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We show that (1) if A is a nonzero quasinilpotent operator with ranAn

closed for some n� 1, then its numerical range W(A) contains 0 in its
interior and has a differentiable boundary, and (2) a noncircular elliptic
disc can be the numerical range of a nilpotent operator with nilpotency 3 on
an infinite-dimensional separable space. (1) is a generalization of the known
result for nonzero nilpotent operators, and (2) is in contrast to the finite-
dimensional case, where the only elliptic discs which are the numerical
ranges of nilpotent finite matrices are the circular ones centred at the origin.

Keywords: numerical range; nilpotent operator; quasinilpotent operator;
essential numerical range

AMS Subject Classifications: 47A12; 15A60

For a bounded linear operator A on a complex Hilbert space H with the inner
product h�, �i and the associated norm k�k, its numerical range W(A) is, by definition,
the subset {hAx, xi : x2H, kxk¼ 1} of the complex plane. The numerical radius w(A)
of A is sup{jzj : z2W(A)}. It is known that W(A) is always bounded and convex,
it is compact if H is finite dimensional, and w(A) satisfies kAk/2�w(A)�kAk.
Other properties of the numerical range and numerical radius can be found in
[11, Chapter 22] or [9].

The purpose of this article is to prove some results concerning the numerical
ranges of nilpotent and quasinilpotent operators on infinite-dimensional spaces.
Recall that an operator A is nilpotent with nilpotency n (�1) if n is the smallest integer
for which An

¼ 0. It is quasinilpotent if its spectrum �(A) consists of 0 only.
Obviously, nilpotent operators are quasinilpotent. The numerical ranges and
numerical radii of nilpotent operators have been studied, e.g. in [8,10]. Among
other things, it was shown in [8, Corollary 1.2] that if A is a nonzero nilpotent
operator, then 0 belongs to the interior of W(A) and @W(A) is a differentiable curve.
In Section 1, we first give its direct proof and then generalize it to certain
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quasinilpotent operators. We also prove an analogous result for the essential
numerical range. The main result of this article is given in Section 2. We show that
there exists a nilpotent operator A with nilpotency 3 such that W(A) is an open
noncircular elliptic disc. This is in striking contrast to the known finite-dimensional
case: if the numerical range of a finite matrix A is an elliptic disc E, then the two foci
of @E are the eigenvalues of A (cf. [15, Theorem 4.2] or [7, Theorem]), and thus if,
in addition, A is nilpotent, then W(A) must be a circular disc centred at the origin.
Our result shows that the situation in the infinite-dimensional case is quite different.
This is inspired by the recent work of Harris et al. [12] in which the authors show that
there exists an operator A (on an infinite-dimensional separable space) such that
A3
¼ I and W(A) is an open circular disc centred at the origin. The general approach

of our construction is similar to theirs, but the technical details are completely
different.

1. Boundary of numerical range

We start by giving a direct matricial proof of [8, Corollary 1.2].

PROPOSITION 1.1 If A is a nonzero nilpotent operator, then 0 is in the interior of W(A)
and @W(A) is a differentiable curve.

Proof We may assume that A is nilpotent with nilpotency n (� 2) on the
separable space H. For each j, 1� j� n, let fx

ð j Þ
k gk be an orthonormal basis of

kerA j @ kerA j�1, and for each ‘, 1� ‘51, let H‘ be the closed subspace of H
generated by fAmx

ð j Þ
k :1 � j, k � ‘, 0 � m � j� 1g. Then the H‘’s are all finite-

dimensional invariant subspaces of A which are increasing with m‘H‘¼H. Since
AjH‘ is also nilpotent for each ‘, we can find an orthonormal basis {ej}j of H such
that, for each ‘, fe1, . . . , edimH‘

g is a basis of H‘ with respect to which AjH‘ has an
upper-triangular matrix representation. Thus A can be represented as ½aij�

1
i, j¼1 with

aij¼ 0 for all i� j. Since A is nonzero, there exist some i0 and j0, i04j0, such that

ai0j0 6¼ 0. Then the 2-by-2 matrix 0 ai0 j0
0 0

h i
can be dilated to A and thus

W 0 ai0 j0
0 0

h i� �
¼ fz2C : jzj � jai0j0 j=2g is contained in W(A). It follows that 0 is in

the interior of W(A).

If @W(A) has a nondifferentiable point, say, �, then � must be in the spectrum of
A (cf. [16, Theorem 2]). Since A is nilpotent, we have �¼ 0, which contradicts what
was proven above that 0 is in the interior of W(A). Hence @W(A) must be
differentiable. g

Operators with upper-triangular matrix representations were studied in more
detail in [6, Section 2).

As was noted in [8, p. 718], the first assertion in the preceding proposition is not
valid for a nonzero quasinilpotent operator. This is seen by the Volterra operator

ðAf ÞðxÞ ¼

Z x

0

f ðtÞdt for f2L2ð0, 1Þ:

However, in this case, @W(A) is still differentiable (cf. [11, p. 113]). With a slight
modification, we can obtain a quasinilpotent counterexample to both assertions in
Proposition 1.1. Indeed, let B be the (unique) operator on L2(0,1) with B2

¼A.
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Then B is compact quasinilpotent with W(B) contained in the sector in the first

quadrant bounded by the lines x¼�y (cf. [14]). Hence 0 is in @W(B) with the

supporting lines x¼�y of WðBÞ. In particular, @W(B) is not differentiable at 0. In

the following, we generalize Proposition 1.1 to cover a certain class of quasinilpotent

operators.

THEOREM 1.2 If A is a nonzero quasinilpotent operator with ranAn closed for some

n� 1, then 0 is in the interior of W(A) and @W(A) is differentiable.

Proof Assume that 0 is not in the interior of W(A). Since 0 is in �(A) and hence in

WðAÞ, it must be in @W(A). Then ker A¼ker A* (cf. [3, Lemma 1]). Hence A¼ 0�B

and An
¼ 0�Bn on kerA� ranA	. Since B is one-to-one, the same is true for Bn.

Together with the closedness of ranAn
¼ ran Bn, this implies that Bn is left invertible.

Thus 0 is not in the left spectrum �l(B
n) of Bn. However, since �l (B

n) is contained in

�(Bn)¼ {0} and is always nonempty, we must have �l (B
n)¼ {0}. This yields a

contradiction. We conclude that 0 is in the interior of W(A). The differentiability of

@W(A) follows as in Proposition 1.1. g

The preceding theorem generalizes the case n¼ 1 in [3, Corollary 2] and is indeed

a generalization of Proposition 1.1 as there are nonnilpotent quasinilpotent

operators A with ranAn closed for all n� 1 (cf. [4, Example 5.4]).
Recall that the essential numerical range We(A) of an operator A on an infinite-

dimensional separable space H is the intersection of the closures of the numerical

ranges W(AþK), where K is any compact operator on H. The next proposition gives

the essential version of Proposition 1.1.

PROPOSITION 1.3 If A is a noncompact nilpotent operator on an infinite-dimensional

separable space H, then 0 is in the interior of We(A) and @We(A) is a differentiable

curve.

Proof Let B(H) (resp., K(H)) denote the C*-algebra (resp., self-adjoint ideal) of all

operators (resp., compact operators) on H. Let C(H)¼B(H)/K(H) be the Calkin

algebra on H, and � :B(H)!C(H) be the quotient map �ðTÞ ¼ bT for T in B(H).

We represent C(H) as the C*-algebra of all operators on a (nonseparable) space H0

via the *-isomorphism �0 : C(H)!B(H0) (cf. [5, Theorem VIII.5.17]). Then

A0 
 (�0 ��)(A) is a nonzero nilpotent operator on H0 with WðA0Þ ¼WeðAÞ. Hence

Proposition 1.1 yields that 0 is in the interior of We(A) (¼WðA0Þ) and @We(A)

(¼ @W(A0)) is differentiable. g

2. Noncircular elliptic disc

The main open problem in our present discussion is to characterize all the numerical

ranges of nilpotent (resp., quasinilpotent) operators. In this section, we move one

step forward on this problem by showing that noncircular elliptic discs can be such

numerical ranges.

THEOREM 2.1 For any a, 0� a� 1/3, the open elliptic disc Ea
 {xþ iy2C :

x2þ (1/(1� a2))y251} is the numerical range of some nilpotent operator with

nilpotency 3 on a separable space.

Linear and Multilinear Algebra 1227
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The asserted operator is constructed by taking the direct sum (or direct integral)

of 3-by-3 nilpotent matrices of the form

0 � �
0 0 �
0 0 0

2
4

3
5:

In the following, let B be the matrix

0 1 1

0 0 1

0 0 0

2
64

3
75:

The properties of the numerical range of B were studied in [8, Lemma 1.3]. Among

other things, it is known that (1) W(B) is symmetric with respect to the x-axis, (2)
W(B) is contained in the closed rectangular region ½�1=2, 1� � ½�

ffiffiffi
3
p
=2,

ffiffiffi
3
p
=2�, (3)

w(B)¼ 1 and (4) @W(B) contains a line segment on the line x¼� 1/2. The proof of
Theorem 2.1 for a¼ 1/3 is via a series of lemmas, the first of which says that W(B) is

contained in the elliptic disc E1=3 ¼ fxþ iy2C : x2 þ ð9=8Þ y2 � 1g.

LEMMA 2.2 For any a, 0� a� 1, let Ca ¼
a 2ð1�a2Þ1=2

0 �a

h i
. Then W(B)W(Ca) if and

only if a� 1/3.

Proof Note thatW(B)W(Ca) if and only if max �(Re(e�i�B))�max �(Re(e�i�Ca))

for all �,��� ���. A simple computation yields that the characteristic
polynomial of Re(e�i�B) (resp., Re(e�i�Ca)) is z3� (3/4)z� (1/4)cos � (resp.,

z2� (1� a2 sin2�)). Thus we obtain max �(Re(e�i�B))¼ cos(�/3) (resp., max �
(Re(e�i�Ca))¼ (1� a2 sin2�)1/2) for all �, ��� ���. Since cos(�/3)� (1� a2 sin2�)1/2

if and only if

a2 �
sin2ð�=3Þ

sin2 �
¼

1

ð3� 4 sin2ð�=3ÞÞ2
,

and since 1/(3� 4 sin2(�/3))� 1/3 for all �, we infer that W(B)W(Ca) if and only if

a� 1/3 as asserted. g

We now rotate scalar multiples (reit )B of B around the origin so that their

numerical ranges are all contained in E1=3 and the boundaries are all tangent to @E1/3.
The next two lemmas find, for each fixed t, the corresponding r and the

corresponding tangent point, respectively.

LEMMA 2.3 For r� 0 and 0� t��/2, the numerical range W(reitB) is contained in

E1=3 if and only if r2�min{(8þ cos2�)/(9 cos2((�� t)/3)) :������}.

Proof Note that E1=3 ¼WðC1=3Þ, where C1=3 ¼
1=3 4

ffiffi
2
p
=3

0 �1=3

h i
. As in the proof of

Lemma 2.2, we have max �(Re(e�i�reitB))¼ r cos((�� t)/3) and max �(Re(e�i�C1/3))¼
(1� (1/9)sin2�)1/2. Thus W(reitB)W(C1/3) if and only if r2 cos2((�� t)/3)�

1� (1/9)sin2� for all �. Our assertion follows immediately. g

LEMMA 2.4 For each fixed t, 0� t��/2, assume that ft(�)¼ (8þ cos2�)/
(9 cos2((�� t)/3)) attains its minimum value over [��, �] at �t. Then �0¼ 0, ��/2¼�/2
and t� �t��/2.

1228 H.-L. Gau and P.Y. Wu
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Proof We first prove that �0¼ 0. This is equivalent to showing that

8þ cos2�� 9 cos2(�/3) for all �. Since cos �¼ 4 cos3(�/3)� 3 cos(�/3), this is the

same as 2 cos6(�/3)� 3 cos4(�/3)þ 1� 0 for all �. Letting x¼ �/3 and g(x)¼ 2 cos6x�

3 cos4xþ 1, we derive from g0(x)¼ (3/2)sin3(2x)¼ 0 that x¼ 0 gives the minimum

value 0 of g(x) on [��/3, �/3]. Hence �0¼ 0.
From now on, we consider only 05t��/2. Let rt ¼ minf

ffiffiffiffiffiffiffiffiffi
ftð�Þ

p
: �� � � � �g.

If� t5�5t, then cos2�4cos2t and hence

ftð�Þ4
1

9
ð8þ cos2 tÞ ¼ ftðtÞ � r2t ,

which shows that �t is not in (�t, t). Next assume that �/25���. Then

05cos((�� t)/3)5cos(((�/2)� t)/3) and hence

ftð�Þ4
8

9 cos2ððð�=2Þ � tÞ=3Þ
¼ ftð�=2Þ � r2t :

Thus �t is not in (�/2, �]. Finally, if ��� ���t, then

�
�

2
� �

�þ t

3
�
� � t

3
5
� þ t

3
� 0:

Hence

ftð�Þ4
8þ cos2 �

9 cos2ðð� þ tÞ=3Þ
¼ ftð��Þ � r2t ,

and thus �t is not in [��,�t]. We conclude that t� �t��/2 as asserted. g

It follows from the above that, for each t, 0� t��/2, the quantity rt 

ffiffiffiffiffiffiffiffiffiffi
ftð�tÞ

p
is the minimum of

ffiffiffiffiffiffiffiffiffi
ftð�Þ

p
over [��, �], and W(rte

itB) is contained in E1=3 with

their boundaries tangent to each other at the common tangent point �t of the

line x cos �tþ y sin �t¼ (1� (1/9)sin2�t)
1/2 with @W(rte

itB) and @E1/3 (see Figure 1).
We next show that the �t in the preceding lemma is unique. This is done via the

following lemma.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

E1/3

W (rte
itB)

θt
t

y

αt

x1

2 2/3

Figure 1. Wðrte
itBÞ,E1=3 and the common tangent point �t.
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LEMMA 2.5 For each t, 0� t��/2, let gt(�)¼ (sin(2�))/sin(2(�� t)/3) for t5�5�/2.
Then gt is strictly decreasing on (t,�/2).

Proof We check that g0tð�Þ5 0 on (t, �/2). Since

g0tð�Þ ¼
sinð2ð� � tÞ=3Þ � 2 cosð2�Þ � sinð2�Þ � ð2=3Þ cosð2ð� � tÞ=3Þ

sin2ð2ð� � tÞ=3Þ
,

we need only check the negativity of its numerator. Note that

sin
2

3
ð� � tÞ

� �
� cosð2�Þ �

1

3
cos

2

3
ð� � tÞ

� �
� sinð2�Þ

¼ sin
2

3
ð� � tÞ � 2�

� �
þ
2

3
cos

2

3
ð� � tÞ

� �
� sinð2�Þ

¼ �sin
2

3
ð2� þ tÞ

� �
þ
1

3
sin

2

3
ð4� � tÞ

� �
þ sin

2

3
ð2� þ tÞ

� �� �

¼ �
2

3
sin

2

3
ð2� þ tÞ

� �
þ
1

3
sin

2

3
ð4� � tÞ

� �
:

Hence we need to show that ht(�)
 2 sin((2/3)(2�þ t))� sin((2/3)(4�� t))40 on

(t,�/2). We have h0tð�Þ ¼ ð8=3Þ cosðð2=3Þð2� þ tÞÞ � cosðð2=3Þð4� � tÞÞ½ �, 0� 2t5(2/3)

(2�þ t)5(2/3)(�þ t)�� and 0� 2t5(2/3)(4�� t)5(2/3)(2�� t)�(4/3)�. If 0� (2/3)

(4�� t)��, then, since (2/3)(2�þ t)5(2/3)(4�� t), we have h0tð�Þ4 0. Otherwise,

if �5(2/3)(4�� t)� (4/3)�, then, since (2/3)(4�� t)��5�� (2/3)(2�þ t), we

also have h0tð�Þ4 0. Thus ht(�) is strictly increasing and hence htð�Þ4
lim�!tþ htð�Þ ¼ sinð2tÞ � 0 for � in (t,�/2). This yields that g0tð�Þ5 0 on (t, �/2) and
our assertion follows. g

LEMMA 2.6 For each fixed t, 0� t��/2, let ft(�)¼ (8þ cos2�)/(9 cos2((�� t)/3)) and

rt ¼ minf
ffiffiffiffiffiffiffiffiffi
ftð�Þ

p
: �� � � � �g. Then there exists a unique �t in [t,�/2] such that

ftð�tÞ ¼ r2t .

Proof To check the uniqueness of �t, let �1 and �2 in [t,�/2] be such that

ftð�1Þ ¼ ftð�2Þ ¼ r2t (by Lemma 2.4). If utð�Þ ¼ 8þ cos2 � � 9r2t cos
2ðð� � tÞ=3Þ for �

in [t,�/2], then ut(�1)¼ ut(�2)¼ 0¼min{ut(�) : t� ���/2}. We must have u0tð�1Þ ¼
u0tð�2Þ ¼ 0. This is the same as

�2 cos �j sin �j þ 6r2t cos
�j � t

3
� sin

�j � t

3
¼ 0

or sinð2�j Þ ¼ 3r2t sinðð2=3Þð�j � tÞÞ, j¼ 1, 2. Lemma 2.5 implies that �1¼ �2,
completing the proof. g

Finally, we prove that the function t � �t maps [0,�/2] onto itself.

LEMMA 2.7 If �t is defined as in Lemma 2.6, then �t is continuous for t in [0,�/2] and
{�t:0� t��/2}¼ [0, �/2].

1230 H.-L. Gau and P.Y. Wu
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Proof To prove the continuity of �t, let {tn}n be a sequence in [0,�/2] which

converges to t0 as n approaches1. We may assume that f�tngn also converges, say, to

�0. We have

ft0ð�t0Þ ¼ r2t0 � ft0 ð�0Þ: ð	Þ

To prove that the above relation is actually an equality, note that for any "40 there

is some � in [��,�] such that ft0 ð�Þ5 ft0 ð�t0 Þ þ ". Since limntn¼ t0, we have

ftn ð�Þ5 ft0ð�Þ þ " for all large n. These, together with ftnð�tnÞ ¼ r2tn � ftn ð�Þ, yield

ftn ð�tn Þ5 ft0 ð�t0 Þ þ 2" for all large n. Letting n approach 1, we obtain

ft0 ð�0Þ � ft0 ð�t0 Þ þ 2" for all "40. It follows that ft0ð�0Þ � ft0 ð�t0 Þ. Together with (*),

this shows the equality of ft0 ð�0Þ and ft0 ð�t0 Þ. Lemma 2.6 then yields that �0 ¼ �t0 .
Hence limntn¼ t0 implies that limn �tn ¼ �t0 . Thus �t is continuous in t as asserted.

Since �0¼ 0 and ��/2¼�/2 by Lemma 2.3, the continuity of �t yields that the

function t � �t maps [0,�/2] onto itself. g

Now we are ready for the proof of Theorem 2.1.

Proof of Theorem 2.1 We only prove for the case a¼ 1/3; other values of a can be

done similarly. Let f�ng
1
n¼1 be a countable dense subset of [0,�/2], and let {tn}n

be in [0,�/2] such that �tn ¼ �n for all n (by Lemma 2.7). If rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ftn ð�nÞ

p
¼

minf
ffiffiffiffiffiffiffiffiffiffi
ftn ð�Þ

p
: �� � � � �g, then the 3-by-3 nilpotent matrix Bn 
 rne

itnB is such that

WðBnÞ  E1=3 and @W(Bn)\ @E1/3 consists of the intersection point �n of W(Bn)

(or E1=3) with its supporting line x cos �nþ y sin �n¼ (1� (1/9)sin2�n)
1/2 (cf. Figure

2.5). If C¼
P

n � Bn, then C3
¼ 0 and W(C)¼ ([ n W(Bn))

6, the convex hull of[ n

W(Bn) (cf. [13, Corollary 3.5]). Note that the denseness of {�n}n in [0, �/2] implies the

same for {�n}n. Hence W(C) is contained in E1=3 and contains {�n : n� 1}[ (E1/3\

{xþ iy2C:x, y� 0}). Let D¼C� (�C)�C*� (�C*). Then WðDÞ ¼ f��n,
��n : n � 1g [ E1=3. Finally, if A ¼

P1
n¼1�ð1� ð1=nÞÞD, then A is nilpotent with

nilpotency 3 and W(A)¼E1/3. g

We remark that in the preceding proof, we may take the direct integral, instead of

the direct sum, of the rte
itB0s. Indeed, if C0 is the direct integral

R�
½0,�=2� rte

itB dt, then

W(C0)¼\ {([t2 [0,�/2]niW(rte
itB))6 :i Borel subset of [0,�/2] with Lebesgue

measure zero} (cf. [13, Theorem 3.3]). Hence if A0 ¼C0 � (�C0)�C0*� (�C0*),

then A03¼ 0 and W(A0)¼E1/3.

COROLLARY 2.9 For any a, 0� a� 1/3, and any countable subset f�ng
1
n¼1 of @Ea, there

is a nilpotent operator A with nilpotency 3 (on a separable space) such that

W(A)¼Ea[ {�n : n� 1}.

Proof We assume that a¼ 1/3. For each �n in the first quadrant of @E1/3, let �n in
[0,�/2] be the angle from the positive x-axis to the ray from the origin which is

perpendicular to the tangent line of @E1/3 at �n (see Figure 1). If tn in [0,�/2] is such
that �tn ¼ �n (by Lemma 2.7) and rn¼ (8þ cos2�n)

1/2/(3 cos((�n� tn)/3)), then B1 
P
n�ðrne

itnBÞ is such that B3
1 ¼ 0, WðB1Þ  E1=3 and @W(B1)\ @E1/3¼

{�n : n� 1}\ {xþ iy2C: x, y� 0}. By symmetry, we obtain Bj, j¼ 2, 3, 4, with similar

properties for the �n’s in the jth quadrant. If A1 is the nilpotent operator with

nilpotency 3 such that W(A1)¼E1/3 (by Theorem 2.1), then A ¼ A1 � ð
P4

j¼1�Bj Þ is

the asserted operator. g
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Following a similar procedure as above, we can also construct, for any a,
0� a� 1/2, and any countably many �n’s on the boundary of Ea, a nilpotent
operator A with nilpotency 4 on a separable space with W(A)¼Ea[ {�n : n �1}.
In comparison, for a nilpotent operator with nilpotency 2, that is, a square-zero
operator, its numerical range can only be an (open or closed) circular disc centred at
the origin (cf. [17, Theorem 2.1 (1)]). It is thus natural to ask whether there is a
nilpotent operator A with nilpotency at least 3 for whichW(A) is a closed noncircular
elliptic disc. If we allow such an A to act on a nonseparable space, then the answer is
affirmative. This is seen by using the Berberian [1] representation. Namely, if A on
the (infinite-dimensional separable) space H is such that A3

¼ 0 andW(A)¼E1/3, and
K is a (necessarily nonseparable) space containing H with a unital *-isomorphism
� :B(H)!B(K) such that Wð�ðTÞÞ ¼WðTÞ for all T in B(H) (among many
other properties), then �(A) on K is such that �(A)3¼ 0 and Wð�ðAÞÞ ¼ E1=3

(cf. [2, Proposition]). The problem remains as to whether such an operator can exist
on a separable space.

In view of the square-zero case, we may also ask whether there is a nilpotent
operator A with nilpotency n (�3) on a separable space with WðAÞ�D ¼

fz2C : jzj � 1g and W(A)\ @D an arc of @D. Note that if we only require that
@W(A)\ @D be an arc of @D, then such an A indeed exists. For example, if A is
the direct integral

R�
½0,�=4� e

itB dt, then WðAÞ�D and @W(A)\ @D¼ {eit: 0� t��/4} by
[13, Theorem 3.3]. In the most general case, a characterization of subsets of the plane
which are the numerical ranges of some nilpotent operators (with nilpotency� 3) or
some quasinilpotent operators is desirable.
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