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The goal of linkage identification is to obtain the dependencies among decision variables. Such information or
knowledge can be applied to design crossover operators and/or the encoding schemes in genetic and evolutionary
methods. Thus, promising sub-solutions to the problem will be disrupted less likely, and successful convergence
may be achieved more likely. To obtain linkage information, a linkage identification technique, called Inductive
Linkage Identification (ILI), was proposed recently. ILI was established upon the mechanism of perturbation and
the idea of decision tree learning. By constructing a decision tree according to decision variables and fitness
difference values, the interdependent variables will be determined by the adopted decision tree learning
algorithm. In this article, we aim to acquire a better understanding on the characteristics of ILI, especially its
behaviour under problems composed of different-sized and different-type building blocks (BBs) which are not
overlapped. Experiments showed that ILI can efficiently handle BBs of different sizes and is insensitive to BB
types. Our experimental observations indicate the flexibility and the applicability of ILI on various elementary
BB types that are commonly adopted in related experiments.

Keywords: inductive linkage identification; ILI; linkage learning; BBs; genetic algorithms; evolutionary
computation

1. Introduction

Previous studies (Goldberg, Korb, and Deb 1989;
Harik 1997) on genetic algorithms (GAs), which are
widely utilised to handle control and engineering
problems (Wang 2009; Li and Li 2010; Gladwin,
Stewart, and Stewart 2011), have shown that the
encoding scheme of solutions is one of the key factors
to the success of GAs by demonstrating that simple
GAs fail to handle problems of which the solutions are
represented with loose encodings while genetic algo-
rithms capable of learning linkage succeed. If strongly
related variables, which are usually referred to as
building blocks (BBs), are arranged loosely with the
adopted representation, they are likely to be disrupted
by crossover operations. Such a condition contributes
to the divergence of population, instead of the
convergence towards optimal solutions. Although
encoding strongly related variables tightly or making
crossover operators aware of such relationships could
mitigate the problem and improve the GA perfor-
mance (Stonedahl, Rand, and Wilensky 2008), both
measures require the foreknowledge of the target
problem, which is often not the case in which evolu-
tionary algorithms are adopted.

In order to overcome the BB disruption problem,
a variety of techniques have been proposed and
developed in the past two decades and can be roughly

classified into three categories (Munetomo and
Goldberg 1998; Chen, Yu, Sastry, and Goldberg 2007):

(1) Evolving representations or operators;
(2) Probabilistic modelling for promising

solutions;
(3) Perturbation methods.

The objective of the techniques in the first class is to

make individual promising sub-solutions separated

and less likely to be disrupted by crossover via

manipulating the representation of solutions during

optimisation. Various reordering and mapping opera-

tors have been proposed in the literature, such as self-

crossover (Pal, Nandi, and Kundu 1998), which is

proven able to generate any arbitrary permutation of

the symbols, the messy GA (mGA) (Goldberg et al.

1989), and the fast mGA (fmGA) (Kargupta 1995),

which is the more efficient descendant of mGA. The

difficulty faced by these methods is that the reordering

operator usually reacts too slow and loses the race

against selection. Therefore, premature convergence at

local optima occurs. Another technique, the linkage

learning GA (LLGA) proposed by Harik (1997), uses

circular structures as the representation with two-point

crossover such that the tight linkage might be more

likely preserved. LLGA works well while the shares of

BBs are exponentially apportioned in the total fitness,
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which are usually referred to as exponentially scaled
problems. However, it is inefficient when applied to
uniformly scaled problems.

The methods in the second category are often
referred to as the estimation of distribution algorithms
(EDAs) (Mühlenbein and Paaß 1996; Larrañaga and
Lozano 2001; Pelikan, Goldberg, and Lobo 2002).
These approaches describe the dependencies among
variables in a probabilistic manner by constructing a
probabilistic model from selected solutions and then
sample the built model to generate new solutions. Early
EDAs began with assuming no interactions among
variables, such as the population-based incremental
learning (PBIL) (Baluja 1994) and the compact GA
(cGA) (Harik, Lobo, and Goldberg 1999). Subsequent
studies started to model pairwise interactions, e.g. the
mutual-information input clustering (MIMIC) (de
Bonet, Isbell, and Viola 1997), Baluja’s dependency
tree approach (Baluja and Davies 1997), and the
bivariate marginal distribution algorithm (BMDA)
(Pelikan and Mühlenbein 1999). Multivariate depen-
dencies were then exploited, and more general interac-
tions were modelled. Example methods include the
extended compact GA (ECGA) (Harik 1999), the
Bayesian optimisation algorithm (BOA) (Pelikan,
Goldberg, and Cantú-Paz 1999), the factorised distri-
bution algorithm (FDA) (Mühlenbein and Mahnig
1999) and the learning version of FDA (LFDA)
(Mühlenbein andHöns 2005). Since model constructing
in these methods requires no additional fitness evalu-
ations, EDAs are usually considered efficient in the
traditional viewpoints of evolutionary computation,
especially when fitness evaluations involve time-
consuming simulations. However, the model construct-
ing mechanism itself is sometimes computationally
expensive with a large population size, which usually
occurs in evolutionary methods. The difficulty which
EDAs often face is that the BBs contributing less to the
total fitness are likely ignored rather than recognised.

Approaches in the third category observe the
fitness differences caused by perturbing variables to
detect dependencies. In the literature, the gene expres-
sion messy GA (GEMGA) (Kargupta 1996) models
the sets of tightly linked variables as weights assigned
to solutions and employs a perturbation method to
detect them. GEMGA observes the fitness changes
caused by perturbations on every variable for strings in
the population and detects interactions among vari-
ables according to how likely the variables compose
optimal solutions. Assuming that nonlinearity exists
within a BB, the linkage identification by nonlinearity
check (LINC) (Munetomo and Goldberg 1998) per-
turbs a pair of variables and observes the presence of
nonlinearities to identify linkages. If the sum of fitness
differences of perspective perturbations on two

variables is equal to the fitness difference caused by
simultaneously perturbing the two variables, linearity
is confirmed, and thus, these two variables are consid-
ered independent. Instead of non-linearity, the descen-
dant of LINC, linkage identification by non-
monotonicity detection (LIMD) (Munetomo and
Goldberg 1999), adopts non-monotonicity to detect
interactions among variables. Compared to EDAs, the
low salience BBs are unlikely ignored in these
approaches. However, since obtaining fitness differ-
ences requires extra function evaluations, perturbation
methods are usually considered demanding more
computational efforts to detect linkages. In addition
to empirical studies Heckendorn and Wright (2004)
generalised these methods through Walsh analysis to
obtain theoretical resource requirements. Zhou, Sun,
and Heckendorn (2007) and Zhou, Heckendorn, and
Sun (2008) later extended this study from the binary
domain to high-cardinality domains.

An interesting approach combining the ideas of
EDAs and perturbation methods, called the depen-
dency detection for distribution derived from fitness
differences (D5), was developed by Tsuji, Munetomo,
and Akama (2006). D5 detects the dependencies of
variables by estimating the distributions of strings
clustered according to fitness differences. For each
variable, D5 calculates fitness differences by perturba-
tions on that variable in the entire population and
clusters the strings into sub-populations according to
the obtained fitness differences. The sub-populations
are examined to find k variables with the lowest
entropies, where k is an algorithmic parameter for
problem complexity, i.e. the number of variables in a
linkage set. The determined k variables are considered
forming a linkage set. D5 can detect dependencies for a
class of functions that are difficult for EDAs, e.g.
functions containing low salience BBs, and requires
less computational cost than other perturbation
methods do. However, its major constraint is that it
relies on parameter k, which may not be available due
to the limited information of the problem structure. As
a side-effect to parameter k, D5 might be fragile in the
situation where the problem is composed of subprob-
lems of different sizes. Moreover, Ting, Zeng, and Lin
(2010) recently utilised another data mining technique,
Apriori Algorithm, to learn potential association rules
between decision variables for linkage discovery. They
reported that their proposal can improve D5 in terms
of solution quality and efficiency.

In our previous work, we proposed inductive
linkage identification (ILI) based on perturbations
and the integration with the Interative Dichotomiser
(ID3) (Quinlan 1986) algorithm, which is widely used
in machine learning. ILI is an unsupervised method
without any parameter for the complexity of BBs.
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Its scalability and efficiency against the increasing
problem sizes have been demonstrated (Chuang and
Chen 2007, 2008; Huang and Chen 2009, 2010).
Compared to the conventional perturbation methods,
such as LINC and LIMD, ILI utilises a data mining
technique to analyse objective functions. Compared to
D5, which uses clustering, and the method proposed by
Ting et al. (2010), which uses Apriori algorithm, ILI
adopts the ID3 algorithm and behaves quite differ-
ently. In this article, we aim to address more detailed
characteristics of ILI in order to gain deeper insights
and better understandings of linkage learning. In
particular, problems constructed by non-overlapped
BBs of different sizes and sub-functions are studied
and experimented upon. Our experimental results
indicate that ILI holds the properties of robustness
and efficiency when facing various configurations
of BBs.

The remainder of this article is organised as
follows. In Section 2, the background of linkage
leaning in GA and decomposability of problems is
briefly introduced. Section 3 gives an introduction to
ILI, including a review of the ID3 decision tree
learning algorithm, an example illustrating the pro-
posed approach, and an algorithmic description of ILI.
Section 4 presents the experiments conducted in this
study and the results revealing the behaviour of ILI.
Finally, Section 5 summaries and concludes this article.

2. Linkage and BBs

In this section, we briefly review the definitions and
terminologies which will be used through out this
article. As stated by de Jong, Watson, and Thierens
(2005), ‘two variables in a problem are interdependent
if the fitness contribution or optimal setting for one
variable depends on the setting of the other variable’,
and such relationship between variables is often
referred to as linkage in the GA literature. In order
to obtain the full linkage information of a pair of
variables, the fitness contribution or optimal setting of
these two variables will be examined on all possible
settings of the other variables.

Although obtaining the full linkage information is
computationally expensive, linkage should be esti-
mated using a reasonable amount of efforts if the
target problem is decomposable. According to the
Schema theorem (Holland 1992), short, low-order and
highly fit substrings increase their share to be com-
bined. Also stated in the BB hypothesis, GAs implicitly
decompose a problem into sub-problems by processing
BBs. It is considered that combining small parts is
important for GAs and is consistent with human
innovation (Goldberg 2002). These lead to a problem

model called the additively decomposable function
(ADF), which can be written as a sum of low-order
sub-functions.

Let a string s of length ‘ be described as a series of
variables, s¼ s1s2 � � � s‘. We assume that s¼ s1s2 � � � s‘ is
a permutation of the decision variables x¼ x1x2 � � � x‘
to represent the encoding scheme adopted by GA
users. The fitness of string s is then defined as

f ðsÞ ¼
Xm
i¼1

fiðsviÞ, ð1Þ

where m is the number of sub-functions, fi is the i-th
sub-function and svi is the substring to fi. Each vi is a
vector specifying the substring svi . For example, if
vi¼ (1, 2, 4, 8), svi ¼ s1s2s4s8. If fi is also a sum of other
sub-functions, it can be replaced by those sub-
functions. Thus, each fi can be considered as a
nonlinear function.

By eliminating the ordering property of vi, we can
obtain a set Vi containing the elements of vi. The
variables belonging to the same set of Vi is regarded as
interdependent because fi is nonlinear. Thus, we refer
to the set Vi as a linkage set. A related term, BBs,
is referred to as the candidate solutions to sub-function
fi. In this article, only a subclass of the ADFs is
considered. We concentrate on non-overlapping sub-
functions. That is, Vi\Vj¼; if i 6¼ j. In addition, the
strings are assumed to be composed of binary variables.

3. Inductive linkage learning

In this section, the ideas behind ILI will be presented.
Then, the ID3 algorithm, which is proposed and widely
utilised in the field of machine learning, will be briefly
introduced. An example is given to illustratively
explain the mechanism of ILI, followed by the
pseudo code.

In ILI, linkage learning is regarded as the issue of
decision tree learning. As an illustration, the fitness
difference can be derived in the following equation
within the ADF model:

f ðs1s2 � � � s8Þ ¼ f1ðs1s2s3s4s5Þ þ f2ðs6s7s8Þ

df1ðsÞ ¼ f ðs1s2 � � � s8Þ � f ðs1s2 � � � s8Þ

¼ ð f1ðs1s2s3s4s5Þ þ f2ðs6s7s8ÞÞ

� ð f1ðs1s2s3s4s5Þ þ f2ðs6s7s8ÞÞ

¼ f1ðs1s2s3s4s5Þ � f1ðs1s2s3s4s5Þ: ð2Þ

Equation (2) indicates that the fitness difference df1
should be affected only by the bits belonging to the
same sub-functions as the perturbed bits s1, which
are s1s2 � � � s5. Since certain fitness difference values are
respectively caused by particular bits arranged in some
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permutation of the sub-function where the perturbed
variable belongs, we can consider the task as finding
which values of variables will result in the correspond-
ing fitness differences.

We found that this kind of tasks is similar to
decision making in machine learning: given a condition
composed of attributes, an agent (algorithm) should
learn to make a decision with the given training
instances. When the decision-making method is
adopted for conducting linkage learning, decision
variables are regarded as attributes and the fitness
difference values stand for class labels. With this simple
and direct mapping, linkage learning in GAs can
potentially be handled with certain well-developed
methods in machine learning.

3.1. Decision tree learning: ID3

The ID3 algorithm was proposed by Quinlan (1986)
for the purpose of constructing a decision tree on a set
of training instances. In its basic form, ID3 constructs
a decision tree in a top–down manner without back-
tracking. When a decision tree is being constructed,
each attribute is evaluated using a statistical property,
called the information gain, to measure how well the
attribute alone classifies the training instances. The
best attribute, which leads to the highest information
gain, is accordingly selected and used as the root node
of the tree. A descendant node of the root is created for
each possible value of the selected attribute, and the
training instances are split into appropriate descendant
branches. The entire process is repeated on the training
instances associated with each descendant node.

The statistical property, information gain, of each
attribute is simply the expected reduction in the
impurity of instances after classifying the instances
with the selected attribute. The impurity of an
arbitrary collection of instances is called entropy in
the information theory. Given a collection D, contain-
ing instances of c different target values, the entropy of
D relative to this c-wise classification is defined as

EntropyðDÞ �
Xc
i¼1

�pi log2 pi, ð3Þ

where pi is the proportion of D belonging to class i. For
simplicity, in all the calculations involving entropy,
we define 0log20 to be 0. In terms of entropy, the
information gain, Gain(D,A), of an attribute A relative
to a collection of instances D, is defined as

GainðD,AÞ � EntropyðDÞ �
X

v2Val ðAÞ

jDvj

jDj
EntropyðDvÞ,

ð4Þ

where Val(A) is the set of all possible values for
attribute A and Dv is the subset of D of which attribute
A has value v. In summary, ID3 can be described as the
pseudo code given in Algorithm 1.

Algorithm 1: Pseudo code of ID3

procedure ID3(D)
Stop if no further classification is need
for each attribute A do

Calculate Gain(D, A)
end for

Select the attribute with the highest information
gain as a tree node
for each possible value v of the selected attribute
do

Create a branch for Dv, the subset of D of
which the selected attribute has value v
Call ID3(Dv) to construct this subtree

end for

end procedure

In the proposal of ILI (Chuang and Chen 2007),
the ID3 algorithm is adopted as a classification and
relationship extraction mechanism. Linkage learning is
then achieved by a sequence of decision tree construc-
tions. In a classification problem, a training instance is
composed of a list of attributes describing the instance
and a target value which the decision tree is supposed
to predict after training. For the purpose of linkage
identification, the list of attributes is the solution
string, and the target value is the fitness difference
caused by perturbations.

3.2. Exemplary illustration

This section illustrates the idea that linkage learning
is considered as decision learning with an example.
We consider a trap function of size k defined as the
following:

ftrapkðs1s2 � � � skÞ ¼ trapk u ¼
Xk
i¼1

si

 !

¼
k, if u ¼ k;

k� 1� u, otherwise,

�
ð5Þ

where u is the number of ones in the string s1s2� � �sk.
Suppose that we are dealing with an eight-bit problem

f ðs1s2 � � � s8Þ ¼ ftrap5ðs1s2s3s4s5Þ þ ftrap3ðs6s7s8Þ, ð6Þ

where s1s2 � � � s8 is a solution string. In the black-box
optimisation scenario, the structural decomposition of
the objective function is unknown. Our goal here is to
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identify the two linkage sets V1¼ {1, 2, 3, 4, 5} and
V2¼ {6, 7, 8}, which correspond to the problem struc-
tural decomposition.

In the beginning, a population of strings is
randomly generated as listed in Table 1. The first
column lists the solution strings, and the second
column lists the fitness values of the corresponding
strings. After initializing the population, we perturb
the first variable s1 (0! 1 or 1! 0) for all strings in
the population in order to detect the variables
interdependent on s1. Note that the choice of first
operating on s1 in this example is not mandatory. Any
un-grouped decision variable in the encoding may be
chosen as the root node. The third column of Table 1
records the fitness differences, df1, caused by pertur-
bations at variable s1.

Then, we construct an ID3 decision tree by using
the perturbed population of strings as the training
instances and the perturbed variable s1 as the tree root.
Variables in s1s2 � � � s8 are regarded as attributes of the
instances, and the fitness differences df1 are the target
values/class labels. Corresponding to Table 1, an ID3
decision tree shown in Figure 1 is constructed. By
gathering all the decision variables on the non-leaf
nodes, we can identify a group of s1, s2, s3, s4 and s5. As
a consequence, linkage set V1 is correctly identified.

For the remainder of this example, since s1, s2, s3, s4
and s5 are already identified as linkage set V1, we
proceed at s6. The fitness differences after perturbing
variable s6 are shown in Table 2. Conducting the same
procedure, an ID3 decision tree presented in Figure 2 is
obtained. By gathering all the decision variables used
in the decision tree, we obtain variables s6, s7 and s8,
which form linkage set V2. Because all the decision

variables are classified into their respective linkage sets,
the linkage detecting task is accomplished. ILI finally
reports two linkage sets, V1¼ {s1, s2, s3, s4, s5} and
V2¼ {s6, s7, s8}.

As illustrated in the example, the mechanism of ILI
can detect size-varied BBs without assumptions. Such
an ability implies that ILI should be capable of finding
all relations among these variables as long as the

Table 2. Population perturbed at s6.

s1s2 � � � s8 f df6 s1s2 � � � s8 f df6

11100 000 1 0 10101 100 1 0
10011 000 1 0 01101 100 1 0
11011 001 0 0 00100 100 3 0
01111 001 0 0 10010 101 2 0
00100 001 3 0 10110 101 1 0
11111 010 5 0 11110 101 0 0
10101 010 1 0 01101 101 1 0
11100 010 1 0 01110 110 1 0
10001 010 2 0 01111 110 0 0
11011 010 0 0 01110 110 1 0
10000 010 3 0 10101 110 1 0
01101 010 1 0 01111 110 0 0
00001 011 3 �3 10010 110 2 0
00001 011 3 �3 00011 111 5 3
11010 011 1 �3 00011 111 5 3
11001 011 1 �3 01000 111 6 3
11111 011 5 �3 00101 111 5 3
11100 011 1 �3 11001 111 4 3
01010 011 2 �3 00110 111 5 3
10111 100 0 0 01111 111 3 3

Figure 1. ID3 decision tree constructed according to Table 1.

Table 1. Population perturbed at s1.

s1s2 � � � s8 f df1 s1s2 � � � s8 f df1

00001 011 3 1 10010 110 2 �1
00011 111 5 1 10011 000 1 �1
00100 001 3 1 10101 010 1 �1
00100 100 3 1 10101 100 1 �1
00101 111 5 1 10101 110 1 �1
00110 111 5 1 10110 101 1 �1
01000 111 6 1 10111 100 0 �1
01010 011 2 1 11001 011 1 �1
01101 010 1 1 11001 111 4 �1
01101 100 1 1 11010 011 1 �1
01101 101 1 1 11011 001 0 �1
01110 110 1 1 11011 010 0 �1
01111 001 0 �5 11100 000 1 �1
01111 110 0 �5 11100 010 1 �1
01111 111 3 �5 11100 011 1 �1
10000 010 3 �1 11110 101 0 �1
10001 010 2 �1 11111 010 5 5
10010 101 2 �1 11111 011 5 5

2206 Y.-p. Chen et al.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

5:
05

 2
8 

A
pr

il 
20

14
 



population size is sufficiently large to provide signif-
icant statistics.

3.3. Inductive linkage identification

In this section, the idea demonstrated in the previous
section is formalized as an algorithm, which is called
ILI. The pseudo code of ILI is presented in
Algorithm 2. Conceptually, ILI includes the following
three main steps:

(1) Calculate fitness differences by perturbations;
(2) Construct an ID3 decision tree;
(3) Consider the tree nodes as a linkage set.

The three steps repeat until all the variables of the
objective function are classified into their correspond-
ing linkage sets.

ILI starts with initializing a population of strings.
After initialization, ILI identifies one linkage set at a
time using the following procedure: (1) a variable is
randomly selected to be perturbed; (2) an ID3 decision
tree is constructed according to the fitness differences
caused by perturbations; (3) the variables used in the
tree are gathered and considered as a linkage set.

Algorithm 2: Inductive linkage identification

procedure IDENTIFYLINKAGE( f, ‘)
Initialise a population P with n string of length ‘.
Evaluate the fitness of strings in P using f.
V {1, . . . , ‘}
m 0
while V 6¼ ; do

m mþ 1
Select v in V at random.

Vm {v}
V V� {v}
for each string si ¼ si1s

i
2 � � � s

i
‘ in P do

Perturb siv.
df i fitness difference caused by
perturbation.

end for

Construct an ID3 decision tree using (P, df ).
for each decision variable sj in tree do

Vm Vm[ { j}
V V� { j}

end for

end while

return linkage sets V1,V2, . . . ,Vm

end procedure

As clearly shown in Algorithm 2, there is no
parameter needed for indicating the complexity of sub-
functions. That is, ILI does not rely on any assumption
on the size of BBs while other existing perturbation
methods usually require the maximum size of BBs to
be specified. This property distinguishes ILI from other
existing methods. The only factor effecting the cor-
rectness of ILI is whether or not the solution strings in
the population can provide sufficient information for
the decision tree construction.

From our previous studies (Chuang and Chen
2007, 2008), we know that the required population size
grows linearly with the problem size while the BBs size
is constant. Such results indicate that ILI is more
efficient than LINC, O(‘2)¼O(k2m2) (Munetomo and
Goldberg 1998), and similar to D5,O(‘)¼O(km) (Tsuji
et al. 2006), where ‘ is the problem size, k is the size
(i.e. length or order) of BBs, and m is the number of
BBs. Note that the comparison focuses on the amount
of required computational resource instead of the
identification quality. This is because given sufficient
computational resource, all these methods can success-
fully identify every BB. In order to gain further
understandings on the flexibility and applicability of
ILI, in the next section, experiments on the BBs of
different sub-functions as well as lengths are conducted
and discussed.

4. Experiments and results

Experiments and results of ILI on binary and non-
overlapped ADFs will be presented in this section.
These experiments are designed to gain a better
understanding of the behaviour of ILI on problems
of different sub-functions compositions, including size-
varied, size-mixed BBs and different sub-functions.

The required population size reflects the behaviour
of ILI. Therefore, our experiments are designed to

Figure 2. ID3 decision tree constructed according to Table 2.
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obtain the minimal population sizes required for
different problem configurations. For a given problem,
first a population size assuring successful trials of
linkage identification, which means correctly identify-
ing all the BBs within the problem for 30 consecutive
and independent runs, is obtained by doubling the
population size from 2500 until the first successful trial
is archived. Once the upper bound of population sizes
PU is found, the required population size is determined
in a bisection manner: the population size P¼
(PLþPU)/2 will be configured for ILI, where PL¼ 1
for the first iteration. If ILI can succeed with this
population size P, then P will be regarded sufficiently
large for the problem. The next iteration will perform
on the range [PL,P]. Otherwise, the range [P,PU] will
be used. This procedure repeats until the range is
smaller than a predefined distance, which is 2 in this
study, and the last tested population size is considered
as the minimal requirement for the current problem.

4.1. Different BB sizes

This section describes the experiment on problems of
identical overall sizes but with different-sized sub-
functions. From our experimental results with different
configurations of the BB size k and the number of BBs
m, we group those results with the overall problem
sizes and arrange them with the BB size k. Thus, the
results of the same problem size with different k can be
examined.

Figure 3(a) and (b) shows the experimental results
where the overall problem sizes are 60 bits, 240 bits,
420 bits and 600 bits with a log-scaled y-axis. The
straight lines indicate that for identical overall problem
sizes, the requirements of both the population size and
the function evaluation grow exponentially.

With the exponential regression of the experimental
results, an estimation of y¼C� 2a�k can be obtained,
where a is a constant around 0.8 and C varies with
different problem sizes. Earlier studies by Munetomo
and Goldberg (1998) and Heckendorn and Wright
(2004), respectively, suggested an empirical and a
theoretical upper bounds of function evaluations,
which are both in the form of 2k‘ j log(�) for problems
of ‘ bits, composed of order-k BBs and each BB
sharing j bits with others. Reviewing our empirical
results with the upper bounds, ILI shows the same
computational complexity of the exponential growth
with k when overall sizes remain constant, such an
observation is consistent with the upper bounds
reported in the literature. However, the regression
gives 0.8 as the base of exponent and thus indicates a
practically better efficiency compared to the suggested
upper bound when the complexity of sub-problem
increases.

4.2. Mixed BB sizes

One of the key features of ILI is unsupervised. In this
section, we inspect this feature by conducting experi-
ments on the problems consisting of non-overlapping
BBs of order-k1 and order-k2 trap functions as

trapk1þk2 ð�Þ ¼
Xm
i¼1

trapk1ð�Þ þ trapk2 ð�Þ
� �

, ð7Þ

where m is the number of trapk1 and trapk2 . By
designing the experiments in this way, the empirical
results can be easily compared with those from
problems consisting of identical sub-problem complex-
ities in the following manner: for each problem size
obtained from the experiment of trapk1þk2ð�Þ, two
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Figure 3. Requirements on different BB sizes; (a) Population size and (b) Function evaluation.
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results of the same amount of trapk1 and trapk2 from
experiments in Section 4.1 are summed up to get the
same problem size and total number of BBs, interpo-
lation is utilised when there are no results of such
configurations. These calculated numbers are denoted
as trapk1 þ trapk2 in Figure 4 with the experimental
results trapk1þk2 .

First, these results show that ILI is capable of
detecting BBs of different sizes within one problem
without any extra information regarding the complex-
ity of sub-problems. Second, comparing with calcu-
lated data, it can be seen that although ILI requires
more function evaluations for the problems composed
of mixed BB sizes, the growth rate is still linear or very
close to linear. The observation indicates that identi-
fying size-varied BBs within a problem poses no
particular difficulties for ILI. Such a property of
robustness makes ILI more practical when being
applied to real world problems where information
regarding the sub-problem complexity is usually
unavailable and no guideline exists to make appropri-
ate assumptions.

4.3. BBs of various elementary functions

Despite of using trapk functions as the sub-function to
construct BBs, the capability of ILI to handle BBs
formed by other functions shown in Figure 5 is
examined in this section. These elementary functions
are used to compose the objective function according
to the ADF model, and the complexity of order 4 is
used in this section.

Figure 6 shows the experimental results. The
required population sizes and function evaluations of

trap4, nith4, tmmp4 and valley4 are plotted together, and
the standard deviation of the results for trap4 is also
shown in the figures. Because the population and
function evaluation requirements of these problems are
similar, the behaviour of ILI should also be similar for
problems constructed by mixing sub-problems of the
same complexity. Moreover, the applicability of ILI on
a wide range of problems is also confirmed. ILI is
capable of detecting the interactions among variables
as long as a sufficiently large population is employed to
provide significant statistics.

5. Summary and conclusions

In this article, we examined ILI on several different
configurations of BBs in order to gain better under-
standings. We focused on the mixed sizes of BBs and
the elementary functions of different types. These series
of experiments verified the efficiency of ILI on the
population requirement growth, the robustness of ILI
on mixed sizes of BBs, and the applicability of ILI on
BBs formed with various elementary functions.

From the experiments of BB sizes, it is demon-
strated that the required function evaluations grow
exponentially with the size of BBs when the overall
problem size remains constant. Such a result is
consistent with the conclusions of previous studies
from other researchers in the manner of Big-O while
ILI demands less computational resource in practice.
On the other hand, if computationally expensive real-
world problems, such as parametric engineering design
(Saridakis and Dentsoras 2009), are handled, and the
optimisation framework has to be made much more
efficient, techniques of the surrogate-assisted
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Figure 4. Problems with mixed BB sizes. The solid lines represent the actual experimental results while the dashed lines are the
summed up calculations from Section 4.1.
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evolutionary algorithm (SAEA) (Sastry, Goldberg, and
Pelikan 2001; Jin 2003; Lim, Jin, Ong, and Sendhoff
2010a; Lim, Ong, Setiawan, and Idris 2010b) may be
adopted and utilised.

Another observation is that when ILI performs on
problems composed of mixed-sized BBs, the computa-
tional complexity of ILI is still in the same order.

This phenomenon indicates that detecting these more
complicated problem structures poses no particular
difficulty for ILI. Finally, the experimental results
obtained by using four different elementary functions
to construct BBs are quite similar. Thus, this series of
experiments evidentially proves that ILI behaves sim-
ilarly when handling sub-problem of different types.
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Figure 5. Elementary functions adopted in the series of experiments in Section 4.3; (a) trap4, (b) nith4, (c) tmmp4 and (d) valley4.
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Figure 6. Experimental results on different 4-bits BB types: (a) required population sizes and (b) required function evaluations.
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As a consequence, we can now know that the most
important factor that affects ILI’s ability to identify
linkage is the size of BBs. Compared with the BB size,
ILI is relatively insensitive to other factors commonly
studied by the related work, including the overall
problem size, the number of BBs, and the type of BBs.
Hence, ILI can be considered as a good linkage
learning technique and can be adopted as a tool for
analysing structures of target problems or a pre-
processing procedure in frameworks of GAs.

Since its introduction, ILI as a linkage learning
technique has been empirically proven efficient, robust
and widely applicable. Research along this line
includes integrating ILI into a GA framework, han-
dling real-world applications with ILI, exploring ILI’s
capability of analysing problem structures and under-
standing the nature of linkage learning via getting
deeper insights of ILI. As for the immediate future
studies, the idea of ‘linkage identification as decision
learning’ can be adapted to work with other advanced
decision tree techniques. Characteristics of different
decision tree algorithms might exhibit behaviour of
different kinds and give us a better understanding of
linkage identification. Such knowledge can be utilised
to practically help the algorithmic development of GAs
and theoretically reveal the working principle of
evolutionary computation.
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