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Abstract. In this paper, we study the impact of the sizes and the shapes of nanoscale semiconductor quantum
rings on the electron and hole energy states. A three-dimensional effective one band Schrödinger equation is
solved numerically for semiconductor quantum rings with disk, cut-bottom-elliptical, and conical shapes. For small
InAs/GaAs quantum rings we have found a sufficient difference in the ground state and excited state (l = −1)
electron energies for rings with the same volume but different shapes. Volume dependence of the electron and hole
energies can vary over a wide range and depends significantly on the ring shapes. It is found that a non-periodical
oscillation of the energy band gap between the lowest electron and hole states as a function of external magnetic
fields.
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1. Introduction

Advances in the fabrication of semiconductor nanos-
tructures have generated a huge quantity of experi-
mental and theoretical data in this topic [1–13]. The
three-dimensional (3D) confinement of charge carriers
in those structures allows very rich optical and mag-
netic characteristics which potentially may have very
important device applications [1–6]. The study of semi-
conductor nanoscale quantum rings significantly con-
nects the gap between quantum dots and meso-scopic
quantum ring structures. The spectral variation in semi-
conductor quantum rings caused by the non-uniformity
in the size and shape is important for magneto-optical
properties and practical device applications. Various
experimental results suggest that InAs/GaAs quantum
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rings can have disk (DI), cut-bottom-elliptical (EL), or
conical (CO) shapes with a circular top view cross sec-
tion and a large area-to-height aspect ratio [7–10]. To
the best of our knowledge, analysis of the influence of
the ring size and shape on the electron energy states
has not been done yet.

In this study, we calculate and compare the electron
energy spectra for 3D nanoscale InAs/GaAs quantum
rings of three different shapes (see Fig. 1): DI, EL, and
CO shapes. Our model considers: (1) the position de-
pendent effective mass Hamiltonian in non-parabolic
approximation for electrons; (2) the position dependent
effective mass Hamiltonian in parabolic approximation
for holes; (3) the finite hard wall confinement poten-
tial; and (4) the Ben Daniel-Duke boundary conditions.
To solve this 3D nonlinear problem, the nonlinear it-
erative method [11–13] is improved to calculate “self-
consistent” solutions more efficiently. It is found that
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Figure 1. Quantum rings with different shapes: (a) DI, (b) EL and
(c) CO.

the volume dependence of electron and hole energies
can vary over a wide range and depends on the ring
shapes. The variations of the ring size and shape pro-
duce an energy change up to an order of 0.15 eV in
the strong confinement region. The energy band gap
versus the magnetic field depends on the ring volume
and transits non-periodically.

This paper is organized as follows. Section 2 is the
modeling and simulation. Section 3 describes results
of calculations. Section 4 draws the conclusion.

2. Theoretical Model and Computational Method

We consider the DI-, EL-, and CO-shaped quantum
rings with the hard-wall confinement potential [12,13].

The effective mass Hamiltonian for electrons (c = e)
and holes (c = h) is

Ĥc = �r
1

2mc(E, r)
�r + Vc(r) + 1

2
gc(E, r)µBBσ,

(1)
where �r = −i�∇r + eA(r) represents the electron
momentum vector. ∇r is the spatial gradient, A(r) is
the vector potential, and B = curlA is the magnetic
field. For electrons, the electron effective mass follows
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and Landé factor is
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Ve(r) is the confinement potential, Eg(r) and �(r) are
the position-dependent band gap and spin-orbit split-
ting in the valence band, P is the momentum matrix
element, σ is the vector of the Pauli matrixes, and
m0 and e are the free-electron elementary mass and
charge, respectively. For holes, mh(E, r) and gh(E, r)
are assumed to be only position dependent. We con-
sider the hard-wall confinement potential Vc(r) = 0
for r inside the ring (I ) and Vc(r) = Vc0 for r out-
side the ring (II), where Vc0 is the band offset. The
Ben Daniel-Duke boundary conditions for the electron
and hole wave functions �(r) are �cI (rs) = �cI I (rs)
and (�2/2mc(E, r))∇r|n�i (rs) = constant, where rs

is the position of the system interface. All rings are
cylindrically symmetric with respect to the base radius
and height in the coordinates (R, φ, z), so the wave
function can be written as �c(r) = �c(R, z) exp(ilφ),
where l = 0, ±1, ±2,. . . is the orbital quantum num-
ber, and the problem is in the coordinate (R, z). The
Schrödinger equation for electrons and holes is

− �
2

2mci (E)

(
∂2

∂ R2
+ ∂

R∂ R
+ ∂2

∂z2
− l2

R2

)
�ci (R, z)

+
(

mci (E)�2
ci (E)R2

8
+ s

µB

2
gci (E)B

+ ��ci (E)

2
l + Vc0δi I I

)
�ci (R, z)

= E�ci (R, z), (4)



Effect of Shape and Size on Electron Transition Energies 489

where i = I , II, �ci (E) = eB/mci (E), and s = ±1
is the orientation of the electron spin along the z-axis.
The boundary conditions are �cI (R, z) = �cI I (R, z),
and
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where z = f (R) on the {R, z} plane is a contour
generator for all ring structures.

The energy band gap Eg(B) = Ege(B) + Egh(B) +
EgR , where Ege and Egh are the ground state ener-
gies for electrons and holes, and EgR is the energy
gap in the quantum ring. The energy dependence of
the electron effective mass and Landé factor compli-
cates the analytical solution considerably. Computer
simulation of energy spectra for quantum rings is sug-
gested. For each applied magnetic field, the effective
mass and Landé factor are calculated with an arbitrary
initial energy E = E0. The finite volume [14] dis-
cretized Schrödinger equation is solved to calculate
all bounded energy levels. To solve the correspond-
ing matrix eigenvalue problem more efficiently, a hy-
brid computational scheme is suggested. This scheme
combines the robust balanced and shifted QR method
[15] with the fast implicitly restarted Arnoldi [16]. If
E converges, we calculate Eg(B); else we update the
newer E and perform the next iteration. The general-
ized method for solving different shape quantum rings
converges monotonically and is cost effective

3. Results and Discussion

In Fig. 2 we present the calculated electron energy lev-
els for InAs/GaAs quantum rings as functions of the
ring volume. For InAs, E1g is 0.42 eV, �1 is 0.38 eV,
and m1e(0) = 0.024m0. For GaAs, E2g is 1.52 eV,
�2 = 0.34 eV, m2e(0) = 0.067m0, and V0 = 0.77 eV.
From experimental data [6–9], the base radius of the
rings R0 = 20 nm and the inner radius Rin = 10 nm
for all shapes. Our model predicts electron energy de-
pendences on the volume for rings of different shapes.
When the ring volume increases, the energy states of
different shapes converge. The most sensitive to the

Figure 2. The electron ground state (the left figure) and the l = −1
excited state (the right one) energies versus the ring volume at
B = 0 T.

ring volume variation is the DI shape and, the least
one is the CO shape rings. This is no surprise since the
electron wave function is the best confined for the disk
geometry when the volume and the radius are fixed. The
wave function shape confirms weaker confinement for
CO-shaped rings. The excited state (l = −1), how-
ever, has demonstrated a weaker sensitivity to the ring
shape and volume (see the right one of Fig. 2). This is
because that the electron wave functions of the exited
states are less confined and, therefore, are less sensitive
to the ring shape and size.

Using the same calculation method, we obtained
hole energy states for rings of the same shapes. The
hole effective mass is taken as m1h = 0.4m0 and
m2h = 0.5m0, and band offset V0 = 0.33 eV. Shown in
Fig. 3 is the hole energy states for the ground (the left
figure) and l = −1 excited (the right one) states. With
this same parameter setting Fig. 4 shows the electron
and hole energy versus B for the DI-shaped quantum
ring, where the ring volume 3000 nm3 is fixed. The en-
ergy states are numerated by a set of quantum numbers
{n, l, s}, where n = 0, 1, 2,. . . is the main quantum

Figure 3. The hole ground state (the left figure) and the l = −1
excited state (the right one) energies versus the ring volume at
B = 0 T.
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Figure 4. Plots of electron (the left figure) and hole (the right one)
energies versus B for the DI-shaped quantum ring with volume =
3000 nm3.

Figure 5. The energy band gap versus B for the DI-shaped quantum
ring with volume = 3000 nm3 (the left figure) and 6000 nm3 (the
right one).

number. The left figure of Fig. 4 is the electron energy
E0,l,+1 for l = 0, −1, and −2. The calculated results
of the energy band gap between the lowest electron
and hole states for the InAs/GaAs quantum ring with
volumes 3000 and 6000 nm3 are shown in Fig. 5. We
find a non-periodical oscillation of Eg(B) between the
lowest electron and hole states as a function of B. The
transition of Eg(B) depends on the ring volume. Due
to the wave function penetration into the torus region,
it is found Eg(B) does not follow the 1D periodical
rule: π (Rin + R)2B/
0 = n, where n is an integer
number and 
0 is the quantum of magnetic flux [13].
Eg(B) depends on ring volume, and its non-periodical
oscillation directs to our 3D modeling and simula-
tion. The results should be examined in the magnetic-
photo-luminescence spectra for nanoscale quantum
rings.

4. Conclusions

We have presented a computational approach that al-
lows us to study the electron and hole energy states
for nanoscale semiconductor quantum rings of three
different shapes. This method is useful to analyze the
dependence of the quantum ring spectra on the ring
volume and shape distributions. We found a large
difference for the electron ground state energy in
InAs/GaAs rings of the same volume but different
shapes. The energy states of holes and transition en-
ergies under external magnetic fields were estimated.
Our results advised that the non-periodical oscilla-
tion of energy band gap depends on the ring volume.
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