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The concept of forwarding sets is widely adopted in many dcaat protocols for wireless multihop
networks to alleviate the broadcast storm problem. In tpes®cols, after receiving a broadcast mes-
sage, each node that is requested to relay the messagetsstisubset of its 1-hop neighbors, a.k.a.
the forwarding set, to further relay it. In this paper, wegmse to use the Minimum Local Disk Cover
Set (MLDCS) as the forwarding set in heterogeneous multiivpless networks, where nodes may
have different transmission ranges. We show that the mimiiogal disk cover set of a node in hetero-
geneous networks is equivalent to its skyline set, and tteeprapose a divide-and-conquer algorithm
with the optimal time complexity to compute the skyline setdlly and statelessly. Moreover, unlike
other forwarding heuristics, the proposed algorithm resgubnly 1-hop neighbor information. This
helps to reduce the forwarding set formation latency and thill be more suitable for environments
with a frequently changed network topology, such as vehicad hoc networks.
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1. Introduction

A multihop wireless network consists of a collection of vié®s devices networked to-
gether in a multihop fashion. Due to no need of fixed infragttice, multihop wireless
networks can be flexibly and quickly deployed for variouslaapions, such as personal
area networks, smart home appliances, environmental ororgt battlefield surveillance,
and emergency disaster relief. Each device in such netwodgs change its communi-
cations links to other devices dynamically and frequentlg tb either nodal mobility or
extreme environment conditions.

Network-wide broadcasting is one of the fundamental andrahbperations in many
networks including multihop wireless networks. It is wiglahd frequently used to dissem-
inate the information, explore the network topology, digrorouting paths, and monitor
network integrity. The simplest broadcast mechanism isdilogy where each device re-
transmits a message when it receives a copy of the messatieeffirst time. Despite its
simplicity, flooding generates a large amount of unnecgsstransmissions and as a result
introduces serious redundancy and transmission colBsibthis phenomenon is not care-
fully taken care, the result of this broadcast storm cankb#dcuseful network traffic and
even meltdown a network. In addition to introducing sericeundancy and transmission
collisions, the straightforward flooding in a multihop wess network environment would
introduce more channel contention. In case if devices at@lm®uch broadcasting opera-
tions are expected to be executed more frequently in a nopltivireless network. All this
would quickly consume two most precious resources of theihogd wireless networks:
energy and frequency bandwidth. The worst broadcast stooivigmm in a wireless ad hoc
network has been studied by Btial. [13].

To address the broadcast storm problem, various broadgasitams [3, 12, 14-16]
have been proposed. In these algorithms, when a node reediveadcast message, instead
of triggering all 1-hop neighbors to relay the message)éicie a subset of 1-hop neighbors,
referred to ag forwarding set or a multipoint relaying set (MPR), to relay the message. To
ensure that a broadcast message can reach all nodes inwwglye¢he broadcasting node
selects its relay forwarding set to cover all of its 2-hopgiiors. At the same time, to
relieve the broadcast storm problem, the forwarding satlshwe kept as small as possible.
Let X, be the 2-hop neighbors of the broadcasting nagdé-or each 1-hop neighbarof
the broadcasting node, defineC;; as theuy's 2-hop neighbors that are 1-hop neighbors
of u. Obviously,.# = {Cy |uis 1-hop neighbors af} is a family of subsets of,,,.
For every element of X, there exists a subsét; in .7 such thatr belongs toC;; .
Therefore, it# andX,,, are given, a minimum forwarding set of the broadcasting nede
is exactly corresponding to a minimum cover set of a claksitacovering problem.

Ignoring geometric factors of wireless communicationsyydan et al. pointed out in
[14] that the minimum forwarding set problem on general grapidHscomplete. There-
fore, heuristics are used to find the minimum set cover asaheafrding set. IN14], a
greedy set cover heuristic is adopted to select MPR, ancbwfittoo much surprise, the
greedy algorithm is with approximatiadl (log A). Here A is the maximal cardinality of
sets. In[1], MPRs are proposed to control flood messages in mesh networks
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Huson and Sen mentioned in their paf$éthat some restricted graphs, such as tree and
planar graphs, are unable to model radio networks but ariigraphs fail to capture the
structural information of the network which may be used tesdiep better algorithms. They
and others5, 6, 8,10, 17, 18] proposed geometric disk graphs to model wireless networks
for dealing with various problems, such as frequency ass@n, broadcast scheduling,
network routing, connected dominating sets and disk cogegsioblems.

Calinescuet al. [5] used unit disk graphs to model homogenous radio networks whe
dealing with selecting forwarding neighbors and findingrttieimum disk cover problems.
They utilized the geometric representation of 1-hop an@d@+eighbors to propose heuris-
tics that can give six and three approximations respegtiaeD (n logn) andO (n log? n)
time, wheren is the number of 1-hop and 2-hop neighbors. This improvedpus known
results by Bronnimann and Goodrigtj O (1) approximation inO (n®logn) time.

To construct forwarding sets, in most previous works eadteneeeds to collect in-
formation of its 2-hop neighborhood. However, in multihopeless networks, network
topology could change frequently and dynamically, and st of obtaining fresh 2-hop
neighbor information is high. It is a good idea not to take 2Hegop neighbor information
into consideration when dealing with multihop wirelessvarks.

Instead of 2-hop information, Swet al. [17] suggested constructing the forwarding set
based on the coverage area of 1-hop neighbors and unit dipk gnodel. The idea behind
it is to ensure nodes in the forwarding set of a broadcastougro cover the same area
as all its 1-hop neighbors. The proposed algorithm is laedlj distributed, and with the
optimal time complexity) (nlog n). However, the algorithm works only when all nodes in
the network have the same transmission range. Nodes inahgntiission range of a node
X, they can correctly receive and decode packets sent fremdlde X.

All those researchers either assume all nodes of the modetetéss networks have
the same transmission range (homogeneous networks) otraageission ranges at least
greater than some fixed distance (so called quasi unit diskedeby Kuhn[10]). However,
in reality, the transmission ranges of nodes in multinogelegss networks are not necessary
equal and are not greater than some fixed distance, eithairafd Du[18] used bidirec-
tional link disk graphs to model multihop wireless netwaitisconnected dominating sets
problem.

In this paper, we extend the work jih7] for homogeneous networks to heterogeneous
networks in which nodes may have different transmissiogeanA heterogeneous network
topology is modeled by bidirectional link disk graph in whieach node is associated
with a disk centered at the node and the radius be the trasismisange of the node.
And two nodes have an edge between them if their distance lsrger than any of their
transmission ranges. We use the term employed in Sun’s aperoverage area of a
node to mean the transmission range of the node. Since tentission range of a node
is modeled as a disk centered at the node, the coverage aeeaeatfvork is the union
of those disks representing their transmission rangeseohétwork. If the coverage area
of a subset of a network has the same coverage area of therkethen such a subset
can be chosen as a forwarding set of a broadcasting node imetin®rk. Therefore, we
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can study the broadcasting problem through a coverage amaach. Compared to a
node coverage approach, our area coverage approach isenative one. Although the
forwarding set found through an area coverage approach,askyline-based algorithm,
may be bigger than that found using a node coverage appribaeln, be found using only
1-hop neighboring information when an area coverage is eyepl. We prove that finding
the local minimum disk cover set is equivalent to finding tkglise of the coverage area
of 1-hop neighbors. In addition, a localized divide-andwgoer algorithm with the optimal
time complexityO (nlogn) is proposed to compute our forwarding set.

The remaining of this paper is organized as follows. In $&c®, the forwarding set
problem is formulated as the minimum local disk cover sebfmm. In Section3, the
equivalence between the minimum local disk cover set andliiygne set is built, and
a divide-and-conquer algorithm is provided to find the siglset. In Sectiod, the time
complexity of proposed algorithm is derived. In Secti®ithe simulation results of perfor-
mance comparison are presented. The conclusion is givesciing6.

2. Minimum Local Disk Cover Sets

In what follows, we useB(z,r) to denote the closed disk having centercaand radius
r. The boundary of a closed subsetc R? is denoted by)S, and thus9@B(z, ) is the
circle centered at with radiusr. For any two points: andy, Ty denotes the line segment
between: andy, :ﬁ/ denotes the ray (or called a half line) framto , andTg} denotes
the line containing the points andy. | A| is shorthand for the cardinality of a countable
setA.

We assume that wireless nodes are distributed on a two-diomad Cartesian plane.
The topology of heterogeneous wireless network is modejebidirectional disk graph.
In other words, each nodg is associated with a transmission rangeand two nodes;
andu; are said to be neighbors each other if and only if their Eeeliddistancu; — u;||
is no larger thamin(r;, ;). Instead of saying two nodes andu; are neighbors each
other, we will say that the node; is a 1-hop neighboring node of the nodgeor the node
u; is a 1-hop neighboring node of the nodg For a nodey;, its (transmission) coverage
is modeled as a disk with center@t and radius-;, i.e., B(u;, ;). A nodeu; is said to
be covered by a node; if u; € B(u;,r;). In this case, the node; is also said to be a
neighboring node of the nodg

For a set of noded/, we say a subset of V' is a (disk) cover set ofi if

U B(ui,r;) = U B(ui,r;). If there exists a node, in V such that all other nodes
u; €S u, €V
in V" are neighbors of that node, th&nis called a local set and the corresponding disk set

{B(uo,r0), B(u1,71),...,B(un,r,)} is called a local disk set. A disk from a local disk
setis called a local disk. A cover subsgof a local set is called a local disk cover set. In
the following discussion, without loss of generality, wevays assuma, is a neighbor of
all other nodes iV and is called the broadcasting node. We also assume thabitfie.p

is located at the origin of the Cartesian plane and the origitenoted by. The problem
of a minimum local disk cover set is formally stated as fokow
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PROBLEM 1 Minimum Local Disk Cover Set (MLDCS) Problems
Input: Let V = {ug,u1,...,u,} be a set of disk centers.
{B (ug,r0),B (u1,71), ..., B (un,ry)} is a corresponding disk set such that for all i,
i=1,2,...,n, ||lup — || < min (ro,r;), i.e., Vi u; € B(ug,ro) and ug € B(u;, ;).

Output: A subset S of V such that |J B(u;,r;) = U Blug, 7).
u; €S u; €V

Measure: |S| is minimal.

To alleviate the broadcast storm problem associated wiahdwast protocols, the size
of the forwarding set needs to be reduced. On the other harghdure a broadcast can
reach all nodes in the network, the selection of the forwaydiet of a broadcasting node
should guarantee that the message will be sent to all itpkmhbors. Based on the idea
used in[17], we shall construct a forwarding set of a node to cover theesamnea as all its
1-hop neighbors. Since the broadcasting nagleith its neighbor set forms a local set, we
propose to use thinimum local disk cover set (MLDCS) as a forwarding set.

We assume that each node can learn the locations and radiis ofieighbors
through beacon exchanges. In addition, we define dtyine for a set of disks as
the boundary of the union of disks in the set. Hence, the iskytif a local disk set

{B(uo,r0), B(u1,71), ..., B(tn,rs)}is9( Lnj B(u;,7;)). Obviously, a skyline is a closed

set and composed of arcs of circles. Thel c(())llection of certedisks that contribute arcs
(not just a point) to a skyline is called tiskyline set. In the next section, we shall show that
the MLDCS of a local set is the skyline set of the correspogdiical disk set, and thus,
we can solve the MLDCS problem for a given local disk set byifigdhe corresponding
skyline. In addition, we propose a localized and statelgsrishm to find the skyline set.

3. Skyline Sets

In this section, we give properties of skylines and build télation between the MLDCS
for a given local set and the skyline set for the correspanidical disk set. We then propose
a divide-and-conquer algorithm to compute the skyline set.

3.1. Skylinesof disk sets

The following geometric lemma and corollary are used to dtiile relation between
MLDCS for a local seV = {ug,u1,...,u,} and the skyline set for the corresponding
local disk set{ B(ug,0), B(u1,71),. .., B(un,m,)}. Note that due to the bi-directional
link model, the intersection of coverage of 1-hop neightwdisroadcasting node, (=o)

is not empty. It is trivial that for a local disk cover s6tthe intersection (| B(u,7;)
u; €S
contains the broadcasting nodeSo, for allu;, ¢ = 1,2,...,n, we haveo € B (u;,;)

sinceljo — w;|| < ;.

Lemmal. Let V be a local set containing uo located at the origin o and
{B(uo,r0), B(u1,71),...,Bun,r,)} beitslocal disk set. For any point a on the disk
boundary 9B (u;, ), the line segment 6a is contained in B (u;,7;),i.€.,0a C B (u;, ;).
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Proof. Note thato € B (u;, ;). SinceB (u;,r;) is convex ant, a € B (u;,r;), the line
segmenda C B (u;, 7). m|

An example is shown in Fidl. Then, we have the following corollary.

Fig. 1.0a is contained inB(w;, ;).

Corollary 2. Let V' be a local set containing u, located at the origin o and
{B(uo,r0), B(u1,71), ..., B(us,r,)} beitslocal disk set. The skyline of thislocal disk
set is composed of a closed sequence of intercepted arcs vertices at the origin.

Proof. First of all, we will show that a ray originated fromintersects the skyline of the
local disk set at exactly one point. Sinag, the origino, is inside any local disk, any ray
R originated from the origi intersects the boundary of some local disk at a peisuich
that the subray?’ originated fronm is entirely located outside of the skyline excepNow
we claim that the intersection poiatmust be on the skyline. If not, thenis located in
an open set, the interior of the skyline. From the definitibaroopen set, there are some
points other tham are inside the skyline but on the sub&y— {a}. Itis contradictory to
the fact that the subral’ — {a} is entirely outside the skyline. Next, we only need to show
the uniqueness of the intersection point. Assume there aveag that intersects the skyline
at pointsa andd’. Without loss of generality, we also assumis farther away frono than

b'. Sincea is on the skylineg is ond B (u;, r;) for somei. According to Lemm4, we have
oa C B (u;,7;). Thisimpliest’ is inside ofB (u;, ;) but not ond B (u;, r;). Therefored’
cannot be on the skyline. Therefore, we have shown that arigiypated fromo intersects
the skyline of the local disk set at exactly one point. Novth# ray is rotated around the
origin one full circle, it will intersect the skyline a clodeurve. It is easy to see such curve
is formed by intercepted arcs vertices at the origin. Thesctirollary is proved. O

For the purpose of expressing the skyline arc sequence, kteasarc crossing the
positive x-axis into two arcs at the intersection point. Algke arc can be represented by
a quadrupldc;, uj, rj, ai41) in whichw; andr; respectively are the center and radius of
the disk contributing this skyline arc, angd anda; 1 with «; < «;41 are two polar angles
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Y

Fig. 2. An arca,;b; is represented by 4 parametérs;, u;, 7, ov;11), whereu; andr; are the center and radius
of the disc contributing the arc, arg anda; 1 are angles corresponding dg andb; observed ab.

corresponding to two endpoints of the skyline arc. An exanplgiven in Fig.2. Please
note that the reference point to measure anglenda,; is o, notu;.

A skyline consisting of: arcs are represented @8, ws,, sy, V1, Usy, sy y A2y oevy O ),
where) = ap < a1 < ... < o, = 2wandforanyi,i =1,2,...,n—1, (q;, us,, s, , ¥it1)
is an arc of the skyline.

Now, the following theorem provides an important relaticivieen the MLDCS of a
local setV and the skyline set of the corresponding local disk set.

Theorem 3. For agivenlocal set V = {ug, u1,...,uy}, its MLDCSis the skyline set for
the corresponding local disk set { B(uo, r0), B(u1,71),- .., B(tn,79)}.

Proof. We first prove that the skyline set is a local disk cover setsufise
a skyline is composed of intercepted aresbi,asbs,...,arb, contributed by
B (uiy,7iy ), B (Wiy,7i,) - .., B (ui,, 73, ), respectively. Letta;ob; denote the sector-
like area (see Fig2) surrounded by line segmentsa;, ob;, and intercepted arc
ajb;. The covered aredJ! ;B (u;,r;) is equal to the union of sector-like ar-
eas Ule <ajob;. According to Lemmal, for each skyline arca;b;, we have
<Iaj0bj Cc B <1L¢_j,T¢_j). Thus, UZL:O B (ui,m) - U?:l B (uij,rij). This means
{B (ui,,7i,), B Wiy, 7iy) ..., B (us,ri, )} is alocal disk cover set df.

Next, we prove that this cover seB (u;,, 7, ) , B (tiy, 74y ) 5 - - -, B (w4, 73, )} 1S mMin-
imum by claiming that no disks from the local disk cover set ba eliminated to form
the new disk cover set df. Assume that;; is a center of any disk of the local disk cover
set{B (wi,,7i,), B (Wiy,7iy) ..., B (ui,, )} Leta be a point (but not an intersection
point) on the skyline arc contributed by ti&(u,, ;). See Fig3.

By the definition of the skyliney is outside of any disk excef®(u;,r;). Therefore,
for anyj # i, we have|lu; —a| > r;. Letr = i (min;j, [|u; —al| —r;). For any
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Fig. 3.B (a,r) N B (u;, ;) is exclusively covered byB(u;, ;).

x € B(a,r)andj # i,

s = 2ll 2 llu; —all = |}z ~ al
1 .
> lu; = afl = 5 (min oy — all = ;)

> llug = all = (luj —all = 5)
=Tj.

Thus, for anyj # 4, B(a,r) N B(u;,r;) = @. This implies thatB (a,r) N
B (u;, ;) belongs toB (u;,r;) but does not belong to any other disk. This means that
{B(ui,,7i,), B Wiy, 7i) .., B(us,ri,)} is @aminimum local disk set. So the theorem
is proved. O

3.2. A divide-and-conquer algorithm

According to Theoren3, computing the MLDCS of a local set is the same as finding the
skyline set of the corresponding local disk set. In this sabien, a divide-and-conquer
algorithm is proposed to find the skyline set. Recursivélg,disk set is divided into two
subsets of disks. After skylines of both subsets are fourrétayrsive calls, they are merged
to find the skyline of all disks. As stated previously, thesrefice point to measure angles
a; anda; 41 is o. Note that the positiom (i.e., o) and the value, are stored as global
variables in thel\lerge procedure.

Skyline (DS) is a divide-and-conquer algorithm, and the most of work isedim the
procedureM erge. There are three steps Merge.

Inthe first step, two skylines are aligned by splitting aroshsthat two skylines have the
same angle sequences. For example, asstifie= (8o, u{, 7, , A1, ui, 70, B2, .-, Br)
and SL2 = (v0,00,7},, 71,017, V2, - ) are two skylines. Le{ag, a1, -, am)
be the monotonic sequence of angles such {hat oy, -+, am} = {50, b1, ..., Bk} U
{v0,71,---»71}- Then,SL1 andSL2 are refined according to angles, ay, - - + , . After
that, both lists should have the same angle sequences ariersiof arcs, and we may
assumMeS L1 = (ap, U1, Tuys Q1 y -y Q) ANAS L2 = (g, V1, Ty 5 Q1 weey Qi)
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PROCEDURE 2 Skyline (DS = {(u1,7uy) s ey (Uny T, ) })
Require: (u;,7,,) represents the center and radius of a disk.
if |[DS| = 1 then
return the skyline of {B (uy, 7y, )}
end if
if |[DS| > 1 then

DS1 = {(uwul)m (“L’;J’“LSJ)}

DS2 = { (ULHH’TULSJH s ooy (Uny T,)
Skylinel = Skyline (DS1)
Skyline2 = Skyline (DS2)
return Merge (Skylinel, Skyline2)
end if

PROCEDURE 3 Merge (SL1,SL2)

Require: SL1 and SL2 are skylines.
Refine SL1 and SL2 to align arcs in skylines. Then, we may assume SL1 =
(00, Uty Ty s A1y ey Q) @D S L2 = (0, U1, Ty s Oy weny Q)
For each i, i = 0,1,...,m, determine new skyline arcs from (ay, u;, ry,;, ;1) and
(Oli, ViyTu;y O[i+1).
Combine neighboring skyline arcs that are from the same disk.
return the new skyline

In the second step, for ea¢hi = 0,1,...,m, new skyline arcs are determined from
(i, Uiy Ty, cip1) @Nd(ay, v, 14, , ;1) through the following procedure.

Given two arcya, u, 1, 8) and(a, v, 1, 3), we have following three cases to deter-
mine the new skyline arc.

(1) Arcs(w,u,ry,3) and(a,v,r,, 8) have no intersection. One arc is closer to the origin
o than the other, and the arc closer to the origioan not be in the new skyline. For
instance, in Fig4(c), arca’t’ is the new skyline arc of aregb’ andab betweerl; and
l5.

(2) Arcs (o, u,ry,8) and («,v,r,,3) intersect at one poine. Let v be the angle
corresponding to the intersection point. Applying the pipfe used in casé&, new
skyline arcs can be determined from ares u,r.,,v) and («,v,r,,7), and arcs
(v, u, 1y, 8) and(y,v,r,, 8). For instance, in Figd(c), arcsb’g andge’ are the new
skyline arcs of arc8’e andbe’ betweerl; andis.

(3) Arcs (a,u, 7y, 8) and («, v, 1y, 8) intersect at two points, f. Let y; and~, with
~v1 < 2 be angles corresponding to intersection points. Applylreggrinciple used
in casel, new skyline arcs can be decided from afasu, r,,v1) and(«, v, 74, 71);
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@ (b)

Fig. 4. (a) Skyline one before refined. (b) Skyline two befi@kned. (c) Merged skyline. In part (c), two arcs (1)
between/; andl; have no intersection, (2) betweénand!s have one intersection point, (3) betwegrandiy
have two intersection points.

arcs (y1, u, 7y, y2) and (y1,v,7,,72); and arcs(yz, u, ., ) and (v, v, 7y, 5). For
instance, in Fig4(c), arcsch, hji andid’ are the new skyline arcs of ared’ andc’d
betweens andly.

In the last step, since one arc may be split into several piecthe first and/or second
steps, we try to combine neighboring skyline arcs if theyfewen the same disk before
returning the new skyline.

4. Time Complexity Analysis

In this section, we show that the time complexity of the pisgzbalgorithm i© (nlogn),
wheren is the number of disks in a local disk set. The time complexdy be formulated
by the following recursive equations:

Tm)=0(@1)ifn=1,
T (n) =2T (%) + f (n) otherwise.

Heref (n) is the time complexity time oM erge. Sincef (n) is linear with respect to the
number of arcs, and the fact provided in Lembizthat the number of arcs of a local disk
skyline is at mosen, we havef (n) = O (n). Hence, according to the master theorem
[7], T (n) = O (nlogn). Leaving the long tedious proof of Lemni4 at the end of the
section, we first state the theorem of time complexity, arahtphrovide related lemmas
which support the proof of LemnihlL

Theorem 4. Thetime complexity of Skylineis© (nlogn), wheren isthe number of disks.

It has been shown ifiL7] that the time complexity of the algorithm that computes the
minimum local disk cover set for homogeneous networks, (ak.nodes have the same
radius) isQ) (nlogn). Since homogeneous networks are special cases of hetemgen
networks, the time complexity for the algorithm that congsuthe minimum local disk
cover set for heterogeneous networks is &lga log n). Hence, the proposed algorithm is
with the optimal time complexity.
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4.1. Geometry of local disks

Before we show the main fact that the number of arcs in a si&gfn local disks can not be
more thar2n, we first provide some geometric facts about these diskifolfowing four
lemmas. We will prove the main fact stated as Lenirhat the end of the next subsection.
From now on,B; is shorthand fo3 (u;, ;). Let{ By, By, ..., B, } be alocal disk set.

Lemmab. LetU = {By,..., B,} beasubset of alocal disk set. If B,,, € U contributes
at least three (> 3) arcs of the skyline of U, then we can pick three disks B;, B;, By,
from{By,...,B,} — {By} suchthat B, contributes exactly three arcs in the skyline of
{B;, Bj, Bi;, B, }.

Proof. SinceB,, contributes at least three arcs of the skylind/gfwe can choose three
skyline arcs from them. Among these three skyline arcsethe six endpoints which are
on the skyline. Now consider the sub&gt(C U) those disks whose boundaries intersect
0B,, at these six endpoints. The possible numipgr)(of such disks can be three or more
since the boundary of each such disk can have at most twe@ton points withd B,,, .

If the number of those disks is three, we are done. So, if taeranore than three disks,
at lease one disk interseats®3,,, exactly at one point on the skyline. If the number of
skyline arcs ofU/ contributed byB,, were decreased when we remove one such disk,
the only possibility is that two skyline arcs contributed By, are merged and they must
intersect the removed disk. This contradicts to that theoresd disk interseci@B,,, exactly

at one point on the skyline. Thus, for the skyline formed by thmaining disksB,,, still
contributes three skyline arcs, but the number of disksdaeed by one. The skyline arcs
contributed byB,,, are presented as dashed lines in Fi§a) ands(b). The figures illustrate

a configuration in whickB,,, contributes three arcs in the skyline{d®;, Bz, Bs, B4, By}

The B,, still contributes three arcs in the skyline{aB,, B2, Bs, B, } after we remove the
disk B, whose boundary intersectd3,,, at exact one point on the skyline. This process

() (b)

Fig. 5. (a)Bm, contributes three arcs to the skyline{d8:, Bz, B3, Ba, Bm }. (b) B, still contributes three arcs
to the skyline of{ B1, B2, B3, By }-
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can be repeated until the number of the remaining diskségtands,,, contributes exactly
three arcs in the skyline of the remaining three disks. Thaségmma is proved. O

Itis clear that the number of disks in the §&in Lemmab5 should be greater than three.
Since if|U| < 3, the statementB,,, € U contributes at least three (3) arcs of the skyline
of U” can never be true.

Lemma6. Let {B1, B2, B3} be a subset of a local disk set. The boundaries, 9B; and
0Bs, intersect each other at two points a and d. The boundary 9 B3 containing the points a
and d (Here, we mean that pointsa and d are inside 0 B3.) intersects 9B; at points {b, e}
and intersects 0B- at points {c, f}. See Fig. 6. A disk By, selected from the local disk
setisadded to the skyline of { By, Bs, B3} to formanew skylineof { By, By, Bs, Bi+1}. If
By, contributesthree arcsto the skyline of { By, Ba, B3, Bi.+1} then thefour intersection
points {b, ¢, e, f} must be inside the disk 9By, 41.

Proof. We prove this lemma by exhaustion on the number of skylinergeiction points
enclosed by the new skyline arcs. All are claimed to be cdittary to the fact that bound-
aries of two local disks intersect at most two points if thekdboundary) By.,1 does not
contain the four intersection poin{$, ¢, e, f}. Figure6 is provided to aid the proof. The
dashed arcs on the figure are some (not all) possible skylosecantributed byBy 1.

Fist of all, we assume that the three skyline arcs contribbieBy,, enclose none of
the four intersection pointéb, c, e, f}. From the Fig6, it is easy to see that these three
skyline arcs would be Arcs 1, 3, and 2 or 4. Assume fBat, contributes Arcs 1, 2, and
3. The non-skyline arc od By, between Arcs 1 and 2 would intersetB, anddBs.
Therefore, we found thd@tBy, ., intersects) B, at more than two points, two on Arc 1 and
one on the above non-skyline arc. The same result can benettéir the case thds;
contributes Arcs 1, 3, and 4. This contradicts to the fact the boundaries of two local
disks intersect at two points.

g T
\\\x 4
9

Fig. 6. Possible skyline arcs contributed By, ; .
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Secondly, we assume that the three skyline arcs contriltyté?). . ; enclose only one
of the four intersection pointéb, ¢, e, f}. Without loss of generality, assume one of the
three skyline arcs is Arc 5. So, the remaining two skylinesdrave to come from Arcs
1, 2,3, and 4. It is easy to see that Arcs 1, 2, or 4 can not be m@ypbthese remaining
two skyline arcs since Arc 5 intersed®3; anddB3 and Arcs 1, 2, and 4 on eithéB.
and 0Bs. So, the three skyline arcs contributed By, enclose only one of the four
intersection pointgb, ¢, e, f} is not possible.

Thirdly, we assume that the three skyline arcs contributed3p, ; enclose two of
the four intersection point$b, c, e, f}. There are two situations about the skyline arcs
enclosing these points: one situation is that two skylirs anclose one intersection point
each and the other situation is that one skyline arc, suchi@8 Aencloses two intersection
points. Itis easy to see that the second situation is noflesSince the Arc 9 intersecting
0B and0dB,, Arcs 1 and 3 can not the skyline arcs. Also since Arcs 2 andetsact the
same disk boundar§ B3, both can not be simultaneously chosen as skyline arcs. As fo
the first situation, the possible skyline arcs choices{&&,6} and{1,7,8}. Using the
previous same argument, we derive, in either way, the samigachction, boundaries of
two local disks intersecting more than two points.

Lastly, we assume that the three skyline arcs contributed®fy; enclose three of
the four intersection pointéb, ¢, e, f}. From the previous argument, no skyline arc can
enclose more than one intersection point. Without loss okgality, we assume that the
three skyline arcs are Arcs 5, 6, and 7. Using the same arguomeArcs 5 and 7, we
derive thatd By, intersects) B at three points. Thereforé,B;,1 must cover the four
intersection pointsb, ¢, e, f}. O

The above lemma can be stated as follows: A four-arc skykoeit(has four inter-
section points) is formed by three local disks. One of thiaseetlocal disks contains two
intersection points of the other two local disks’ boundgriéa fourth local disk is added
and contributes three skyline arcs, then it has to contaiifidir skyline intersection points.

In addition to forming a four-arc skyline, three local dist@n also form a three-arc
skyline (so it has three intersection points), where eask abntains one intersection point
of the other two disks’ boundaries. It can be proved, in theesavay, that if adding a
fourth local disk which contributes three skyline arcs thdras to contain the three skyline
intersection points. Since the proof is very similar to time of four-arc skyline case, we
will only state it as a lemma without proof.

Lemma?. Let {B;, Bs, B3} beasubset of alocal disk set. Let a be the intersection point
of 0B, and 0B5 not indBs; b be the intersection point of 9B, and 9 B3 not in 0B5; and
¢ be the intersection point of 0B, and B3 not in 0B;. See Fig. 7. In order to contribute
three arcs, a fourth local disk 9 By,11 must intersect three disks and contain {a, b, c}.

Lemma8. Let B; and B, be two disks from a local disk set. Assume their boundaries,
0B; and 0B, intersect at two points a and d. Let ac’ and ab’ be the diameter of B, and
Bs, respectively, and let ¢ and b be on the intercepted arc ¢’d (of inscribed angle ¢’ ad) and
theintercepted arc b’d (of inscribed angle Zb’ad), respectively. See Fig. 8.
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Fig. 8. The structure in Lemnta

If the angle Zcab is obtuse (this implies that two centers of B, and B; are separated
by theline ad), we have ||b — ¢|| > 2min (r1,72) .

Proof. First, we consider an extreme case in whidby, ando B, are tangent to each other
ata, i.e.,c,a,b’ are on a line and is merged witha and pointsc’ andd’ are located on
different sides of the tangent line throughSee Fig9.

Fig. 9. An extreme case wheéhB; anddB> are tangent.
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Since Zc'c’a and Zb'b"a are right angles/c”ab” is obtuse,Zc’c’a greater than
Zb"ab’ . If r1 < 1y, we have

10 = ¢"|I* > lla— "> + la — b"||* (law of cosine and/c”ab” an obtuse ang)e
2
> lla— | + (7"—2 e — c"||) (£" ¢ a larger than/b” ab)
|

=lla—¢"|* + |l = &"|)?

2
T ((%) —1) e — |2
2
T
- (27”1)2 + ((ﬁ) — 1) ¢/ — c”||2

> (2r1)2 = (2min (11, 72))?

Similarly, if ro < r1, we also have

2
18— N2 > (2r)? + ((—) - 1) 1 — b2

> (2r2)” = (2min (11, 72))*

Thus, the lemma is correct for this extreme case.

The inequality can be extended for general cases by thenioiipsimple observation.
RotateB; and/orBs; of Fig. 9 arounda and the positions of poinis, b andc¢” are fixed
such that theZc’ab’ become smaller and closer to thHe”ab”. But don't let the diameter
ac’ and the diametetd’ cross overnc” andab”, respectively. Let denote the intersection
of the rayc? andoB; andb denote the intersection of the r@ andoB.. See Figl0.

We have|ja — b]| > |la —b"|| and|ja — ¢|| > ||a — ¢"||. Thus,||b—c¢| > [|b" — ||
So, the proof is complete. O

Fig. 10. RotateB; and By arounda. ¢ denotes the intersection of the ray” and 9B; and b denotes the
intersection of the rayb’’ anddBs. Then, we havélb — c|| > ||b" — ¢"||.
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4.2. Triangle as chords of four circles

Lemma 9. For each edge of an acute or right triangle, a circle is drawn through the two
endpoints of the edge (i.e. as a chord of a circle) and its center is outside the triangle and
the radius equalsto the circumradius of the triangle. Then, the three circlesintersect at the
orthocenter of the triangle.

Proof. Let Aabc be an acute or right triangle ad¢g| be the circumcircle of\abe. Letab
(respectivelypc andac) be a chord foC; (respectively(Cs andCy), a congruent circle of
C1, with its center outsiddabc. See Figll(a).

To prove this lemma, it is enough to show that the orthoceuitéxabc is on Cy, Cs
andCjy. Figurell(b) illustrates the relation betweén andCs, and we will prove that the
orthocenter is or’,. Draw a line frome perpendicular to the segmeuit intersectingC
atd, ab at f, C; ath andC; ate, respectively. Ley be the intersection point of Iineﬁ
and&é. We are going to showg andac are perpendicular, and thudss the orthocenter of
Aabe. SinceC, andCs, are congruent andb andce are perpendicularae f and Aacf
are congruent. S{aef = Zacf. SinceZaed and Zabd are inscribed angles @f; and
correspond to the same intercepted@ic/aed = Zabd. Thus,Zabd = Zacf.In Adbf
and Adcg, Zdbf = Zdeg and Zbdf = Zcdg, SO0 Zbfd = Zegd. SinceZbfd = 90°,
Zegd = 90°. Thus,bg andac are perpendicular anef andab are perpendicular, andlis
the orthocenter ofAabc. Similarly, we can show that the orthocenter®ibc is onC5 and
Cy, too. So, the lemma is proved. O

Corollary 10. or each edge of an acute or right triangle, draw a circle through the two
points of the edge (i.e. as a chord of the circle) and the center is outside the triangle
and radius is greater than the circumradius of the triangle. Then, three circles have no
intersection.

Now, we are ready to prove Lemni4. If adding a local disk into a disk set on a plane
will only increase the number of skyline arcs by at most twentthe number of skyline

(a) (b)

Fig. 11.C3, Cs, C4 intersect at the orthocenter &fabc.



Int. J. Found. Comput. Sci. 2012.23:1147-1172. Downloaded from www.worldscientific.com
by NATIONAL CHIAO TUNG UNIVERSITY on 04/28/14. For persona use only.

Minimum Cover Sets for Broadcasting in Heterogeneous Networks 1163

arcs ofn disks from a local disk set would be at m@st. Since the order of adding disks
into the disk set should not change the final skyline, we wiMe that lemma by assuming
that disks are added into the disk set in a decreasing ordkedalisk radius.

Lemma 11. The number of arcs of a skyline of n disks froma local disk set is at most 2n.

Proof. We will prove this lemma by mathematical induction on the ibemof disksn.
Without loss of generality, we may assume each disk cortg#hat least one arc in the
skyline and the last added disk is the smallest one.

If n = 1, there is only one disk, and thus, the skyline consists ofawogthe boundary
of the disk.

If n = 2, two boundaries of two disks intersect at most of two poifitere are at most
two arcs in the skyline. See Fij2(a).

If n = 3, since the fact that two circles intersect at most two pantsassumption that
each disk contributes at least one skyline arc, the relsttiipnof three local disks can be
categorized into two topologies as shown in Fip&b) and12(c). In Fig.12(b), each disk
contains one of the intersection points of the other twogliskundaries, and the skyline is
composed of three arcs. In Fit(c), one disk contains two intersection points of the other
two disks’ boundaries. Note that the case in which threestislve a common intersection
point like Fig.13is categorized to the first topology.

No matter what, the skyline of three disks is composed okeitifree or four arcs.

Now, assume that as = k (> 3), the skyline has at mo&t arcs. If we can show
that after a diskBy.; is added into the set, the number of arcs in the skyline ise®at
most by two, namely we prove the fact that the number of arde@hew skyline is no
more than2 (k + 1) arcs. Assumé3;1 contribute at least three arcs. SinBg,; con-
tributes at least three skyline arcs in the skyline{&,, Bs, ..., Bx+1}, by Lemmab,
without loss of generality, we may assume th&t, ; contributes three arcs in the skyline
of { By, Bz, B3, Bj11}. From the discussion of = 3, the disksB;, B2, B3 have possible
topologies as shown in Fig2(b) or 12(c). We will discuss the problem based on these two
topologies.

(@) (b) (©)

Fig. 12.n < 3, the skyline containgn arcs at most. (a) Two disks, (b) and (c) three disks.
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b

Fig. 13. Three disks have a common intersection point.

Case |: First, we consider the topology like Figg2(b). Leta be the intersection point
of 9B, anddB; not indBs; b be the intersection point @fB; andd B3 not in 9 B,; and
¢ be the intersection point @iB, andd B3 not in 9B;. In order to contribute three arcs,
by Lemma7, 9 B;+1 must intersect three disks’ boundaries and confai, c}. Now, the
problem is discussed according the shape of the triagle: : (1) Aabc is an acute or
right triangle; and (2Aabc is an obtuse triangle.

SubCase I-1: Aabc is an acute or right triangle. Let. be the circumradius aAabc.
SinceAabc is an acute or right triangle anf,; containsa, b, ¢, we havery_; is larger
thanr.. In addition, sinceBy1 is the smallest one amorigy, Bo, . .., Br1+1. SO, we have
re < rgp1 < 11,72,73. BUt @according to CorollarylQ, if 1, 79,73 are larger tham.,
By, B, B3 have no intersection. This is contradictory to the fact thatintersection of
By, By, Bs is not empty.

SubCase I-2: Aabc is an obtuse triangle. Without loss of generality, we assuimgé
is obtuse and is the other intersection point 6fB; anddBs. SinceBj1 must intersect
3 disks’ boundaries and contafn, b, ¢} andry1 < r1, 72, 73, degrees of arckab, be, ca}
of the skyline of{ By, By, B3} must be larger than, like Fig. 14(a). If ac’ is a diameter
of B, andab’ is a diameter of3;, b’ and¢’ are on the skyline of By, By, B3}. ¢ is on
the arcc’d andb is on the ard/d. According to Lemm@B, if Zcab is obtuse, we have
[[b— ¢|| > 2min(ry,r2). On the other hand, sind8;; containsAabc, we havery,, >
% |b — ¢||. Thus, we have a contradiction.

Casell: Next, we consider the topology like Fi@j2(c). Without affecting the correct-
ness of following argument, we assurBe is the one containing two intersection points of
the two boundaries of the other two disks. ket denote intersection points 03, and
0Bs, andc, f denote intersection points 63, ando Bs.

From the description of the relationship Bf , Bo, Bs, it is easy to see that the points
{c, f} and{b, e} are located on the opposite of the liné. By Lemma6, 0B, needs
to enclose exactly four intersection poifts ¢, e, f} in order to contribute three arcs of
the skyline of{ By, By, B3, Bi.+1} like Fig. 14(b). SinceB.; is smaller tharB,, B, and
has to contain points, ¢, e and f, arcbe of B; outsideB3 and arccf of By outsideBs
are larger thamr. So, the center oB; is on the same side of pointise, and the center of
By is on the same side of pointsf. Also, the diametend’ of B; and the diameterc’ of
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Fig. 14. In this configurationB;,; does not contribute three arcs. (8) 1 covers three intersection points and
(b) By,+1 covers four intersection points.

By are outside ofAabe. Again, sinceB;.1 is smaller thanBs and has to contain points
{b,c,e, f}, the arche of B3 outsideBy, B; is larger thanr. So, an inscribed angléb fc¢
(not shown) is greater thary2. It is easy to see that the angi®ac is obtuse. According
to Lemmas, just like Case -2, we have2r,; > ||b—c¢|| > 2min(r1,r2). Thisis a
contradiction.
According to previous discussioBy.1 can not contribute three arcs to the skyline of

{Bi,: -+, Br+1}, and therefore, the number of arcs in the skylind Bf,--- , Bi1+1} is

at most2(k + 1). By mathematical induction, we conclude that the numberos an the
skyline ofn disks is upper bounded [y:. O

5. Performance Evaluation

In this section, we compare the performance of the skylmsed algorithm with that of the
flooding algorithm and a recently developed greedy algoritialled H2DRF2]. Although
the flooding algorithm is considered inefficient use of nogslources and unnecessary
bandwidth consumption, it achieves the highest reaclhabitid requires no network topol-
ogy information. We use the performance of the flooding alfgor as the lower bound.
Dominant Pruning (DP), a well known broadcasting protobals been claimed by Lim
and Kim[11] as one of the promising approaches that utilizes 2-hop beigg infor-
mation to minimize the forwarding sets. H2DP (History-lmh&hop Dominant Pruning)
falls in the category of the DP algorithm. H2DP was used inpagormance comparison
because Agathos and Papapetrou claimed that H2DP is sufmefid® in a low mobility
(Im/s) environment which is matched to the design goal ofskydine-based algorithm.
HDP, an optimization of H2DP, was not used in the performaoreparison, because it is
designed for highly mobilex 20m/s) and sparse networks.

In the flooding algorithm, a node will retransmit the broagtaaessage which is re-
ceived by the node for the first time. H2DP modifies DP and DR @&skop neighbor-
ing information obtained through exchanging “hello” megss Each rebroadcasting node
chooses some of its 1-hop neighbors as forwarding nodey. tBose chosen nodes are
allowed to rebroadcast. Nodes inform forwarding neighlibgrpiggybacking their IDs in
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a list in the header of each broadcast message. When a n&ileeea broadcast message,
it checks the header to see if its ID in the list. If so, it usesdaély Set Cover (GSC) al-
gorithm [7] to determine the forwarding set, given information of whigiighbors have
already received the broadcast. In addition to the forwaydodes, H2DP also piggybacks
the Packet History in the header of each broadcast messhg®acket History records all
the nodes that have received the broadcast message as sagmisbroadcasted from the
source node moving forward toward the current node. UsiadPdicket History, H2DP is
able to eliminate some 2-hop neighboring nodes which haready received the broadcast
message. Therefore, each node can build its own forwardihgysGSC approach with
less 2-hop neighboring nodes needed to receive the brdadeasage. In addition to the
method of creating forwarding sets, the skyline-basedrélguo also differs from DP in
that the nodes in the forwarding set created by the skylase=d algorithm cover the trans-
mission areas of all 1-hop neighbors. Also, the skylineebasgorithm does not need to
collect neighbors’ 1-hop neighbor information. Furthermdhe skyline-based algorithm
does not need the Packet History information used by H2DP.

In order to create forwarding set, each node using eitheskyéne or H2DP algorithm
needs to collect its 1-hop and/or 2-hop neighbor infornmat®uch neighbor information
may be stored in beacon (or hello) messages and exchangedipalty. Changing the
structure of beacon (or hello) message or adjusting thagmeriod of sending beacon (or
hello) message can affect the simulation results difféyefd avoid this artificial effect, we
will not consider the creation and sending of beacon (oohetlessages (the effect of MAC
layer) during the collection of values dklay andruntime in the simulation. Therefore,
when defineAverage delay and Average runtime below, we assume that each node has
already received all necessary beacon (or hello) messegesall its 1-hop neighboring
nodes. However, the performance impact of those beaconre(lm) lmessages cannot be
ignore, they will be collected separately as another perémce metric.

The following performance metrics will be used to evaluateste broadcasting
algorithms:

e Average number of retransmissions. The number of retransmissions of a broadcast mes-
sage for an algorithm is defined to be the total number of tnéssons of the broadcast
message until it is received by all nodes in the network.

e Average delay: The delay of a broadcast message for an algorithm is defindtea
number of transmissions (or hops) needed for a messagedastad in the network
from the source node to the last node which receives the basador the first time.

As mentioned above, thidgelay excludes the time to collect the necessary neighboring
information for creating the forwarding set for each node.

e Averageruntime: The runtime analysis of the skyline-based algorithm hasipeovided
in Sectiord. To align with the analysis, we only compare the runtime agragorithms
of computing the forwarding set of a given node in its 2-hojghkorhood as did in the
analysis. As mentioned above, thigntime excludes the time to collect the necessary
neighboring information for creating the forwarding saetéach node.

e Average number of beacon messages: The number of beacon messages is defined to be
the total number of beacon (or hello) messages exchange2-hoa neighborhood of a
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given node. Those messages are necessary for some algotitluneate the forwarding
sets of nodes in a 1-hop or 2-hop neighborhood.

5.1. Simulation setting and assumptions

We use C++ as our simulation tool. The simulated network ieegeted by randomly plac-
ing nodes over an area of square that has side length of 49 Whi¢ area is wrapped both
vertically and horizontally to eliminate the edge effechch node has a unique ID and is
randomly assigned a transmission radius from the range@fod ten. We generate 500
networks for each of the five different node sets, 100, 200, 300, and 500 nodes in
the simulated area, respectively. For the case of runtimgpeoison simulation, we only
consider 2-hop neighboring nodes of the broadcasting notteei simulated area. Node 0
is set as the broadcasting node and randomly deployed. Weatie flooding algorithm
to verify whether the generated network is connected or@ne broadcast message was
produced and flooded to all nodes in the network from Nodetbelfgenerated network is
not connected, it is discarded and a new one will be genetateusure the connectivity of
the simulated network.

5.2. Simulation results and analysis

5.2.1. Average number of retransmissions

The first performance metric, message broadcasting owértisaconsidered in this
subsection. The overhead simulation results includingamesretransmission times with

Table 1. The mean retransmission times, percent changgln@&knean-change/H2DP-mean), and 95% Con-
fidence Intervals (Cl) for H2DP and skyline.

[ Node Density | 100 | 200 | 300 | 400 | 500 |
H2DP-mean 47.8 75.4 92.6 106.6 119.4
Skyline-mean 64.9 87.1 99.1 110.1 121.6
percent change 36% 16% 7% 3% 2%
H2DP-95% CI [46.9, 48.6] [74.7,76.0] [92.1, 93.2] [105.8, 107.3] [118.7,120.0]
Skyline-95% ClI [64.5, 65.3] [86.5, 87.6] [98.5, 99.7] [109.5, 110.6] [120.9, 122.2]
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their percent changes of skyline-based over H2DP and 95%idemce Intervals (Cl) for
skyline-based and H2DP algorithms at different node diessére listed in Tablé. The
narrower confidence intervals with 95% confidence level yniypdh precision of our sim-
ulation results. It is clear that the number of retransmissimes of a broadcast message
equals the number of nodes deployed in the network for thelithgocase. For a better
visualization, the overhead simulation results are alsttgdl as a bar chart in x-y plane
and shown in Figl5. The x-axis is the number of nodes deployed in the simulated. a
The y-axis is the average number of retransmissions. Therfestransmissions a broad-
cast algorithm has, the better performance it has. From dénestart graph, we see that
skyline-based and H2DP algorithms have similar overheattitand the H2DP algorithm
generates slightly less retransmissions than the skplased algorithm does. However,
from the values of percent changes listed in table, the geemambers of retransmissions
of skyline-based algorithm tend to be reduced and towardeabof H2DP. Finally, as
expected, both skyline-based and H2DP algorithms have & touer number of retrans-
missions compared with the flooding counterpart.

5.2.2. Average delay

In this subsection, we study the delay performance amoregthlgorithms. The delay
simulation results including the average delay times awedt ¥5% CI for algorithms at
different node densities are collected in TaBleAnd its corresponding bar chart graph is
shown in Fig.16. Although the skyline-based algorithm has less delay tinaa tthat of
the H2DP algorithm, there is not much different between thElowever if we add the

Table 2. The mean delay times and 95% CI for all algorithms.

[ NodeDensity | 100 | 200 | 300 | 400 | 500
Flooding-mean 6.04 4.78 4.52 4.48 4.39
H2DP-mean 7.68 5.85 5.30 5.09 4.99
Skyline-mean 6.06 4.93 4.70 4.70 4.67
Flooding-95% Cl [5.94, 6.14] [4.72, 4.84] [4.46, 4.57] [4.43, 4.53] [4.34, 4.44]
H2DP-95% ClI [7.48,7.87] [5.75, 5.94] [5.23, 5.36] [5.02, 5.16] [4.93, 5.05]
Skyline-95% Cl [5.96, 6.16] [4.87, 4.99] [4.64, 4.75] [4.64, 4.76] [4.62, 4.73]
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Fig. 16. Delay Performance Comparison of Skyline, H2DP,featling.
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impact of the collection of 1-hop and 2-hop neighboring infation shown in Tabld of
Subsectiorb.2.4 the actual delay of the skyline-based algorithm should bemshorter
than that of the H2DP algorithm.

5.2.3. Average algorithm runtime

In this subsection, we examine the average runtimes amasg thigorithms in building
a forwarding set for a rebroadcast. For the flooding algorjta node will retransmit the
broadcast message which is received by the node for theifirsi therefore, there is no
need to build any forwarding set. The runtime simulatiomtssncluding the average run-
times with their ratios and the 95% CI for other two algorighat different node densities
are recorded in Tablg And its corresponding bar chart graph is shown in Eigj.The x-
axis is the average number of neighbors within a 2-hop neididnd, and the y-axis is the
average runtime in milliseconds. Please note that the decoralues themselves are not so
important since they depend on the system processor ang&@in the simulations. The
important is the ratio between the two values. The simutatgsults £ 0.0780 (nlogn))

of skyline-based algorithm do match our analysis done iti@e4. The average runtime of
the H2DP algorithm is less and about 60% of that of the skytiased algorithm in build-
ing a forwarding set in our simulation environment. Thisescluded without considering
the impact of the creation and sending of beacon (or hell®samges for calculating for-
warding sets. Taking such impact shown in Tablef Subsectiorb.2.4into consideration,
it is easy to see that the skyline-based algorithm should haetter runtime performance
even these two performance metrics (or units) are different

Table 3. The mean runtimes (ms), Ratios, and 95% CI for H2PSkyline.

Node Density | 5 | 10 | 15 | 20 | 25
H2DP-mean 0.181 0.427 0.797 1.282 1.770
Skyline-mean 0.257 0.742 1.352 2.132 2.917
H2DP-mean/Skyline-mean 0.71 0.58 0.59 0.60 0.61
H2DP-95% CI [0.177,0.186] | [0.418,0.435] | [0.785,0.808] | [1.264,1.300] | [1.747,1.792]
Skyline-95% CI [0.246,0.268] | [0.727,0.756] | [1.335,1.369] | [2.111,2.154] | [2.900,2.935]
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Fig. 17. Runtime Performance Comparison of Skyline and H2DP
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Table 4. The mean number of beacons and 95% CI for H2DP anih8kyl

[ Node Density | 5 | 10 | 15 | 20 | 25 |
H2DP-mean 280.7 1516.3 4203.1 8684.2 15394.5
Skyline-mean 70.1 178.3 296.8 431.5 566.3
H2DP-95% CI | [274.1,287.3] | [1482.8,1549.8] | [4117.5,4288.6] | [8512.1,8856.2] | [15109.6,15679.4]
Skyline-95% CI |  [69.3,70.8] [176.5,180.1] [293.9,299.8] [427.6,435.4] [561.0,571.6]
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Fig. 18. Beacon Message Performance Comparison of Skylidé¢iaDP.

5.2.4. Average number of beacon messages

In this subsection, we collect the beacon (or hello) messagder the runtime simulations.
Since there is no need to build any forwarding set for the flog@lgorithm, we do not
have to collect the beacon (or hello) messages. The resgltgling the average number
of beacon (or hello) messages and their 95% CI for other tgyordhms at different node
densities are recorded in TaldleAnd its corresponding bar chart graph is shown in E&).
The x-axis is the average number of neighbors within a 2-leghiborhood, and the y-axis
is the average number of beacon (or hello) messages. As caadpethat the skyline-
based algorithm has much less average number of beaconsdead that of the H2DP
algorithm in building a forwarding set in our simulation @anment.

6. Conclusionsand Future Direction

The minimum local disk cover set can be used as a forwardinigg semultihop wireless
network to alleviate the broadcast storm problem withoutifeing the functionality of
the broadcasting. In this paper, we have established thieadenice of the MLDCS for a
neighbor set and the corresponding skyline set in heteemenmultihop networks. We
propose a divide-and-conquer algorithm, skyline, to commpioe MLDCS, and show that
the optimal time complexity of skyline i© (nlogn). Instead of 2-hop neighbor informa-
tion, MLDCS only need 1-hop neighbor information to seletdravarding set.

Simulation results show that the skyline-based algoritlguires slightly more re-
transmissions and higher runtime than that of H2DP algaritdowever, both algorithms
have the similar performance in the propagation delay. Huwwaare concluded without
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considering the impact of the creation and sending of beémohello) messages for cal-
culating forwarding sets. Taking such impact shown in Tdllgo consideration, it is not
hard to see that the skyline-based algorithm should havevaralb better performance.
Moreover, in an environment with a frequently changed netvanch as mobile ad hoc
networks, those algorithms which require the collectiordfop neighbor information
may induce other performance overhead, such as the dedagciator information gather-
ing. They will also be more difficult to collect and update @shinformation. On the other
hand, the proposed MLDCS only needs 1-hop neighbor infaamatherefore, it will be
more easier to implement and will perform better than H2Dmabile ad hoc networks.
Notice that a node may receive the message from another nbadwbthe other way
around. Namely, they are not neighbors of each other. Syehdf/unidirectional links are
omitted in our bidirectional link model and therefore thenstuction of the forwarding
set is not discussed in the study. We will investigate howtilize such type of one-way
neighbors to better distribute the power consumption oticasting in the future.
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