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a b s t r a c t

This study investigates sequence optimization of media objects in a multimedia

presentation that is dynamically composed from digital libraries. Each media object

can be associated with a due date. The aim is to schedule the media objects in a delay-

prone network environment such that the overall presentation lag and the due date

sequencing problem with buffer constraints in the media player into a flowshop

scheduling problem and present a reduction strategy with a branch and bound

algorithm to derive optimal sequences. The algorithm can be applied in applications

with up to a dozen objects to be scheduled. In addition, we propose a modified NEH-

based heuristic algorithm which can provide approximate solutions with an average

error rate of less than 4%. The computation-efficient heuristic, when deployed in

applications with heavily loaded servers, can obtain near-optimal sequences for

problems with more than a dozen objects. The proposed algorithms are embedded

into a prototype system for providing digital library services.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In a multimedia digital library system, a query to the
database typically retrieves a number of relevant media
objects. In general, while most existing systems provide
interfaces for users to view the objects by repetitively
‘‘clicking, downloading, and playing’’ the objects one by
one, there is a desire of users for a ‘‘TV-like’’ presentation
style where the objects are continuously played. A pre-
sentation of this kind sequentially combines and continu-
ously presents the media objects such that the user does
not have to repetitively click to retrieve and play the
media objects. Applications preferring a TV-like presenta-
tion would arise from any system that can combine
ll rights reserved.
multiple separate media objects into a continuous pre-
sentation. Examples include assembling a TV-like docu-
mentary based on queries to a multimedia database,
continuously showing media items in an online multi-
media album, etc. A continuously played TV-like presen-
tation particularly suits hand-held portable devices such
as pocket PCs, organizers, and cell phones. The input
interfaces of these portable devices usually are more
difficult to operate than a mouse. In particular, traditional
repetitive ‘‘click-and-play’’ operations are less effective
when users are in motion. In practice, to suit more users
with different navigation preferences, the design of the
navigation interface should provide both click-and-play
and TV-like presentations.

In a typical online multimedia presentation applica-
tion, the media objects are retrieved from a server
through the Internet. The total latency of a presentation
is thus an important factor in the overall quality of the
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Fig. 1. Illustration of the notations used in problem formulation.
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service. To cope with the congestion and delay problems,
a commonly used strategy is to ‘‘prefetch’’ the media
objects before their presentation due time. In an on-
the-fly assembled presentation delivered from digital
libraries, there is no pre-defined order for presenting the
media objects. Hence, the ordering of the objects is
determined dynamically on-the-fly. In a typical multi-
media presentation, the modalities of the media objects
might include text, images, audio, video, vector graphics,
etc. Each media type has its unique data compression
capabilities. For the same amount of data transmitted, the
expected presentation durations for different media types
differ drastically. To reduce the total presentation lag, the
delivery and presentation order of the media objects
should be properly planned.

Media streaming technology is an example application
of prefetch technology that aims to reduce the presenta-
tion lag. A streaming-based media player prefetches and
buffers small chunks of a media object so that the data
can be processed before it is rendered. As soon as the
buffer is full, the media object starts to play. While the
media object is playing, more data is being downloaded.
Typically, for a multimedia presentation delivered
through a network environment with a reasonable band-
width, the only playback idle time is the initial download
duration for the first chunk, which in general is rather
short. Therefore, a practical approach is to present the
streamed objects before other non-streamed objects to
keep the overall presentation latency low. The main
theme of this study is to explore and exploit optimization
techniques for ordering the non-streamed media objects
of a prefetch-enabled presentation through a slow net-
work such that the presentation lag is minimized.

In general, the end-to-end delay of a presentation
depends on: access delay in the server side, communica-
tion delay due to network transmission, packetization,
buffering, depacketization, and rendering overhead at the
player site. In an environment where the bandwidth of
the communication channel is rather restricted, the com-
munication delay dominates the end-to-end delay. In this
study, we assume that the download time of an object is
deterministic. This assumption is reasonable for applica-
tions where the end-to-end transmission delay is mainly
attributed to a last-mile bottleneck or a server-assigned
bandwidth quota limit. In these cases, the end-to-end
transmission usually does not exhibit significant band-
width variations. As compared to commonly-adopted
approaches that use random sequences, simulation
experiments to be presented in Section 7 nevertheless
show that optimized sequences based on the determinis-
tic download transmission time significantly reduce the
presentation lags in real life network environments with
stochastic variations in the transmission rate.

In Lin et al. [22,23], we provided the essential back-
ground and an overview of the prefetch-enabled media
object scheduling problems [4] with different real-life
constraints. A number of different problem settings have
been thoroughly discussed. We identified several problem
settings that had never before been explored. In this
study, we propose a solution for a specific one of these
un-solved problems. Specifically, this study considers the
media object scheduling problems with a player-side
‘‘buffer constraint’’ and ‘‘due-date’’ constraints on the
media objects. The player-side buffer constraint is com-
mon in applications where the multimedia objects are to
be presented in small-scale devices, such as pocket PCs
and organizers, with restricted memory capacity. The
due-date constraints arise from commercial online ser-
vices in which the media servers are implemented to
automatically insert various intermittent media objects
for advertisements while the users are viewing a presen-
tation that dynamically combines media objects retrieved
from the servers. These advertisement media objects are
presented between two neighboring objects in the pre-
sentation. Often, an advertisement object is required to be
completed within a predetermined time slot in the
final presentation, mostly depending on the agreements
between service providers and funding supporters. The
problems addressed in this paper will be mathematically
formulated and computationally solved. Numerical simu-
lations will be described to assess the performance of the
proposed algorithms under real-life wireless network
conditions.

2. Notations and problem statements

To better illustrate the operations scenarios of the
problem setting under study, Fig. 1 shows a Gantt chart
illustrating the download and playback of a sequence of
media objects. The objective is to find an optimal
sequence of media objects with the minimum sum of
total presentation time and due date penalties, which are
calculated from the overdue times of the media objects.
This object sequencing problem could be formulated as a
two-machine flowshop scheduling problem subject to a
player-side buffer constraint and presentation due date
constraints. The correspondence is shown in Table 1.

This study assumes that a media object can be down-
loaded only if the free space of the buffer is sufficient to
accommodate the object. Once the playback of an object is
finished, the buffer space occupied by this object is
immediately released. In the literature, there are several
papers investigating flowshop scheduling with an upper
limit on the number of objects that can be allocated in the
intermediate storage buffer. For the case without a buffer
constraint (denoted as N-buffer in Papadimitriou and
Kanellakis [29]), an optimal solution can be obtained by
Johnson’s algorithm [16]. For the case in which no job is
allowed to be kept in the intermediate storage buffer



Table 1
Correspondence between object ordering and two-machine flowshop scheduling.

Media object scheduling ordering Two-machine flowshop scheduling Notation

A set of media objects A set of jobs N

A media object A job Ji

Server (sends data to the client) First machine M1

Client (receives/playbacks data from the server) Second machine M2

Download time of a media object Processing time on first machine ai

Playback time of a media object Processing time on second machine bi

Completion time of the playback of a media object Completion time of job Ji Ci

Completion time of the presentation Makespan (the maximum of Ci) Cmax
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(denoted as zero-buffer or no-wait in Papadimitriou and
Kanellakis [29]), we can use the polynomial algorithm
proposed by Gilmore and Gomory [11] for a specific
variant of the traveling salesman problem. Beyond these
two cases, buffer-constrained flowshop scheduling has
been shown to be strongly NP-hard by Papadimitriou and
Kanellakis [29,10]. To obtain exact solutions to such a
problem with a finite intermediate job-number-based
buffer, a number of solution methods have been proposed,
for example Leisten [20], Smutnicki [32], Dutta and
Cunningham [9], Brucker et al. [5], Tang and Xuan [33],
and Wang et al. [35]. In these studies on flowshop
scheduling, the number of jobs allowed to keep in the
buffer is fixed throughout the process. In the online
multimedia applications addressed in this study, we
consider the memory size of the player-side buffer instead
of the number of objects allowed in the buffer. Therefore,
for a given buffer size, the number of objects allowed in
the buffer depends on the file sizes of the current playing
objects and other unscheduled objects. In an environment
with a constant transmission bit rate, the download time
of an object (i.e., the processing time on M1) is propor-
tional to its file size. Jobs of larger sizes require longer
processing (or transmission) times. The number of jobs
allowed in the buffer thus depends on job processing
times. The problem under study is different from conven-
tional buffer-constrained flowshop scheduling. Our buffer
model exhibits another unique feature that the buffer
resides on machine M2 rather than acting as an inter-
mediate buffer in between two machines. Therefore, a job
currently being processed on machine M2 resides in the
buffer and occupies the buffer space until its completion.
In conventional scheduling problems, a job released from
the buffer for processing on the next machine immedi-
ately frees the space it had acquired. To the best of our
knowledge, the scheduling model formulated from the
studied object sequencing problem is new to the schedul-
ing community. In the following, we introduce the nota-
tion that will be used throughout the paper.
2.1. Notation

N¼{J1, J2,y, Jn} a set of n media objects;
Ji a specific object in N;
ai download time of media object Ji;
bi playback time of media object Ji;
M1 the first machine (server);
M2 The second machine (client);
Ci completion time of the playback of media

object Ji;
idlei idle time immediately before Ji on machine M2;
di due date of Ji;
Ti tardiness of Ji, i.e. max{Ci�di, 0}
NExc a subset of N in which the objects are ‘‘exclu-

sive’’ (i.e., large media objects that cannot reside
in the buffer with any others);

ND a subset of N in which each object is associated
with a due date;

NExc�D NExc\ND a subset of NExc in which each object is
associated with a due date;

NA NExc\{N\ND} a subset of NExc in which no due
date is assumed;

NBB N\NA the object set considered in the branch and
bound solution after the problem reduction
strategy;

NSD subset of objects of NBB which are already
scheduled;

NBUF subset of NBB which are in the buffer;
SN a particular sequence of jobs of set NBB;
SNSD

a particular sequence of jobs of set NSD;
CSD maximum completion time of the objects in

sequence SNSD
;

Cmax maximum completion time of the objects in
sequence SN;

Tmax maximum tardiness in sequence SN;
STi sum of tardiness in sequence SN.

2.2. Problem statements

In the problem addressed in this paper, the optimiza-
tion goal is to minimize the weighted sum of the make-
span (Cmax) and a due-date related criterion (Tmax or STi).
Tardiness reflects service quality and makespan indicates
system throughput as well as service quality. In practice,
the optimization metrics could be either one of the
following two formulations of a weighted bi-criteria
optimization problem:

Case 1. aCmaxþ(1�a)Tmax

Case 2. aCmaxþ(1�a)STi

With the processing-time-dependent buffer constraint,
the above two bi-criteria combinations have never before
been explored. In both settings, the number of objects
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allowed to be kept in the buffer depends on the proces-
sing times (ai) of the jobs on machine M1. Based on the
standard three-field notation introduced in Graham et al.
[12], we denote the above two problems by F29ai-buf-
fer9aCmaxþ(1�a)Tmax and F29ai-buffer9aCmaxþ(1�a)STi,
respectively. For two-machine flowshop scheduling with-
out any buffer constraint, Lenstra et al. [21] proved that
F299Lmax and F299STi are strongly NP-hard. With the
processing-time-dependent buffer constraints enforced
in both cases, it is clear that F29ai-buffer9aCmaxþ(1�a)
Tmax and F29ai-buffer9aCmaxþ(1�a)STi inherit complicated
structures that are computationally challenging as well.

In the literature, Daniel and Chambers [8], Chakravarthy
and Rajendran [6], and Allahverdi [2] have proposed branch-
and-bound algorithms and heuristic approaches for solving
F299aCmaxþ(1�a)Tmax. To our knowledge, no solution
algorithm has been proposed for F299aCmaxþ(1�a)STi. In
this paper, we develop a branch-and-bound algorithm for
both problems. Section 3 presents a problem reduction
algorithm that decomposes the original problem into a set
of independent sub-problems that are relatively easy to
solve. Several lower and upper bounds for the two
problems are then established.
3. A problem reduction algorithm (PRA)

This section presents a problem reduction strategy
that is applied to decompose the original problems into
several sub-problems. The problem reduction algorithm
(PRA) arrives at a solution with less search efforts than
required to solve the original problem. First, we introduce
the notion of exclusive object. Given a buffer with a
limited capacity, when a relatively large object is being
played and thereby occupying the lion’s share of the
buffer space, the transmission of the next incoming object
is prohibited due to the space limit. We term such a media
object as an exclusive object. That is, whenever an exclu-
sive job is under processing on machine M2, the proces-
sing of other objects on machine M1 is not allowed.

Consider subset ND, the subset of N containing the
objects constrained by due dates and NExc, the subset of N

containing the exclusive objects. Given the buffer size, we
first partition the original media set into two disjoint
subsets: exclusive objects without due date constraints
(denote by NA¼NExc\{N\ND}), and the others (denoted by
NBB¼N\NA). Whenever an object of NA is under processing
on machine M2, the processing of other objects on
machine M1 is prohibited. Therefore, by intuition all the
objects of NA should follow all the objects of NBB. An
ap aq 
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Fig. 2. Two different cases for
optimal sequence of NBB (denoted by SBB) can be obtained
using a branch-and-bound algorithm. The main idea of
the PRA is to ignore the objects of NA in the search
process. In this case, the original problem can be down-
sized to a sub-problem that considers only the ordering of
the objects of NBB, and the objects of NA can be positioned
after the derived sequence SBB that minimizes the speci-
fied objective function. Such a problem reduction
approach is particularly useful when most of the media
objects are of sizes comparable to that of the buffer in a
given setting.

In the following section, we present a branch-and-
bound algorithm for the sub-problem on NBB obtained
after applying the reduction step to the original media set.
The sub-problem considers only the media set NBB. We
propose several lower bounds and upper bounds for this
sub-problem. Computational experiments will be con-
ducted to examine the effectiveness and efficiency of
the bounds.

4. Lower bounds

This section prosents three lower bounds for problems
F29ai-buffer9aCmaxþ(1�a)Tmax and F29ai-buffer9aCmaxþ(1�a)
STi. Development of some lower bounds is adapted from
previous results of the single-criterion makespan mini-
mization problem studied in Lin et al. [22].

4.1. Lower bound on Cmax (LB1)

Referring to Fig. 2, we consider a node that corre-
sponds to a partial schedule of the search tree. Let NSD be
the set of jobs already scheduled, SNSD

a sequence of the
jobs of set NSD, and CSD the makespan of sequenceSNSD

. Let
Jp, Jq, Jr be the last three objects in sequence SNSD

. Consider
the instance when an object Jr is being processed on M2.
A reasonable estimate of the minimum remaining proces-
sing time at this node is the total processing time ai

required for all unscheduled objects minus the total
allowable processing time on M1 before all the buffered
objects finish their playback.

In the case where the last object Jr is exclusive, the only
object residing in the buffer is Jr. Therefore, on M1 the total
allowable processing time before all the buffered objects
finish their playback is zero (Fig. 2(a)). In the case where
the last object Jr is not exclusive, there could be other
buffered objects waiting for processing on machine M2

(e.g., Jp and Jq in Fig. 2(b)). The total allowable processing
time on M1 before all the buffered objects finish their
bq

ar

br 

br

g_p Tduring_q
Tduring_r

bq

tinit 

calculating Tduring_buffer.
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playback is calculated based on the duration that is
allowed for further downloading objects during the play-
back of all buffered objects, denoted by Tduring_buffer and
computed by summing the durations allowed for further
download of objects during the processing time of each
buffered object Ji (denoted by Tduring_i). We use the follow-
ing two values to help compute this value: (1) duration
required to fully fill up an empty buffer (denoted by
Tbuffer), and (2) duration allowed to fully fill up the residual
free buffer space at the instant the first object in buffer, Jp,
starts its playback (denoted by Tfill). In the following, we
elaborate the derivation of a lower bound using the
above terms.

Assume the data transmission bit rate BR on machine
M1 is constant. Then, the time required to completely fill
up the empty buffer is Tbuffer¼BUF/BR.

For a given partial schedule, the current residual free
buffer space BUFfree is the buffer size minus the size of the
processing object on machine M2 and other standby jobs
in the buffer. Hence, the duration allowed to fill up the
residual free buffer space at the instant the first object in
buffer starts its playback is Tfill¼BUFfree/BR.

There are two different scenarios for calculating the
duration allowed for further download of objects during
the processing time of an object Ji on M2 (denoted by
Tduring_i). In the first case (Fig. 3(a)), bp is larger than Tfill.
During the processing time of Jp on M2, the processing
on M1 will be suspended once the buffer is fully filled.
The maximum allowable download time is equal to Tfill.
Hence, Tduring_p¼Tfill.

In the second case (Fig. 3(b)), the buffer is not fully
occupied before Jq completes on M2. The buffer has a free
space for downloading the next object, say Jr. In such a
case, Tduring_q can be given as bq.

By combining the above two scenarios, we compute
the allowable download time Tduring_i during the playback
of a buffered object Ji as

Tduring_i ¼min ðTf ill,biÞ ð1Þ
arTfill

Tbuffer

Tfill Tduring_p

Tduring_p

Tduring_q

bp

bq

Fig. 3. Two different scenarios
The total allowable download time for all buffered
objects at that node can then be given as

Tduring_buf f er ¼
X

Ji2NBUF
Tduring_i ð2Þ

For the case in Fig. 2(a) where the last object belongs
to set NExc�D, it is not possible to download an unsched-
uled object before the completion of the buffered object.
Therefore, Tduring_buffer¼0.

In summary, for a node in the search tree with the last
item Jr and sequence SNSD

, we have the following decision
rule to compute the value of Tduring_buffer:

If Jr 2 NExc�D

Tduring_buf f er ¼ 0,

Else

Tduring_buf f er ¼
X

Ji2NBUF
Tduring_i ð3Þ

We now propose a lower bound based on Tduring_buffer.
Given CSD as the current makespan of the scheduled jobs,
the minimum remaining time required to download other
unscheduled jobs after the playback of all the currently
buffered objects is

TR ¼max
X

Ji2N\NSD
ai�Tduring_buf f er ,0

n o
ð4Þ

In the following paragraphs, we present methods that
maximize Tduring_p for each buffered object. Fig. 4 depicts
an example where Jp, Jq, and Jr are scheduled and Ji, Jj, and
Jk are unscheduled. Given a partial schedule where Jp

starts playing, there are two cases to consider for calcu-
lating Tduring_p (duration allowed for further download
during the processing time of Jp).

In the first case (Fig. 4(a)), bq is smaller than Tfill. The
buffer will not be fully occupied before the completion of
Jq. In such a case, Tduring_q¼bq. In the second case
(Fig. 4(b)), bp is larger than the Tfill. The maximum
allowable download time Tduring_p depends on possible
combinations of the unscheduled jobs. For example, in
Fig. 4(b), ai and ak occupy more buffer space than aj. In
addition, aj and ak cannot be allocated in the buffer at the
apaq

aqar

for calculating Tduring_i.
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Fig. 4. Calculation of the maximum allowable download time during the playback of an object.
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same time since the sum of their download times is larger
than Tfill. In practice, the optimal combination of the
unscheduled jobs that maximizes Tduring_i (i.e., buffer
usage) can be obtained by solving the Subset-sum pro-
blem ([24,17]). In the Subset-sum problem, we wish to
find a subset of w1, w2,y, wj whose sum is as large as
possible but no greater than a given capacity U. Subset-
sum is formulated as

Maximize
P

j2NBB \NSD

wjxj

Subject to
P

j2NBB \NSD

wjxjrU,

where xj 2 f0,1g ð5Þ

To maximize Tduring_p, we correspond ai to weight wi,
and Tfill to capacity U in Subset-sum. The objective is then
to determine an optimal combination of ai’s among the
unscheduled jobs for which Tduring_i is maximized. Subset-
sum can be solved by dynamic programming algorithms
(DP) in O(kTfill) time [17], where k is the number of objects
in NBB\NSD. We denote the solution obtained via Subset-
sum by Tduring_Subset_sum_p for Jp.

By combining the above two cases, the allowable
download time during the playback of a buffer object Ji

is given by

If Tf ill4bi,Tduring_i ¼ bi else Tduring_i ¼ Tduring_Subset_sum_i

ð6Þ

Given TR ¼maxf
P

Ji2N\NSD
ai�Tduring_buf f er ,0g, TR can be

maximized by using Tduring_i¼Tduring_Subset_sum_i for each
buffered object.

We now proceed to estimate the makespan using
Tduring_buffer. In the case where the total processing time
on M1 of all unscheduled objects is not smaller than
Tduring_buffer (i.e.,

P
Ji2NBB\NSD

aiZTduring_buf f er), the makespan
should be the sum of the following values: (1) the current
makespan CSD, (2) the remaining time required to process
all unscheduled objects on M1 after the playback of all
buffered objects (TR), and (3) the total download idle time
(denoted by TDI, the time that cannot be allocated for
processing on M1 when the unscheduled objects are
under playback on M2). A basic lower bound for the
makespan can be given by CSDþTRþTDI. In the following,
we elaborate the process for deriving TDI.

During the playback of the buffered jobs on M2 (i.e.,
within CSD), there are Tduring_buffer units of time for down-
loading other unscheduled objects on M1. The minimum
remaining time required to download the unscheduled
jobs after the completion time of currently buffered jobs
is thus given by TR¼

P
Ji2NBB\NSD

ai�Tduring_buf f er . Due to the
buffer constraint, the time span for downloading all
unscheduled jobs could be larger than TR (Fig. 5(b)). When
an object Ji is processed on M2, the buffer is at least
occupied by Ji. Hence, the maximum allowable download
time on M1 during its playback is Tbuffer�ai. When
Tduring_iobi (Fig. 6(a)), the minimum download idle time
Tdi_i¼bi�(Tbuffer�ai). Otherwise, Tdi_i¼0 (Fig. 6(b) and (c)).
Therefore, Tdi_i can then be given as

Tdi_i ¼maxfbi�ðTbuf f er�aiÞ,0g ð7Þ

Referring to Fig. 7, when Tfill4bi (Fig. 7(a)), Tdi_i¼0. On
the other hand, when Tfill%bi (Fig. 7(b)), Tduring_i can be
computed by a dynamic program of the corresponding
Subset-sum problem. The download idle time for Ji can
then be given as

Tdi_i ¼ bi�Tduring_Subset_sum_i ð8Þ

We conclude that Tdi_i can be given by the following
rule:

If Jr 2 NExc�D

Tdi_i ¼ bi,

Else

If Tf ill4bi,Tdi_i ¼ 0, else Tdi_i ¼ bi�Tduring_Subset_sum_i ð9Þ

The minimum download idle time for all unscheduled
objects is the sum of the download idle time of all
unscheduled objects

TDI ¼
X

Ji2fNBB\NSD\NBB\NExc�Dg
Tdi_i

¼
X

Ji2fNBB\NSD\NBB\NExc�Dg
maxfbi�Tduring_Sumset_sum_i,0g

ð10Þ
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In summary, denoting the set of (NBB\NSD)\
(NBB\NExc�D) by Nset, we have the following rule for deriv-
ing a lower bound on makespan for different situations:

If ðTduring_buf f er ¼ 0 or CSD ¼ 0Þ, then

LB1 ¼max

CSDþ amin
Ji2Nset

þ
P

Ji2Nset

biþ
P

Ji2fNBB \NSDg\NExc�D

faiþbig,

CSDþ
P

Ji2Nset

aiþTDIþ
P

Ji2fNBB\NSDg\NExc�D

faiþbig

8>><
>>:

9>>=
>>;

Else

LB1 ¼

CSDþ
P

Ji2Nset

biþ
P

Ji2fNBB \NSDg\NExc�D

faiþbig if
P

Ji2NBB \NSD

aioTduring_buf f er

CSDþTRþTDIþ
P

Ji2fNBB \NSDg\NExc�D

faiþbig otherwise:

8>><
>>:

9>>=
>>;

ð11Þ
4.2. LB2: Lower bound on Tmax

Let CSD denote the completion time of the scheduled
jobs, T 0max the maximum tardiness among the scheduled
jobs, and tinit the download initialization time for the next
coming job Ji (Fig. 2). A lower bound on the maximum
tardiness can be given as

LB2a ¼ max
i2N\NSD

fmaxfmaxftinitþai,CSDgþbi�di,0g,T
0
maxg ð12Þ

In principle, LB2a can be considered as a general lower
bound for problems with due date constraints. In the
literature, several lower bounds for two-machine flow-
shop scheduling with due date related objectives have
been proposed, for example, Sen et al. [31], Kim [18], Pan
and Fan [26], and Pan et al. [27]. Pan et al. [27] showed
that their lower bound outperforms those of Sen et al.
[31] and Kim [18]. Therefore, this study deploys a lower
bound on Tmax which is generalized from Pan et al. [27]

LB2b ¼ max
i2N\NSD

fmaxfmaxftinitþPi1þbkðS2Þ,CSDþPi2g�SEDDi
,0g,Tmax0 g

ð13Þ

where Pi1 and Pi2 are the sums of the i shortest processing
times among all the jobs on M1 and M2, respectively, and
SEDDi

is the job in the ith position of an earliest due date

(EDD) sequence of the unscheduled jobs, and bk(S2) is the
processing time of the job sequenced in the kth position of
the SPT schedule on M2.

With LB2a and LB2b, we readily have a lower bound LB2

given as follows:

LB2 ¼maxfLB2a,LB2bg ð14Þ

4.3. LB3: Lower bound on STi

Similar to the principles described in Section 4.2 for
obtaining the lower bounds on Tmax, given that the current
sum of due date penalties is known to be ST0, we
can readily compute the lower bounds on STi as given
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in Eqs. (15) and (16)

LB3a ¼
X

i2N\NSD
maxfmaxftinitþai,CSDgþbi�di,0gþ

X
T 0

ð15Þ

LB3b ¼
X

i2N\NSD
maxfmaxftinitþPi1þbkðS2Þ,CSDþPi2g

�SEDDi
,0gþ

X
T 0 ð16Þ

The two lower bounds together imply the following
one

LB3 ¼maxfLB3a,LB3bg ð17Þ

4.4. Aggregate lower bounds for the bi-criteria problems

Based on the lower bounds on the different objectives
described above, we can readily obtain two lower bounds
for the bi-criteria problems using a weighted sum of
lower bounds on Tmax and STi

LB4 ¼ aLB1þð1�aÞLB2 ð18Þ

LB5 ¼ aLB1þð1�aÞLB3 ð19Þ

5. Upper bounds

This section is devoted to the development of three
heuristics that are modified from the NEH algorithm [25]
to provide approximate solutions or upper bounds. The
NEH method has been applied in various makespan
minimization problems with impressive performances
(for example, [1,30]). Two general dispatching rules, Ear-

liest Due Date First (EDD) and Shortest Processing Time First

(SPT), are incorporated into our NEH-based heuristic
algorithms. The EDD rule sequences the jobs in non-
decreasing order of their due dates [15] and is commonly
used to minimize the maximum lateness among jobs for
numerous scheduling problems. The SPT rule schedules
jobs in ascending order of their processing times and is
commonly in the minimization of the average waiting
time of jobs.

The basic idea in the NEH approach is to first optimally
schedule the first two objects; then place the remaining
jobs by decreasing order of aiþbi, one by one, in one of the
positions between the scheduled jobs such that the make-
span is minimum at the step. In the following, we present
three heuristics, where UB1 is the NEH heuristic, and UB2

and UB3 are modified from the NEH heuristic by deploying
the EDD and SPT rules. We outline the main steps of the
modified NEH-based upper bounds (termed as MNEH).

Algorithm UB1.

Step 1: Sort the objects in non-increasing order of
aiþbi.
Step 2: Take the first two objects in the sorted list, and
sequence the two objects to minimize the bi-criteria
objective function.
Step 3: Insert the 3rd object into the partial schedule.
There are three positions for inserting the 3rd object.
Among the three positions, select the position that
achieves the smallest bi-criteria objective function
value.
Step 4: For k¼4 to n do
Insert the kth object into the current partial schedule.
There are k possible positions for this insertion. Select
the position that achieves the smallest the bi-criteria
objective function value.
Step 5: Output the final sequence given at the comple-
tion of Step 4.

Algorithm UB2.

Step 1: Apply the EDD rule to ND (the set of objects
with due dates). Apply the SPT rule to the objects of
N\ND on machine M1.
Step 2: Take the first two objects in ND, and sequence
the two objects to minimize the bi-criteria objective
function (k¼2).
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Step 3: Insert the 3rd object in N\ND into the partial
schedule if 9ND942. From among the three positions,
select the one which achieves the smallest bi-criteria
objective function values (k¼3).
Step 4: For k¼4 to 9ND9 do (9ND943)
Insert the kth object into the previous partial schedule.
Select the position that achieves the smallest bi-
criteria objective function values.
Step 5: For p¼1 to n�9ND9 do
Insert the pth object into the schedule of N\ND

obtained in the previous step. There are kþp possible
positions for this insertion. Select the position that
achieves the smallest bi-criteria objective function
values.
Step 6: Output the final sequence given at the comple-
tion of Step 5.

Algorithm UB3.

Step 1: Apply the EDD rule to ND (the set of objects
with due dates). Apply the SPT rule to the objects of
N\ND on machine one.
Step 2: Take the elements of ND as the initial sequence.
Step 3: Insert the first object from N\ND into the partial
schedule. There are 9ND9þ1 possible positions for
inserting the (9ND9þ1)th object. Select the position
that achieves the smallest bi-criteria objective function
values.
Step 4: For k¼2 to n�9ND9 do
Insert the kth object into the previous partial schedule.
There are 9ND9þk possible positions for this insertion.
Select the position that achieves the smallest bi-
criteria objective function values.
Step 5: Output the final sequence reported at the
completion of step 4.

Finally, we select the smallest value among UB1, UB2,
and UB3 as the upper bound (UB).

UB¼minfUB1,UB2,UB3g ð20Þ

6. Computational results

This section presents the computational experiments
designed and conducted to evaluate the effectiveness and
efficiency of the proposed lower bounds and upper
bounds. The simulation programs were written in Cþþ
language, and the experiments were performed on
IBM� Series�206 m computers with 3.4 GHz Dual-CPU
and 2 GB RAM, running Microsoft Windows Server 2003.
All run times reported are in CPU-seconds. Computational
experiments were conducted with different problem
sizes. Two buffer sizes, 16,000 KB and 30,720 KB, were
adopted. We assumed that 20% of the media objects in the
original media set are associated with due date con-
straints. It was given that Y ¼

Pn
i ¼ 1 bi as the sum of

playback times of all media items, and due dates di were
randomly drawn from the uniform interval [0, 0.75Y].

For each experiment, 50 independent randomly gen-
erated object sets were tested. The processing times ai
and bi were randomly generated from uniform interval
[1,100]. Computational results are summarized in Tables
2–5, where the average number of nodes (Avg_nodes), the
maximum number of nodes (Max_node), and the average
computation time (Avg_t) for obtaining the optimal solu-
tion are presented. The branch-and-bound algorithm was
aborted when 600 CPU seconds expired before reporting
the optimal solution. Among each 50 data sets, the
number of problems that could not be optimally solved
was recorded (denoted by ‘‘NF’’ in the tables). We list the
results for problems with different weights, a, ranging
from 0.1 to 0.9, in the objective functions. Note that for
a¼1, the bi-criteria problem becomes the makespan
minimization problem; similarly, a¼0 dictates the max-
imum tardiness or total tardiness minimization problem.

The experiments were conducted for four problems sizes
with n¼10, 12, 14, and 16. The computation results for
instances of F29ai-buffer9aCmaxþ(1�a)Tmax are given in
Tables 2 and 3 for different buffer sizes. From Table 2, it is
clear that the proposed branch-and-bound algorithm solved
all the problems with n¼10, 12, or 14 objects, but could fail
for n¼16. Table 3 reveals that as the buffer size decreases,
the number of visited nodes and the computation time
increase when compared with the results for the large
buffer size problems listed in Table 2. In this case, as the
value of a increases, the average number of visited nodes
and the average computation time increase as well. The
computational results for the problems with the objective of
aCmaxþ(1�a)Tmax are given in Tables 4 and 5. The results
reveal similar information as those shown in Tables 2 and 3.
As a general observation, when a increases (that is, the
makespan is more emphasized in the objective function
than due date penalties) or buffer size decreases, more
computation time is required for finding optimal solutions.

To investigate the performance of the proposed heur-
istic algorithms, we present in Table 6 the average error
ratios between the optimal solutions (OPT) and the
heuristic solutions (UB) for each media set. Error ratio is
defined by (UB�OPT)100%/OPT. In all the tested cases, the
error ratios between the heuristic solutions and the
optimal solutions are less than 4% for problems with
smaller buffers and less than 3% for those with larger
buffers. The probability that a heuristic produced optimal
solutions increases as the buffer size increases. In either
case, the results indicate that for most of the test cases the
heuristic algorithm constructed approximate solutions
that are close to the optimal ones.
7. Prototype system implementation

To demonstrate the practical significance of an optimal
schedule in reducing the presentation lag for a presentation
delivered through a real world network environment, we
have implemented a prototype system and conducted experi-
ments under various settings. Our implementation followed
the system architecture depicted in Fig. 8. The following
paragraphs discuss the system components in detail:
1)
 Multimedia Database. The database manages the
objects and provides mechanisms for retrieving



Table 2
Results for F29ai-buffer9aCmaxþ(1�a)Tmax with a 30,720 KB buffer.

N 10 12 14 16

a Avg_nodes Max_node Avg_t Avg_nodes Max_node Avg_t Avg_nodes Max_node Avg_t B&B NF

0.1 4.18Eþ03 2.39Eþ04 0.009 1.17Eþ05 2.41Eþ06 0.183 1.60Eþ06 2.10Eþ07 3.643 NA 6

0.2 3.46Eþ03 3.63Eþ04 0.007 7.64Eþ04 2.41Eþ06 0.112 6.27Eþ05 1.07Eþ07 1.184 NA 6

0.3 7.31Eþ03 9.52Eþ04 0.013 1.60Eþ04 1.87Eþ05 0.028 3.94Eþ06 7.89Eþ07 6.857 NA 4

0.4 3.29Eþ03 4.21Eþ04 0.007 7.85Eþ04 2.41Eþ06 0.112 1.44Eþ06 4.25Eþ07 3.392 NA 4

0.5 1.92Eþ03 2.31Eþ04 0.002 1.08Eþ04 1.72Eþ05 0.016 1.47Eþ05 3.18Eþ06 0.364 NA 2

0.6 5.58Eþ03 9.19Eþ04 0.010 1.87Eþ04 1.95Eþ05 0.028 2.65Eþ06 7.89Eþ07 3.703 NA 4

0.7 3.18Eþ03 2.45Eþ04 0.006 4.21Eþ04 4.79Eþ05 0.062 6.57Eþ05 1.34Eþ07 1.523 NA 8

0.8 4.64Eþ03 3.87Eþ04 0.007 8.83Eþ04 2.41Eþ06 0.123 6.15Eþ05 6.80Eþ06 1.237 NA 5

0.9 1.36Eþ04 3.80Eþ05 0.020 1.39Eþ05 9.34Eþ05 0.230 2.00Eþ06 3.20Eþ07 4.433 NA 3

Table 3
Results for F29ai-buffer9aCmaxþ(1�a)Tmax with a 16,000 KB buffer.

n 10 12 14

a Avg_nodes Max_node Avg_t Avg_nodes Max_node Avg_t Avg_nodes Max_node Avg_t NF

0.1 1.02Eþ04 7.51Eþ04 0.026 1.19Eþ05 1.30Eþ06 0.299 2.05Eþ06 2.68Eþ07 5.554 0

0.2 9.58Eþ03 7.65Eþ04 0.023 1.27Eþ05 1.40Eþ06 0.322 2.76Eþ06 6.01Eþ07 7.312 0

0.3 9.86Eþ03 7.76Eþ04 0.025 1.28Eþ05 1.48Eþ06 0.340 3.09Eþ06 7.21Eþ07 8.015 0

0.4 1.14Eþ04 9.09Eþ04 0.027 1.40Eþ05 1.62Eþ06 0.379 3.51Eþ06 8.61Eþ07 9.129 0

0.5 1.11Eþ04 1.05Eþ05 0.026 1.50Eþ05 1.81Eþ06 0.429 3.92Eþ06 9.93Eþ07 10.448 0

0.6 1.26Eþ04 1.18Eþ05 0.033 1.82Eþ05 2.18Eþ06 0.559 5.28Eþ06 1.44Eþ08 14.276 0

0.7 1.55Eþ04 1.37Eþ05 0.040 2.61Eþ05 2.88Eþ06 0.842 7.35Eþ06 2.04Eþ08 21.274 0

0.8 2.15Eþ04 1.92Eþ05 0.058 4.73Eþ05 4.60Eþ06 1.555 1.13Eþ07 2.75Eþ08 36.278 0

0.9 3.56Eþ04 2.96Eþ05 0.094 1.56Eþ06 2.30Eþ07 4.367 NA 4

Table 4
Results for F29ai-buffer9aCmaxþ(1�a)STi with a 30,720 KB buffer.

n 10 12 14 16

a Avg_nodes Max_node Avg_t Avg_nodes Max_node Avg_t Avg_nodes Max_node Avg_t B&B NF

0.1 3.55Eþ03 2.27Eþ04 0.008 1.10Eþ05 2.41Eþ06 0.165 2.67Eþ06 7.21Eþ07 9.435 NA 6

0.2 3.09Eþ03 3.39Eþ04 0.004 7.39Eþ04 2.41Eþ06 0.101 7.21Eþ05 1.13Eþ07 1.607 NA 5

0.3 6.59Eþ03 9.19Eþ04 0.011 1.48Eþ04 1.56Eþ05 0.020 2.89Eþ06 7.89Eþ07 4.314 NA 5

0.4 3.13Eþ03 3.94Eþ04 0.005 7.13Eþ04 2.41Eþ06 0.092 7.72Eþ05 1.14Eþ07 1.605 NA 4

0.5 1.73Eþ03 2.31Eþ04 0.002 8.11Eþ03 1.70Eþ05 0.010 1.46Eþ05 3.18Eþ06 0.332 NA 2

0.6 5.23Eþ03 9.19Eþ04 0.009 3.46Eþ04 9.07Eþ05 0.070 2.32Eþ06 7.89Eþ07 2.884 NA 5

0.7 2.95Eþ03 2.45Eþ04 0.005 3.35Eþ04 4.79Eþ05 0.054 5.54Eþ05 9.07Eþ06 1.186 NA 7

0.8 3.82Eþ03 2.61Eþ04 0.006 8.06Eþ04 2.41Eþ06 0.109 7.29Eþ05 1.28Eþ07 1.649 NA 4

0.9 9.34Eþ03 1.99Eþ05 0.015 7.03Eþ04 7.11Eþ05 0.113 1.64Eþ06 2.89Eþ07 3.454 NA 4

Table 5
Results for F29ai-buffer9aCmaxþ(1�a)STi with a 16,000 KB buffer.

n 10 12 14

a Avg_nodes Max_node Avg_t Avg_nodes Max_node Avg_t Avg_nodes Max_node Avg_t

0.1 9.54Eþ03 7.51Eþ04 0.024 1.09Eþ05 1.30Eþ06 0.267 2.53Eþ06 5.79Eþ07 5.879

0.2 8.97Eþ03 7.65Eþ04 0.022 1.14Eþ05 1.40Eþ06 0.279 2.78Eþ06 6.85Eþ07 6.435

0.3 9.34Eþ03 7.68Eþ04 0.022 1.19Eþ05 1.48Eþ06 0.298 3.00Eþ06 7.58Eþ07 6.998

0.4 1.06Eþ04 7.85Eþ04 0.025 1.30Eþ05 1.60Eþ06 0.333 3.81Eþ06 1.12Eþ08 8.751

0.5 1.03Eþ04 8.60Eþ04 0.025 1.36Eþ05 1.76Eþ06 0.366 4.12Eþ06 1.21Eþ08 9.682

0.6 1.16Eþ04 9.84Eþ04 0.030 1.63Eþ05 2.08Eþ06 0.447 4.84Eþ06 1.40Eþ08 11.699

0.7 1.44Eþ04 1.21Eþ05 0.036 2.21Eþ05 2.61Eþ06 0.634 6.42Eþ06 1.80Eþ08 16.392

0.8 1.97Eþ04 1.73Eþ05 0.053 3.39Eþ05 3.80Eþ06 1.008 7.75Eþ06 1.67Eþ08 22.698

0.9 3.14Eþ04 2.79Eþ05 0.085 8.71Eþ05 1.14Eþ07 2.458 1.57Eþ07 1.92Eþ08 61.131
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Table 6
Average (Avg.) and maximum (Max.) error ratio.

n¼10, buffer¼16,000 KB n¼10, buffer¼30,720 KB

aCmaxþ(1�a)Tmax aCmaxþ(1�a)STi aCmaxþ(1�a)Tmax aCmaxþ(1�a)STi

a Avg. Max. UB¼OPT Avg. Max. UB¼OPT Avg. Max. UB¼OPT Avg. Max. UB¼OPT

0.1 1.697 7.333 12 1.819 8.175 12 1.127 4.940 21 1.146 6.995 22

0.2 1.631 7.333 15 1.710 7.333 16 1.089 6.543 23 1.066 6.000 25

0.3 1.923 8.833 16 2.065 8.833 17 1.185 7.536 21 1.199 6.000 20

0.4 2.136 8.872 18 2.195 9.474 17 1.277 8.154 21 1.233 6.000 21

0.5 2.122 8.500 18 2.140 8.500 17 1.240 5.419 24 1.530 8.576 23

0.6 2.425 15.722 14 2.561 15.722 14 1.424 8.436 21 1.441 8.883 21

0.7 2.495 13.571 15 2.559 15.048 15 1.352 6.486 20 1.629 9.115 21

0.8 2.344 8.958 14 2.407 10.708 13 1.519 10.508 16 2.047 8.008 15

0.9 1.844 5.745 13 1.950 6.148 11 1.158 4.593 15 1.965 8.284 14

n¼12, buffer¼16,000 KB n¼12, buffer¼30,720 KB

aCmaxþ(1�a)Tmax aCmaxþ(1�a)STi aCmaxþ(1�a)Tmax aCmaxþ(1�a)STi

a Avg. Max. UB¼OPT Avg. Max. UB¼OPT Avg. Max. UB¼OPT Avg. Max. UB¼OPT

0.1 1.914 11.936 11 1.770 11.936 10 0.968 7.912 22 1.256 8.793 17

0.2 1.974 10.345 11 2.027 10.758 12 0.992 7.407 23 1.203 7.510 21

0.3 2.257 14.147 12 2.181 14.147 11 1.039 7.298 24 1.235 7.298 19

0.4 2.143 10.942 11 2.283 10.942 12 1.093 6.856 23 1.280 5.823 18

0.5 2.495 19.401 12 2.395 10.128 11 1.137 7.005 22 1.362 5.901 18

0.6 2.417 14.123 10 2.561 15.739 10 1.235 9.035 18 1.460 7.912 14

0.7 2.496 13.634 10 2.871 11.392 9 1.304 6.988 19 1.710 6.988 15

0.8 2.515 11.174 10 2.733 12.019 7 1.499 6.760 14 1.814 8.022 11

0.9 2.195 7.486 10 2.336 9.254 6 1.168 6.988 7 1.634 6.988 7

n¼14, buffer¼16,000 KB n¼14, buffer¼30,720 KB

aCmaxþ(1�a)Tmax aCmaxþ(1�a)STi aCmaxþ(1�a)Tmax aCmaxþ(1�a)STi

a Avg. Max. UB¼OPT Avg. Max. UB¼OPT Avg. Max. UB¼OPT Avg. Max. UB¼OPT

0.1 2.151 7.443 3 2.513 9.238 5 1.473 8.477 18 1.615 8.477 17

0.2 2.349 7.861 5 2.790 9.663 7 1.148 10.596 18 1.708 11.71 20

0.3 2.633 8.645 5 3.150 10.581 7 1.236 9.272 18 1.778 9.272 15

0.4 2.729 8.445 5 3.116 10.061 6 1.315 8.344 17 2.129 10.462 13

0.5 2.730 8.485 3 3.245 12.539 3 1.437 8.212 17 2.223 9.504 13

0.6 2.882 8.035 2 3.394 12.990 2 1.486 10.331 15 2.076 10.331 11

0.7 2.671 6.288 3 3.179 10.312 4 1.492 9.499 14 1.872 9.745 10

0.8 2.625 6.917 1 3.125 8.380 1 1.396 8.015 15 1.708 8.015 10

0.9 2.084 6.547 2 2.786 12.078 2 1.187 7.682 12 1.627 9.978 7
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objects based on a user’s query. Each object has certain
metadata describing its contents, file size, playback
duration, and due date constraints.
2)
 Bandwidth Estimation Module. The main function of this
module is to estimate the average available end-to-end
bandwidth in a presentation session. The bandwidth is
used to estimate the transmission durations of the
requested media objects. In the past, researchers have
worked to obtain accurate end-to-end measurement
algorithms for available bandwidth. A variety of techni-
ques (refer to [28] for a survey of different approaches)
can be applied to estimate the average bandwidth for
which the transmission duration can be approximated
based on the file size of an object. In principle, an
accurate estimation of bandwidth is crucial to providing
the optimal schedule of the media objects. Nevertheless,
an optimal schedule computation based on a rough
estimation of the bandwidth could still significantly
reduce the overall presentation lag as compared to
random sequences. In the evaluation experiments, we
will provide results showing such a situation.
3)
 Scheduling Engine. The Scheduling Engine computes
the optimal sequence based on the estimated band-
width, the given constraints, the file sizes, and play-
back durations of the selected media objects.
Depending on the required response times of the
online applications, the final sequence could be the
optimal solution for problems with a small number of
objects, or a near-optimal solution when the server
needs to serve a large number of clients in real time.
The final sequence is a ‘‘playlist’’ that will be sent to
the client.
4)
 Object Prefetcher. Based on the playlist, Object Pre-
fetcher requests and transmits the media objects
under a typical HTTP protocol. For applications with
a client-side buffer constraint, the presentation status
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and buffer status detected from Media Presenter are
used to decide the exact time to prefetch an object.
5)
 Media Presenter. The major function of Media Presenter
is to integrate and continuously play the retrieved
media objects. Furthermore, during a presentation, it
reports the playback and buffer status to Object
Prefetcher.

We provided a prototype system implementation
using Macromedia Flash technology. Fig. 9 shows a snap-
shot of a Flash-based prefetch-enabled media player
supporting TV-like presentations for desktop platforms.
Fig. 10 shows two snapshots of the Flash-based media
players for the PDA platforms. The bandwidth estimation
algorithm applied was based on a naive approach where
the server sends a small file to the client, and the client
sends an acknowledgment signal once the file is comple-
tely downloaded. The bandwidth is given as the ratio of
file size to the corresponding transmission time.

Using the prototype system implementation, this sec-
tion presents experiments for evaluating the proposed
MNEH heuristic algorithm in real-world network envir-
onments with certain network fluctuations. We compared
the objective function values (i.e., the weighted sum of
the presentation lag and due date penalties) of job
sequences yielded by the proposed MNEH heuristic algo-
rithm and the EDD dispatching rule. The experiments
investigated cases with 20% due date-constrained objects
in the presentation. The media objects in the server were
delivered to a PDA client through a public 3 G wireless
network using WCDMA technology [13] with a maximum
bandwidth of 384 k bytes/s.

In the first experiment, we randomly selected 10 sets
of media objects from an educational media archive on
our campus. Each data set contains 10 different media
objects with different file sizes and playback durations. In
the second experiment, each dataset contains 20 objects.
The buffer size of the media players in the PDA was set to
8 Mbytes.

For each data set, we conducted 3 runs with random
sequences and another 3 runs with sequences computed by
the proposed MNEH heuristic algorithm based on the band-
width estimated immediately before each presentation ses-
sion. For each run, the transmission time and playback time
of the objects through the WCDMA network were recorded.
The values of the objective function aCmaxþ(1�a)Tmax with
a¼0.5 were calculated accordingly.

Figs. 11 and 12 show the average objective function
values of the EDD-based sequences and the proposed
MNEH sequences for the first experiment (10 objects)
and the second experiment (20 objects), respectively. The
results for both experiments signify a clear reduction of
up to 20% in the average objective function values if the
proposed MNEH heuristic algorithm was applied.

8. Conclusions and future work

In this study, we formulated the problem of sequencing
media objects in a dynamically composed multimedia
presentation from digital libraries so as to reduce the overall
presentation lag and due date penalties. The addressed
problem was mapped to two-machine flowshop scheduling
with buffer and due date constraints. Two different bi-
criteria objective functions, namely aCmaxþ(1�a)Tmax and
aCmaxþ(1�a)STi, are considered. Exact and approximation
algorithms were proposed and implemented in our system
for providing digital library services. Experimental results
show that the proposed methods can obtain optimal solu-
tions for problems with up to 14 objects with a small buffer,
and 16 objects with a large buffer. Furthermore, the
proposed NEH-based heuristic solutions appeared to pro-
vide quality approximate solutions with an average error
rate of under 4%. The heuristic algorithm can be applied to
heavily-loaded servers that require a quick response on the



Fig. 9. Snapshot of a Flash-based prefetch-enabled media player for Desktop platforms, (a) retrieved objects, (b) buffer status, (c) the presentation of the

object currently under playback, (d) transmission status of each object, (e) Gantt chart.

Fig. 10. Snapshot of a Flash-based prefetch-enabled media player

supporting TV-like presentations for (a) 3 G PDA phone, (b) PDA

platform.
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near-optimal sequence of a media set with more than a
dozen objects. Experiments with WCDMA wireless net-
works indicate that the proposed MNEH heuristic algo-
rithm can produce solutions whose objective function
values are in general smaller than the solutions yielded
by the EDD dispatching rule.

Following this study, there are some potential research
directions. The studied settings assumed that the end-to-
end transmission rate is deterministic. This assumption
can be regarded an acceptable approximation for applica-
tions in which the end-to-end transmission delay is
mainly subject to the last mile bottleneck without sig-
nificant bandwidth variations. However, many Internet
applications provide only best-effort data delivery and
cannot guarantee a very consistent transmission rate
during a presentation session. In such cases, stochastic
variations of the network transmission rate (or the down-
load time of a media object) should be considered in the
sequence optimization process. In the literature, stochas-
tic flowshop scheduling problems deal with cases for
which the processing times of jobs on each machine are
governed by a random variable. In general, the stochastic
flowshop scheduling problems are not all that easy to
solve. Most of the existing studies focus on problems
where the job processing time is a random variable
following an ‘‘exponential distribution’’. The objective is
to find the schedule that minimizes the expected make-
span E(Cmax). Such a case with exponentially distributed
process times has been shown to be, in general, tractable
([34]; Bagga [3]; Cunningham and Dutta [7]; and Ku and
Niu [19]). Unfortunately, for Internet multimedia delivery
applications, the probability density function of an end-
to-end bandwidth is, typically, inverse bell-shaped [14].
The probability density function of the download time of
a media object should resemble a truncated normal
distribution or an Erlang distribution with high shape
parameters. Two-machine flowshop scheduling problems
with these two distributions have never been solved and



200
250
300
350
400
450
500
550
600
650

1 2 3 4 5 6 7 8 9 10
Data set

O
bj

ec
tiv

e

MNEH
EDD
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Fig. 12. Average objective values of EDD-based sequences and MNEH-based sequences. Each media set contains 20 objects.
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thus are worthy of research attention. In addition, in
many applications the media objects in a digital library
are subject to different categories of temporal constraints
(e.g., sequence, parallel, precedence). Development of
exact or approximate algorithms for these problems
requires further investigation.
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