
Execution Time Prediction Using Rough Set Theory in Hybrid Cloud 
 

Chih-Tien Fan  
Dept. of Comp. Sci., 
National Chiao Tung 

University,  
1001, University Road, 
Hsinchu, 300, Taiwan, 

R.O.C. 
s10086024.cs00g@nctu.edu

.tw 

Yue-Shan Chang 
Dept. of CSIE,  

National Taipei University 
151, University Road, 
Sanhsia Distinct, New 

Taipei City, 237, Taiwan, 
R.O.C. 

ysc@mail.ntpu.edu.tw 

 Wei-Jen Wang, 
Dept. of CSIE,  

National Central University 
300, Jhongda Rd., Jhongli 
City, Taoyuan County 320, 

Taiwan, R.O.C. 
wjwang@csie.ncu.edu.tw 

Shyan-Ming Yuan
Dept. of Comp. Sci., 
National Chiao Tung 

University 
1001, University Road, 
Hsinchu, 300, Taiwan, 

R.O.C. 
smyuan@gmail.com 

Abstract – Execution time prediction is an important 
issue in cloud computing.  Predicting the execution 
time fast and accurately not only can help users to 
schedule jobs smarter, but also maximize the 
throughput and minimize the resource consumption of 
cloud platform.  While hybrid cloud provides methods 
to federate multiple cloud platforms, different cloud 
platforms have different resource attributes, which will 
increase the difficulties to predict a job's execution time.  
In this paper, we exploit Rough Set Theory (RST), 
which is a well-known prediction technique that uses 
the historical data, to predict the execution time of jobs.  
The evaluation presents that RST can utilize the 
accuracy of the execution time, while the decision can 
be made in a short period of time. 

Keywords: Execution Time Prediction, Rough Set 
Theory, Rough Sets, History Based Approach, Hybrid 
Cloud, Public Cloud, Private Cloud. 

  INTRODUCTION 
In the past decades, Cloud computing [3] has 

become a hot research field.  Clouds can be roughly 
classified into three types: public, private, and hybrid.  
Public cloud is a computing resource that allows multiple 
users to run their jobs, while the resource providers 
charge as much as each user consume their resource.  
Private cloud is a private computing resource that only 
limited users can run their applications on it, while the 
owner needs to maintain the physical machines and 
software themselves.  The hybrid cloud [1] allows 
private cloud coexists and federates with public clouds.  
The private cloud provides static resource while the 
public cloud provides the resource as a transparent zone. 

Public cloud, such as Amazon EC2 [4], uses 
instance to manage and charge to their costumers.  Each 
instance is assigned to have difference attributes (E.g., the 
CPU type, memory size, etc,).  The instance types and 
their attributes are easy to be obtained from the providers, 
hence users can choose different types of instance 
according to their application needs. 

In private cloud, users can utilized their computing 
resource by using Virtualization Technology [7-9], or 

sometimes named Virtual Machine (VM).  VM is 
controlled by VM Manager (VMM or called Hypervisor) 
and it provides several APIs that allow users to control a 
VM.  VMM, such as Xen [9] or Entropy [7], also 
provides APIs that allow users to customize each VM's 
attributes. 

Scheduling (or task assignment) is also an important 
issue in cloud computing.  Its purpose is to ensure all 
jobs can run smoothly while all the physical computing 
resources are utilized.  Common known Scheduling 
methods for distributed system are Round-Robin 
Scheduling (RRS), Random Scheduling (RS), Size-Based 
Scheduling (SBS), and Dynamic Scheduling (DS) [12].  
For RRS and RS, all jobs are treated as the same entity.  
In other words, no other informations about a job is 
needed before scheduler is activated; except that the RRS 
will assign the job in a cyclic fashion, and the RS will 
randomly select instance to perform the job.  In the 
contract, SBS and DS are job-attribute-based schedulers.  
In SBS, a job is assigned according to its size (which is 
defined by user).  Every job's size within the specific 
range will be assigned to a specific instance.  In DS, a 
job is assigned to the instance that has the least amount of 
outstanding work left to do. 

In job-attribute-based scheduler, the execution time 
of a job is one of the attribute that can be used [10, 11].  
By using the execution time attribute, the scheduler can 
tell users when the job will be executed and terminated.  
Especially in the cloud environment, user can adjust the 
need of the resource according to it. 

But predicting execution time accurately is not easy, 
especially in the hybrid cloud environment.  In a simple 
cloud (or cluster), the owner will buy large amount of 
machines (usually with the same specifications) to reduce 
the cost.  Users can build an predictor to predict 
execution time just based on the job's attributes; there is 
no hardware-related attributes need to be concerned.  
But in hybrid cloud, thing becomes complicated.  
Difference cloud may have difference types of instances 
that can be chosen from.  Also, cloud provides methods 
that the user can provision the resources according to 
their needs.  Building predictors for each cloud 
environment is time consuming and inefficient.  
Therefore, the attributes of the instance should be also 

2012 9th International Conference on Ubiquitous Intelligence and Computing and 9th International Conference on Autonomic 

and Trusted Computing

978-0-7695-4843-2/12 $26.00 © 2012 IEEE

DOI 10.1109/UIC-ATC.2012.41

729



taken into accounts. 
In this paper, we utilized the Rough Set Theory 

(RST) to predict a job's execution time in the hybrid 
cloud cloud environment.  RST is a well-known 
prediction technique that uses the historical data to 
predict the attribute value of an object.  We propose an 
execution time prediction algorithm based on RST to 
schedule jobs in hybrid cloud environment.  The 
evaluation can show that the RST can be utilized to 
accurately predict the execution time increasingly. 

The reminder of the paper is organized as follows.  
Section 2 will briefly introduce our previous work.  The 
Rough Set Theory as well as the algorithm will be 
introduced in Section 3.  Section 4 shows the 
implementations of the prototype and explanations of the 
implementations.  Related work is shown in Section 5.  
Section 6 will be the conclusions and future work. 

 AGENT-BASED SERVICE MIGRATION 
FRAMEWORK 

Our previous work [1] uses the agent platform 
system to realize the hybrid cloud prototype model.  It 
allows jobs migrating between different clouds.  
Methods of scheduling jobs in cloud environments and 
adjusting computing resource is also presented in this 
framework.  The system model is shown as Figure 1. 

The framework has 6 main components.  Each 
component is described as follows. 

• System Monitoring Agent (SyMA) – The agent 
collects the information of the cloud 
environment by receiving the heartbeat sent 
periodically by the CAAs.  After receiving the 
message, the updated information is being stored 
to the database in the policy, which allows other 
agents to access. 

 
Figure 1: System model of Agent-based Service Migration Framework. 

• Service Migration Agent (SeMA) – The RDA 
manages the JAs' location.  When the new job 
is submitted, the SeMA will assign a location in 
the cloud that allows the job to be executed on.  
Also, if some cluster is overloading, SeMA will 
notify some JAs on the overloaded cluster to 
migrate to some other cluster, to balance the load. 

• Reconfiguration Decision Agent (RDA) – The 
RDA is used to reconfigure and adjust the cloud 
environment.  If the whole system is 
overloaded, new cluster can be initiated on the 
public cloud to balance the system.  On the 
other hand, If the loading of the system is not 
heavy, some clusters can be turned off to save 
energy consumption. 

• Policy – The policy is an abstract type.  It 
allows users to define their own policy on 1) 
how the job agent is being dispatched or 
managed, and 2) how the public cloud resource 
is being dynamically adjusted.  The SeMA and 
RDA will periodically check the policy.  The 
policy also simplify the way how the SyMA, 
SeMA, and RDA to access the system database, 
which have the information of the cloud status.  
The policy also maintains a global queue in a 
FCFS fashion. 

• Cluster Management Agent (CMA) – Each 
Cluster (or computing resource instance) is 
accompanied with one CMA.  The CMA has 2 
functions.  One is scheduling the jobs locally in 
a FCFS fashion, so that there is only one job is 
executing on the cluster.  The other function of 
the CMA is reporting the status of the cluster.  
Each JA will send heartbeats of their current 
status periodically to CMA.  CMA will collect 
the information and send it via heartbeats to 
SeMA. 

• Job Agent (JA) – The JA is an agent that will 
encapsulate a job, the job can be migrated along 
with the JA.  JA also executes and monitors the 
job on the cluster.  The JA also report the job 
status to the CMA periodically.  After the job is 
terminated, JA can bring the results back to the 
private cloud. 

 RST-BASED PREDICTION 
Rough Set Theory (RST) was first introduced by 

Pawlak in the early 1980s [2].  It has been used in many 
research area, such as data mining [5] and knowledge 
discovery [6].  Also, it provide methods for selecting 
needed features, feature extraction, data reduction, 
decision rule generation, and pattern extraction.  The 
main benefit of using RST is that no preliminary or 
additional information is needed about the data (e.g., 
probability distribution or statistics about the data).  In 
this paper, RST is used to predict a job's execution time 
on different types of instances in hybrid cloud. 

 RST Learning Procedure 
 

730



RST makes predictions based on an information 
table; an example is shown as Figure 2.  The table is 
consists of records that can be obtains from previous 
execution.  Each record is consists of some attributes 
that characterize the record.  Attributes can be 
categorized into two groups: Condition Attributes and 
Decision Attributes.  Condition Attributes are attributes 
that can be measure beforehand (e.g., executing 
environments).  On the other hand, Decision Attributes 
can be obtained only after it finished (e.g., execution time 
of a program), it is also the attribute that we want to 
predict.  In Figure 2, Processor speed, memory size, and 
input data size are condition attributes; execution time of 
each record is decision attribute. 

According to the applications of RST [2, 5, 6], the 
learning procedure can be summarized as five steps.  
For more detailed information of RST, please refer to [2, 
6]. 

1. First, all the attributes, including condition 
attributes and decision attributes, should be 
defined.  After that, historical data should be 
obtained to form an information table.  Figure 2 
is the example of the information table.  The 
Processor Speed (a1), Memory Size (a2), and 
Input Data Size (a3) are Condition Attributes.  
The Execution Time (d) is the decision attribute. 

2. To make the RST prediction stronger, 
discretizing each record should be used to 
eliminate the noise.  Example after discretizing 
is shown as Figure 3.  The a1 is discretized into 
3 groups with the width of 1 GHz.  The a2 is 
discretized into 2 groups with the width of 1 GB.  
The a3 is discretized into 4 groups with the 
width of 2 MB.  The d is discretized into 4 
groups with the width of 200 seconds. 

3. D-Reduct is being computed. D-Reduct is the 

subset of condition attributes that shows the 
essential part of the information system.  By 
using D-Reduct, all objects in the information 
system is discernible.  A discernibility function 
can be used to evaluate the D-Reduct via the 
discernibility matrix.  The discernibility matrix 
of the example is shown as Figure 4.  In each 
element, mij, of the matrix, the differences 
between record i and j are shown.  For example, 
there have no discernibility between record 1, 3, 
and 7 because they have the same decision value.  
On the other hand, record 1 and 5 has the 
different execution time and the attributes that 
can discern them are a1 and a3.  After that, a 
simplification on the formulation can be made 
by Boolean algebra with the absorption rule.  
The formula is written as (1) 

The result of (1) shows that either {a1, a3} or {a2, a3} can 
be the D-Reduct of the example.  In the following 
example, {a1, a3} is used as the D-Reduct attributes. 

4. The last step is to generate the decision rules, 
which can eliminate unnecessary values of 
condition attributes in the decision table.  The 
decision rules can be evaluated by using the 
relative discernibility function, which is similar 
to the discernibility function in procedure 3.  
For example, the relative discernibility function 
of record 1 is written as (2), which shows that 
either a1 or a3 can be eliminated.  The final 
decision table is shown as Figure 5. 

Figure 4: The discernibility matrix.

Figure 5: The decision table. 

f A ( D)=
( a1+a2+a3)(a1+a3)(a1+a2+a3)(a1+a3)
( a1+a2+a3)(a1+a3)(a1+a2+a3)(a1+a2)(a1+a2+a3)
( a1+a3)(a1+a2+a3)(a1+a3)
( a1+a2+a3)(a1+a3)(a1+a2+a3)
( a3)( a1+a2+a3)
( a1+a2+a3)(a3)
( a1+a2+a3)

= (a1+a2+a3)(a1+a2)(a1+a3)(a3)
= a1 a3+ a2 a3 (1)

8 1 1 8 800 

Figure 2: Example of Information Table.

Figure 3: Information table after Discretizing. 

731



f 1( D)= (a1+a3)( a1+a3)(a1+ a3)(a1+a3)
= a1+a3       (2) 

  RST-based Prediction Procedure 
After the decision rule is generated, the prediction 

can be started.  The summarized prediction procedure is 
described as followed. 

1. First, obtain the attributes of the object that is 
going to predict.  Discretize the attributes that 
belongs to D-Reduct as step 2 in the learning 
procedure section.  For example, a new coming 
job e is going to be executed on a processor 
speed of 3 GHz, with memory size 1 GB and 
with an input data size of 8 MB.  We can 
discretize them to {3, 1, 4}, and the first and the 
third value are used to predict. 

2. Find the records from the decision table that is 
similar to the new job by comparing the 
discretized value.  In this example, the record 2, 
5, 7, and 8 are selected because they are similar 
to e. 

3. Calculate the prediction result.  If some past 
jobs are being selected to be similar to object e, 
then the result would be the average of the past 
jobs' decision value.  In this example, we will 
predict that the e will execute 
(66+800+66+800)/4=433 seconds.  If no 
similar jobs are selected in previous step, it 
means that the job e is the new type of job to the 
information system.  Other approach should be 
used to do the prediction.  Also, the result of 
this job should be feedback to the system. 

 EVALUATION 
We prototype the system using the agent platform 

JADE v4.0 based on our previous work described in 
Section 2 and [1].  The RST algorithm is implemented 
in policy component, and the Service Migration Agent 
(SeMA) will perform the task of predicting the execution 

time of a job.  The condition attributes recorded by the 
system are: the name of the application, the input data 
size, the number of the CPU, CPU clock rate, and the 
memory of the VM.  Currently all VMs are set up with 
the same amount of resources, that is, only the name of 
the application and the input data size changes during the 
evaluation.  More variety of VMs will be put into future 
work.  Figure 6 shows the prototyping of the system 
using JADE platform with some running VMs. 

Figure 7 is the screen shot of 4 jobs running on four 
difference instances.  Each green folder is named as 
container in Jade, while each instance form a container.  
Within the instance, CMAs help the system monitoring 
and controls the JAs on each instance. 

Currently, two jobs are submitted to the system.  
The jobs' detailed information is described as follows. 

� Compute � – � is the ratio of a circle's 
circumference to its diameter, and it is an 
irrational number.  The algorithm first draws a 
quarter circle inside a square.  Next, with a 
given input, n, (n+1)2 points are spread equally 
onto the square.  By calculating the ratio 
between the points inside the quarter circle and 
the square, approximation of �/4 can be 
generated, thus the number of � can be 
computed.  The job's time complexity is O(n2), 
where n is treated as the size of the job. 

� Area Approximation – This program evaluates 
the lower approximation of the area between an 
equation and the x-axis within the interval, that 

is, 
a �n

�
x= 0

a� 1 1
a

f (x) .  n is given by the user, 

while f (x)  is an decision equation.  All 
calculation is double precision.  The job's time 
complexity is O(n), where n is treated as the size 
of the job. 

Figure 7: Federated Broker with jobs. Figure 6: Federated Broker. 

732



 Execution Time Error Rate 
The Error Rate of the system is shown as (3). 

�
�� �

�
p

                       (3) 

where � is the exact execution time, and p is the 
predicted execution time.  The more the error rate � is 
close to 0, the more accuracy the system is.  Figure 8 is 
the error rate of 200 jobs. 

The error rate can shows that how much relative bias 
does the predictor made to the actual execution time.  If 
the error rate is positive, it means that the predictor is 
over predicted; in other words, the error is negative 
shows that it is under predicted.  As show in Figure 8, 
the error rate of the first few jobs is relative high.  It is 
due to the lack of the historical data that can be used to 
predict the job.  When a job cannot be predicted, a static 
execution time value is applied to it.  After the execution 
has terminated, each job's execution result will be fed 
back to RST as a record of the information table 
immediately.  The more the historical data are stored, 
the more accurate the prediction will be. 

Figure 9 shows the Absolute Error Rate.  The 
absolute error rate shows how much improvement has the 
prediction made.  The higher the absolute error is, the 
more improvement is needed.  The average absolute 
error rates for 2 kinds of jobs with 200 submissions are 
0.2008 and 0.0615.  The total average values seem to be 
large, but if the data are binned with the width of 25 jobs, 
the accuracy is very impressive.  As shown in Figure 10, 
group 1 (the first 25 jobs) has the high average values of 
1.2494 and 0.7123, which is due to insufficient of 
historical data.  On the other hand, group 8 (the last 25 
jobs) has an impressive average values of 0.0178 and 
0.0296. 

Figure 9 and 10 also depicts one fact: It is not wise 

to build one predictor for one cloud environment.  
Building one predictor needs to take 25 to 50 past jobs to 
achieve an error rate under 0.1.  Users should build one 
global predictor that can be used in hybrid cloud 
environment, other cloud's result can be applied to the 
new clouds. 

Time Taken to Predict a Job
Figure 11 is the prediction time of each iteration and 

the historical job used to predict the job.  Every job may 
be predicted more than once, which is due to our Hybrid 
Cloud Framework described in Section 2.  Our 
framework will not dispatch the job if the resource in 
hybrid cloud is not enough.  If more computing resource 
is available, the computing resource will be added to 
hybrid cloud; on the contrary, the job will be kept in the 
queue until there is enough resource. 

As each record is added into RST predictor, re-
evaluation is needed to update the decision table.  It is 
easy to be noticed that the more the history records are in 
the information table, the more time is needed to predict a 
job.  The largest prediction time is 642.91 ms with 190 
jobs, which is acceptable.  When there is no new record 
to be updated, the prediction time taken can be less than 1 
ms.  It is easy to be noticed that the generating the 
decision rule needs much more time than just predicting 
the value.  To reduce the time of predicting, periodically 
updating the decision rules can be considered.  As 
shown in Figure 9 and 10, the error rate has been 
significantly reduced after the 50th of the job.  Users can 
select a static period of time to update the decision rule, 
so that the total predicting time can be reduced, while the 
error rate is low. 

�= p� �
�  (3) 

1 57 1139 17 25 33 41 49 65 73 81 89 97 105 121129137145153161169177185193
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Compute �

Area Approximation

Job #

E
rro

r R
at

e

Figure 8: The Error Rate 

1 57 1139 17 25 33 41 49 65 73 81 89 97 105 121129137145153161169177185193
0

0.5

1

1.5

2

2.5

3

3.5

Compute �
Area Approximation

Job #

A
bs

ol
ut

e 
E

rro
r R

at
e

Figure 9, The Absolute Error Rate 

1~25 26~50 51~75 76~100 101~125 126~150 151~175 176~200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Compute �
Area Approximation

Job # Interval

E
rro

r R
at

e

Figure 10: Average Absolute Error Rate that splits every 25 jobs 

3 102960 117 174 231 288 345 402 459 516 573 630 687 744 801 858 915 972
0

100

200

300

400

500

600

700

0

20

40

60

80

100

120

140

160

180

200

No. of job in history
estimated time

Estimation #
M

ill
is

ec
on

d

Jo
b 

N
um

be
r

Figure 11: Prediction Time 

733



 RELATED WORK 
Execution time prediction has been a big research 

area [10, 11, 13–15].  Job prediction helps the users to 
know when the job will finished and how the jobs can be 
scheduled.  The accuracy and the time needed to predict 
a job are important.  Accuracy helps better scheduling 
decision while the time taken to predict helps making 
decision faster. 

The work done by Selvi et al. [13] is very similar to 
our research problem.  The authors use the RST to 
estimate the job's execution time in grid environment.  
The missing values of a job's requirements are indicated 
that it can affect the data analysis, and it is solved by 
using RST to find the common records.  But the author 
did not mention the job's properties in the implementation, 
as well as the attributes used in prediction.  In our work, 
the attributes of a job is predefined and is easily to be 
obtained. 

Norinha Nassif et al. proposed a PredCase [14], 
which is a Case-Based Reasoning (CBR) paradigm, to 
predict the completion time of a job.  The system tries to 
find the similarity between the new job and past jobs with 
the job attributes by performing four main steps: Retrieve, 
Reuse, Revise, and Retain.  The main concept of 
estimating job is similar, but using different strategy 
compared to RST.  The author did not mention how 
much time is needed to estimate a job and how to 
manipulate the job when there is no similar job. 

Kiran et al. suggested an execution time prediction 
model [15] by using a combination of static analysis, 
analytical benchmarking, and compiler-based approach.  
The job is written as script, and each submitted job go 
through four layers, Application Selector, File Parser, 
Code Evaluation Engine, and Predictor Engine.  
Although the accuracy is very remarkable, but there exist 
risks of transferring codes between hybrid clouds.  
Instead of sending script of codes, in our framework, the 
compiled code is transferred, and the statistical analysis is 
performed by RST. 

 CONCLUSION 
In this paper, we utilized the RST to predict the 

execution time in hybrid cloud.  The predictor was 
embedded into our previous framework, and worked 
smoothly in the hybrid cloud environment. The 
implementation result shows that RST-based predictor 
can predict the execution time of a job with error rate 
under 0.1 when the number of historical job is over 50.  
When more records available, the error rate can drop 
under 0.03.  The time taken to predict a job is also 
remarkable, less than 1 second with 190 historical records 
to perform a full prediction.  The system can aid users to 
schedule their jobs faster and more accurate. 

In future work, we will add more variety of VMs 
and jobs to test the system. 

ACKNOWLEDGMENT 
This work was partially supported by the National 

Science Council of Republic of China under Grant NO. 
100-2221-E-305-013. 

REFERENCE 
[1] Fan, C.T.; Wang, W.J.; Chang, Y.S., "Agent-based Service 

Migration Framework in Hybrid Cloud," 2011 IEEE 13th 
International Conference on High Performance Computing and 
Communications (HPCC), pp. 887-892. 

[2] Pawlak, Z.; Grazymala-Busse, J.; Slowinski, R.;  Ziarko, W., 
"Rough Sets," Communications of the ACM, Vol. 38, Issue 11, 
Nov. 1995, pp. 88-95. 

[3] Pallis, G., "Cloud Computing: The New Frontier of Internet 
Computing," IEEE Internet Computing, Vol. 14, No. 5, 2010, pp. 
70-73. 

[4] Amazon Elastic Compute Cloud (Amazon EC2), 
http://aws.amazon.com/ec2/ 

[5] Krishnaswamy, S.; Loke, S.W.; Zaslasvky, A., "A hybrid model 
for improving response time in distributed data mining," IEEE 
Transactions on System, Man, and Cybernetics, Part B: 
Cybernetics, Vol. 34, Iss. 6, 2004, pp. 2466-2479. 

[6] Hu, X., "Knowledge discovery in databases: an attribute-oriented 
rough set approach," ph.D thesis, Regina University, 1995. 

[7] Hermenier, F.; Lorca, X.; Menaud, J.M.; Muller, G.; and J. Lawall, 
"Entropy: a Consolidation Manager for Clusters," VEE'09, pp. 41-
50 

[8] Yazir, Y.O.; Matthews, C.; Farahbod, R.; Neville, S.; Guitouni, A.; 
Ganti, S.; and Coady, Y., "Dynamic Resource Allocation in 
Computing Cloud Using Distributed Multiple Criteria Decision 
Analysis," 2010 IEEE 3rd International Conference on Cloud 
Computing (CLOUD), pp. 91-98. 

[9] "Welcome to xen.org, home of Xen® hypervisor, the powerful 
open source industry standard for virtualization.," 
http://www.xen.org 

[10] A.B. Downey, "Predicting queue times on space-sharing parallel 
computers," Parallel Processing Symposium, 1997. Proceedings., 
11th International,  pp. 209-218. 

[11] Smith, W.; Taylor, V.; and I. Foster, "Using Run-Time Predictions 
to Estimate Queue Wait Times and Improve Scheduler 
Performance," Job Scheduling Strategies for Parallel Processing, 
1999, pp. 202-219. 

[12] Harchol-Balter, M.; Crovella, M.; and C.D. Murta, "On Choosing 
a Task Assignment Policy for a Distributed Server System," 
Journal of Parallel and Distributed Computer, Vol. 59, Iss. 2, Nov. 
1999, pp. 204-228. 

[13] Selvi, S.T.; Kumari, M.S.S.; Prabavathi, K.; and G. Kannan, 
"Estimating Job Execution time and Handling Missing Job 
Requirements Using Rough Set in Grid Scheduling," International 
Conference on Computer Design and Applications (ICCDA), 2010, 
Vol. 4, pp. 295-299. 

[14] Noronha Nassif, L.; Marcos Nogueira, J.; Vinicius de Andrade, F.; 
Ahmed, M.; Karmouch, A.; Impey, R., "Job Completion 
Prediction in Grid Using Distributed Case-based Reasoning," The 
14th IEEE International Workshops on Enabling Technologies: 
Infrastructure for Collaborative Enterprise, 2005, pp. 249-254. 

[15] Kiran, M.; Hashim, A.H.A.; Kuan, L.M.;Jiun, Y.Y., "Execution 
Time Prediction of Imperative Paradigm Tasks for Grid 
Scheduling Optimization," International Journal of Computer 
Science and Network Security (IJCSNS), Vol. 9, No. 2, Feb 2009, 
pp. 155-163. 

734


