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Permeability and the Time Lag for Downstream Absorptive 
Permeation with Concomitant Reaction across a Series-Parallel 
Path studied by the Matrix Method 
Way-Gia Shi and Jenn-Shing Chen* 
Department of Applied Chemistry, National Chiao-Tung University, Hsin-Chu, Taiwan 30050, 
Republic of China 

Based on Siegel's theory, the permeability (P) and the downstream time lag (t,) for absorptive unidirectional 
permeation, accompanying a first-order reaction, across a membrane composed of two parallel laminae in 
series with another lamina, have been calculated from the transmission matrix of the whole membrane. This 
matrix can be constructed from the transmission matrix of each component lamina. The transmission matrix of 
the whole membrane is first calculated from the matrices of the component laminae in the Laplace domain. P 
and t ,  are then derived from the first row and second column of the transmission matrix of the whole membrane 
according to Siegel's theory. Thus, P and t ,  can be represented in terms of the elements of the transmission 
matrix, and hence the diffusion parameters, of each component lamina. The directional symmetry oft, is also 
proven, based on the unity value of the determinant of the transmission matrix. The advantage of the matrix 
method is also discussed. 

A typical experiment for permeation across membranes 
involves maintaining the penetrant activity at constant levels 
a, and a d ,  at upstream and downstream faces, respectively. It 
is usually carried out under conditions such that a, > ad = 0 
and the initial concentration of the penetrant inside the mem- 
brane is It is then followed by measuring the total 
amount of penetrant released into the downstream com- 
partment, Q(t), as function of time, t. The steady-state per- 
meability, P, and absorptive downstream lag time, t,, are 
obtained, from the slope and the intercept (with the t-axis) of 
the linear asymptote of the curve plotted for Q(t) us. t.3-5 In 
some practical applications, the parameters P and t, are ade- 
quate to predict Q(t) in the long-time limit3-' by 

Q(t) = P(t - t d  (1) 
Several attempts have been made to derive P and t, for 

various diffusion systems. Earlier, Frisch used a very elegant 
method of repeated integration to formulate P and t, in the 
system where the diffusivity, D, is concentration dependent.6 
Similarly, diffusion across a heterogeneous membrane in 
which both D and the partition coefficient, K ,  are position- 
dependent'-'* was studied. The method of integration was 
also adapted by Chen and Rosenberger for permeation, 
without accompanying reaction, across laminates with or 
without periodic structure,' ' and a membrane composed of 
two parallel laminae in series with another lamina.' 

Of increasing importance are membranes with imbedded 
reactive catalysts or enzymes to enhance the productivity of 
chemical or biological processe~,'~ to enhance the per- 
formance of biosen~ors '~ or to simulate active transport 
using an uneven distribution of enzyme activities.' ' However, 
the method of repeated integration fails to calculate P and t, 
in the case of permeation with concomitant reaction. There- 
fore, we were forced to resort to other methods such as 
Laplace transform and change-of-variable. ' Leypoldt and 
Gough also chose the method of finite Fourier transform in 
conjunction with residual theorem in complex variable 
theory to deal with a reaction-diffusion problem.' Siege1 has 
given a detailed account of the matrix approach for the 
analysis of the diffusion problem including the formulation of 
permeability, time lags, time leads and mean first-passage 
times in terms of the elements of a transmission matrix.18 
Earlier reports using a matrix approach to membrane diffu- 
sion problems are also in the l i t e r a t ~ r e . ~ , ~ ~ , ~ ~  

The aim of this paper is to formulate, using the matrix 
approach, P and t, for permeation, concomitant with a first- 
order reaction, across a membrane consisting of two parallel 
laminae in series with another lamina. 

Transmission Matrix, Admittance Matrix of a 
Single Membrane 

Mathematical analysis in the Laplace domain for a unidirec- 
tional absorptive permeation accompanying a first-order 
reaction across a membrane leads to a linear transport 
equation18*21 

Here, s is the Laplace variable, &,(s) and &(s) are the Laplace 
transforms of the activity a,(t) (= p,(t)/K,), and diffusion flux 
J,(t) into the membrane at the upstream face, p,(t) and K ,  
are the penetrant concentration and the partition coefficient 
at the upstrea? face. The counterparts at the downstream 
face are &(s), J&), &(t) and K d .  It should be remarked that 
while eqn. (2) is valid when D, K ,  and the first-order rate 
constant, k,  are position-dependent, it is limited to 
concentration-independent diffusion. 

Under some circumstances it is advantageous to present 
the transport equation in terms of the admittance matrix, 
Y(s)?O 

Y(s) and T(s) are interconvertible via 

(4) 
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For a simple, homogeneous lamina with thickness, h, and 
constant D, K, and k, T(s) acquires the form2' 

cosh(qh) --1 sinh(qh) 
DqK T(s) = 

L - DqK sinh(qh) cosh(qh) 1 
with 4 = [(k + s ) / D ] " ~ .  

P and tL for Reaction-Dillitsion across Two Parallel 
Laminae in series with another Lamina 

In various situations of practical interest, diffusion may 
proceed in two or more parallel and/or series regions. For 
example, in the cornea of the eye, diffusion in the outer layer 
or epithelium occurs in numerous parallel porous, aqueous 
ducts.22 A similar situation arises in diffusion through the 
skin.23 Hence, steady permeability parallel-diffusion models 
for drug delivery into the skin and cornea have been pro- 
p ~ s e d . ~ ~ - ~ '  Extension of this model to other, more compli- 
cated, systems is also found. For example, it was used by 
Jefferson et al. to treat diffusion through a two-phase com- 
posite in which the discontinuous phase of uniform spheres 
were situated on a continuous phase of regular l a t t i ~ e , ~ . ~ ~  
and by Tsao to treat composites in which the discontinuous 
phase consists of randomly distributed particles of irregular 
size and 

We will consider the simplest prototype of the series- 
parallel configuration : a membrane composed of two parallel 
laminae A and B in series with lamina C. Each lamina has its 
characteristic diffusivity, DXx), partition coeficient Kdx), rate 
constant kkx), thickness hi and cross-section ai (i = A, B, C). 
Without loss of generality, we specify that aA + a, = aC = 1, 
h, = h, = h A B ,  The transmission matrix for this whole mem- 
brane is given by 

T(s) = p(s)TAB(s) (7) 

where p ( s )  is in the transmission matrix of lamina C, TAB(s) 
is that of the parallel subregion AB. The TAB@) is to be calcu- 
lated from YAB(s),20 

yAB(s) = OA YA(s) + b g  YB(s) (8) 
followed by a transformation of eqn. (5). Thus the elements of 
TAB(s) are represented by the elements of YA(s) or YB(s), 
which can be further replaced by the elements of TA(s) and 
TB(s) by use of eqn. (4). We finally arrive at 

(9) 

with 

(94  

T E  = 
1 1 (94 

Hereinafter, if the dependency of the matrix elements on the 
Laplace variable s, is self-explanatory, it is not explicitly 
expressed for notational simplicity. 

According to Siegel, P and t ,  can be expressed, in terms of 
the limits of T12(s) and its first derivative as s + 0.'' Thus, to 
calculate P and t,, only the element T12(s) of T(s) in eqn. (7) 
is used which reads 

P and t ,  for reaction-diffusion across the series-parallel path 
are then calculated to be 

1 - = lim - T12(s) = lim-[T:l(s)T$!(s) + G2(s)T$!(s)J 
p s-ro S - r O  

(T:lL=o ( E  + tr,> (12) ( ( T 2  (t, + eB) + - 22 s=o c 
PAB 

where the definitions of P and t, are used." The negative sign 
is added in eqn. (11) since we define the direction of down- 
stream flux to be from the membrane to the downstream 
compartment, while Siegel defined it to be in the reverse 
sense. fy is the forward mean first-passage time of the pard- 
lei subregion AB, and E the backward mean first-passage 
time of the lamina C. ' * They are defined by 

d 
ds - T?l 

E = lim - 
s-ro 7% 

d - T$! 
ds eB = lim - 

s-0 7% 

(13) 

Various quantities related to the AB subregion in eqn. (1 1) 
and (12) can be evaluated in terms of the diffusion parameters 
of the component lamina A or B. Namely 
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Thus, it is seen that P in eqn. (11) and t ,  in eqn. (12) for the 
whole membrane can be expressed in terms of various diffu- 
sion parameters of its component lamina. 

Till now the derivation is sufficiently general to be valid 
even when all laminae are heterogeneous, except for the case 
of concentration-dependent diffusivity. For a simplest appli- 
cation we may assume each component lamina i, (i = A, B or 
C) are homogeneous, characterized by hi and constant Di, 
K i ,  k,. Various diffusion parameters related to a single 
lamina A, B or C used in calculating the resultant P and t ,  
are then readily evaluated to be 

(Pi 

with #i = (k,/Di)'/2hi. 
When no reaction occurs, ki = 0 then #i = 0, eqn. (19)-(22) 

are simplified to be Pi = (DiK,/hi), (T\l)s=o = (T\2)s=o = 1, 
t; = (h?/6Di), p-. = p+ = (h?/2DJ, and the resultant P and t, 
become 

1 1  1 
P pc PAB +- -=- 

(24) 
F t: TAB 

pAB + 7 + 7 + - PC 
1 + -  

PAB 

t ,  = - 
PC 

which are identical to the previous results12 obtained from 
repeated integration. 

1 + -  PA= 1 + -  1 +F 

Directional Symmetry of Lag Times for Absorptive 
Permeation 

The absorptive permeation may be run in reverse mode by 
exchanging the upstream and downstream compartments. 's2 

The extensive theoretical studies of Petropoulos and co- 
WOrkerS1.8,26,27 revealed that the directional symmetry, i.e. 
the equality of the forward and reverse downstream absorp- 
tive time lags, holds once D and K are dependent only on 
position x. Since D and K are functions of both x and the 
concentration, p, the directional symmetry holds only if there 
is a symmetry about the midplane of the membrane. Other- 
wise, a distinction between separable and non-separable x 
and p may be made by checking the directional symmetry or 
non-symmetry of We will examine whether the direc- 
tional symmetry holds for reaction-diffusion through a 
serial-parallel path. 

In a previous paper2' we have proven that directional sym- 
metry is valid for diffusion accompanying reaction across 
laminae in series, when D, K, and k are only a function of 
position and the reaction is of first-order. The proof hinges 
on the unity value of the determinant of the transmission 
matrix, det T(s), of each component lamina. In the system of 
reaction-diffusion across a series-parellel path considered 
here, the parallel region can be considered as an equivalent 
lamina, AB, characterized by a transmission matrix TAB. AB 
is then in series with the lamina C characterized by a trans- 

mission matrix TC. Since det TAB = 1, as calculated from eqn. 
(9a)-(9d), and det TC = 1, as has been proven elsewhere,2' we 
have det p T A B  = 1. As a consequence, the directional sym- 
metry holds for the adsorptive downstream lag time in this 
system. 

Discussion and Conclusion 
When either cA or cB is equal to zero, the whole membrane 
reduces to laminae in series; when oc = 0, it reduces to 
laminae in parallel. Thus, we have demonstrated the use of 
the matrix method in calculation of the P and t, for reaction- 
diffusion in series or in parallel paths, or a combination of 
both. The concept of a hypothetical, equivalent transmission 
matrix in the parallel subregion is a crucial point in this cal- 
culation. When using the matrix approach, the requirement 
of the continuity of the activity and flux at the interfaces 
between neighbouring laminae is automatically taken into 
account in the matrix operation. Thus, only the boundary 
conditions at  the upstream and downstream faces need to be 
considered in the calculation. Furthermore, calculation by the 
matrix method can easily be combined with commercially 
available software such as MATLAB or MATHEMATICA. 
When dealing with reaction-diffusion problems, the matrix 
demonstrates its advantage over repeated integration in that 
the latter can accomplish the calculation of P and t, only 
when reaction is not involved. 

In conclusion, we have extended a mathematically elegant 
method for diffusion time lag to laminated membranes with 
first-order reaction. The method is limited to the case where 
diffusivity, partition coefficient and rate constant are depen- 
dent on position only. Although none of the results obtained 
here are new, the formulation is potentially a powerful one to 
deal with more complicated diffusion systems. 

This work was supported in part by National Science 
Council, Taiwan, Republic of China under the project NSC 
82-0208-M-009-019. 
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