cell to avoid strong interaction with
the unconfined modes, the dispersion curve of the CROW
guided mode or cavity-guided mode become less sensitive
to the simulation cell dimensions and its approximate disper-
sion curve can be obtained. For the CROW made of dielectric
rods, the dispersion curve of the CROW guided mode is nearly
parallel to the 2D counterpart. However, for the CROW made
of air holes, this is no longer the case, due to different loca-
lization of the EM waves in the defects. The dispersion rela-
tion cannot be well described by the traditional tight-binding
method, in which the nearest-neighbor defect coupling is con-
sidered only, due to the reduced confinement of the electric
field. When the defect holes are shrunk or replaced by a di-
electric rod, the CROW becomes a double-mode waveguide
with different group velocities for the two guided modes
(one longitudinal and one transverse). The longitudinal mode
is found to have a larger group velocity because of the
stronger coupling between two adjacent defects.
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