
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 2, FEBRUARY 1995 215

given k and n, one can choose any value of nz in the range from
2 to n to construct a multiway merging network. However, use of
certain values of m results in less delay than others for the same
value of n . One choice of the value of m is m = n. In this case,
T (k , n , n) = T (k) + [log, n1 [log, k1. Other values of m, which
can achieve this time bound for the given value of n, are m = 2‘
with c < [log, n1.

We have also assumed that there are n keys in each ascending
sequence and m divides n for simplicity and clarity of exposition.
In general, a multiway merging network can be constructed to merge
k sorted lists of different lengths with the ith list having n, keys
not necessarily equal to n. One way of doing this is to construct a
k-way merger of size n first using keys with the value of positive
infinity to fill the difference, and then remove these positive infinity
keys together with the comparison-exchange elements associated with
them, resulting in a simpler k-way merging network. Thus, there are
no restrictions on the property of n,, k, and m.

A sorter can be constructed from k-way mergers: the keys are
combined k at a time to form ordered lists of length k; these lists
are merged k at a time to form ordered lists of length k 2 , etc.,
until all keys are merged into one ordered list. To sort k p keys
using the mergers requires kp-’ mergers of size 1 followed by ICp-’
mergers of size k followed by kp-3 mergers of size k2 followed by
k p - 4 mergers of size k 3 , etc., etc. The longest path will go through

steps.
E::; ~ (k , m, k ‘) = P T (~) + [log, k i [log, m l (Z::; [i log, k i)

V. CONCLUSION
The multiway merge described in this paper merges k ascending

sequences into an ascending sequence for any integer k . This differs
from existing merging networks that merge only two ascending
sequences into one. Furthermore, the k-way merge represents a
complete generalization of the odd-even merge, when k = 2. In
this case, it uses m small two-way mergers to merge two ascending
sequences into one, where m is not restricted to 2. The odd-even
merge is a special case of the k-way merge, when k = 2 and m = 2.
The multiway merges does not reduce the number of comparators nor
does it reduce the delay over the odd-even merge. However, it does
provide a comprehensive extension and generalization of the odd-
even merge method, allowing more flexible construction of merge
sorting networks.

REFERENCES

K. E. Batcher, “Sorting networks and their applications,” in AFIPS Proc.
Spring Joint Compuf. Con$, 1968, pp. 307-314.
K. E. Batcher, “On bitonic sorting networks,” in Proc. 19th Int. Con$
Parallel Process., 1990, pp. 376-379.
D. E. Knuth, “Sorting and searching,” The Arr of Compurer Program-
ming. Reading, PA: Addison-Wesley, 1973, vol. 3.

Design of Efficient Regular Arrays for Matrix
Multiplication by Two-step Regularization

Jong-Chuang Tsay and Pen-Yuang Chang

Abstract-A two-step regularization method in which first permutation
sequences and then broadcast planes are selected is proposed to design
various regular iterative algorithms for matrix multiplication. The regular
iterative algorithms are then spacetime mapped to regular arrays, such
as mesh, cylindrical, two-layered mesh, and orbital arrays. The proposed
method can be used to design regular arrays with execution time of less
than N (problem size).

Index Terms- Broadcast, cylindrical array, mesh array, orbital ar-
ray, parallel algorithm design, permutation sequence, propagation, two-
layered mesh array, VLSI architecture

I. INTRODUCTION
The topic of designing 2-D regular arrays for matrix multiplication

has been studied for over a decade. Most existing designs are based
on the well-known sequential algorithm of C = A x B (A, B , C
are all N x N matrices). These include, in chronological order, the
hexagonal array (with execution time on the order of 5N) proposed
by Kung and Leiserson [11, the mesh array (3N) proposed by Kung
[2], the hexagonal array (3N) of Li and Wah [3], the orbital array
(N) of Porter and Aravena [4], the cylindrical array (2 N) of Porter
and Aravena [5] , the two-layered mesh array (2 N) of Kak [6], and
the cylindrical array, two-layered mesh array, and mesh array (y)
proposed by Tsay and Chang [7]. Other designs are based on the
Winograd algorithm. These include the mesh array (y) proposed
by Jagadish and Kailath [8] and the two-layered mesh array (y)
presented by Benaini and Robert [9].

Some of the regular array designs based on C = A x B were
proposed in a rather ad hoc fashion. Although they are derived
from the same sequential algorithm, no one has ever written regular
iterative algorithms (RIA’s) [lo] for all of them and stated the
relationship between them. To derive these RIA’s in a unified way,
in this paper we propose a two-step regularization method: in the
first step a permutation sequence is selected for each index and
in the second step a broadcast plane is selected for each variable.
Then, by spacetime mapping, various regular arrays can be designed.
Furthermore, with knowledge of the derivation of these RIA’s, regular
arrays with execution time of less than N , faster than any other
designs we know of, can be obtained.

This paper is organized as follows: Section I1 presents some
preliminary definitions. In Section 111, the two-step regularization
method is proposed. Using this method, we can design RIA’s in
a unified manner for mesh arrays, cylindrical arrays, and two-layered
mesh arrays. In Section IV, we design regular arrays with execution
time approaching and then equal to N . Section V studies orbital array
derivations with execution time of less than N . Finally, concluding
remarks are presented in Section VI.

Manuscript received February 18, 1992; revised April 1, 1994. This work
was supported by the National Science Council of the R.O.C. under Contract

The authors are with Institute of Computer Science and Information Engi-
neering, College of Engineering, National Chiao Tung University, Hsinchu,
Taiwan 30050, R.O.C.

NSC-81-0408-E-009-568.

IEEE Log Number 9406340.

1045-92 19/94$04.00 0 1994 IEEE

216 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 2, FEBRUARY 1995

broadcast point p hadcastpoint

I
broadcast line

(b)

(C)
Fig. 1. (a) Multiple fan-in, broadcast point, and broadcast line. (b) Multiple
fan-out, broadcast point, and broadcast line. (c) Transformation of broadcast
vectors to propagation vectors.

11. PRELIMINARY DEFINITIONS
In this section, we give some preliminary definitions as a basis for

the descriptions that follow. The permutation sequences introduced
here are useful for determining which data will appear in which posi-
tion and for constructing the various types of links between nodes in a
dependence graph (DG) [101-a graphical representation of an RIA.

Definition 2.1: A permutation sequence P (1 , N) = (p (l) ,
p (2), . . . , p (N)) is a sequence of integers resulting from permuting
the sequence (1 , 2 , . . . , N). The ith element in P is denoted by p (i) ,
where 1 5 i 5 N .

By observing the types of links in various regular arrays, we
define four types of permutation sequences. They are the increasing
sequence, for horizontal (or vertical) links, the left-shift sequence, for
spiral links, and the even-odd and odd-even transposition sequences,
for diagonal links.

Definition 2.2: A permutation sequence U (1, N) = (U (l) ,
u (2) , . - . , i i (N)) is an increasing sequence if the ith element in
U is u (i) = i , where 1 5 i 5 N .

Definition 2.3: A permutation sequence L(i ; 1, N) = (Z,(l) ,
Z,(2),. . . ,Zt(LV)) is a left-shift sequence if it is formed from
shifting the sequence (1 ,2 , . . . , N) left cyclically i times, where
0 5 i 5 N-l .The jthelement in L isZ,(j) = (i + j - l) m o d , ~ + l ,
where 1 5 j 5 N .

Definition 2.4: A permutation sequence E (i ; 1 , R) = (e t (l) ,
e , (2) , . . . , e , (N)) is an even-odd transposition sequence if the j t h
element in E is

j - i , i f i + j iseven A j > i
i - j + l , if i + j is even A j 5 i

i f i + j isodd A i + j < N { 2 N + l - i - j , i f i + j isodd A i + j > i V

e * (j) = i + j ,

where 0 5 i 5 N - 1 and 1 5 j 5 N .
Definition 2.5: A permutation sequence O(i ; 1, =

(0, (l) , ~ , (2) , . . . , 0, (N)) is an odd-even transposition sequence if
the j t h element in 0 is

i + j ,
2 N + l - i - j , i f i + j iseven A i + j > N

if i + j is even A i + j 5

i f i + j isodd A j > i { i - j + l , i f i + j isodd A j < i

o , (j) = - i,

where 0 5 i 5 N - 1 and 1 5 j 5 N .
The multiple fan-in (Fig.](a)) and multiple fan-out (Fig. l(b))

data dependence vectors are called broadcast vectors. All broadcast
vectors can be systematically transformed into propagation vectors

' t w

0 a 0

0 a

Fig. 2. The execution time t , = t , + t , + t o

(e.g., Fig. I(c)) [l 11. We use the term broadcast point to denote the
starting position for data propagation. A broadcast line is composed
of several broadcast points. By aggregating broadcast lines, we obtain
a broadcast plane.

The execution time (t e) of a regular array is defined as the time
interval between the time when the first operation is executed and
the time when the last result is calculated. t , can be decomposed
into three parts: the queuing time (t 4) , the waiting time (tw), and the
operating time (t o) (Fig. 2). t , is the time interval between the time
execution begins and the time when ZN,N arrives at position a. t,,
is the time interval between the time when ZN,N leaves position a
and the time when I N , N arrives at position b ; this time is incurred
because ZN,N must wait to meet another datum at the first P E . t , is
the time interval between the time when S N , N leaves position b and
the time when Z N , . ~ arrives at position e; in this time interval, x.rv .iv
actually operates with other data.

111. TWO-STEP REGULARIZATION
The matrix multiplication can be carried out in N recursions, as

Algorithm 3. I:
described in Algorithm 3.1.

For i = 1 to N
For j = 1 to N
For IC = 1 to N

initially e,,, = 0.
Before the selection of a permutation sequence for each index, we

must fully index all variables [12]. This can be done by substituting
a,(i , j , k) , b (i , j , k), and c (i , j, IC) for az ,k , bk,J, and et,J, respectively,
in Algorithm 3.1. Let p1 (a), p z (b) , and p 3 (7) denote the permutation
sequences for indexes i , j , and IC, respectively, where a, P , 7 are
functions of (i , j , IC). Then Algorithm 3.1 can be rewritten as follows:

For all indices (i , j , k) , 1 < i , j , k 5 N, do

C Z , J = C z , j a z , k X b k , j

Algorithm 3.2:

c (i , j , k) = a (i , j , k) x b(i , j , k)
4 i 3 j . k) = a p l (e) , p 3 (,)

b (i , j , k) = b p 3 (7) , p 2 (0)

Final results e p ~ (a) , p ~ (8) = c (i , j , l) + . . . + c (i , j , N) .

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 2, FEBRUARY 1995 217

M4
M 3 b34

M2 b33 b24
MI b32 b23 b14
b31 b22 b13
b21 b12
bll

a14 a13 a12 all

a24a23a22a21

Fig. 3. Mesh array of Design mm1 (JT = 4).

A. Step I : Select Permutation Sequence f o r Each Index

A selection of p l (n) , p z (; 3) , and p 3 (7) is said to be correct if
the final results of Algorithm 3.2 are correct for calculating matrix
multiplication, i.e., if C ~ I (~) , ~ ~ (, ~) = a p l (n) , l x b l , p ~ (i 3) + . . . +
a p l (n) , N x bN,pz (,9) , V p l (o) , p 2 (d) . Thus, the simplest way to
select p 3 (3) is to let p 3 (3) = u (k) = k . The selection of p l (n)
and p 2 (;3) is based on the types of links (e.g;, horizontal, vertical,
spiral, or diagonal) given by the regular array that is to be designed.
Horizontal or vertical links correspond to the increasing sequence;
spiral links correspond to the left-shift sequence; and diagonal links
correspond to the even-odd (or odd-even) transposition sequence.

For example, a mesh array has only horizontal and vertical links,
so we select u (i) , u (j) , and ~ (k) for p ' (a) , p 2 (i 3) , and p 3 (7) ,
respectively. Then we obtain Algorithm 3.3. It is easy to see that
the selection is correct, because Algorithm 3.3 can correctly perform
matrix multiplication.

For all indices (i , j , k) , 1 5 i , j , k 5 N , do
Algorithm 3.3:

c (i , j , k) = a (i , j . k) x b (i , j . k)
a (i , j, k) = a , . k

b (i , j , k) = bk.]
finalresults = c (i , j , l) + . . . + c (i , j , N) .

Another example is a cylindrical array, which has two types of
links. For the first type, the horizontal links, we select the increasing
sequence. For the second, the spiral links, we select the left-shift
sequence. Thus, we select u (i) , l t - l (j) , and u (k) forpl(Cy), p 2 ($) ,
and p 3 (7), respectively. The result is Algorithm 3.4.

For all indices (i , j , k) , 1 5 i , j , k 5 N , do
Algorithm 3.4:

c (i , j, 1) = a (i , j , k) x b (i . j , k)
a (i , j , k) = nr.k
b (G j , k) = b k , ~ , - ~ (J)

final results = c (i , j , I) + .. . + c (i , j , A V) .

B. Step 2: Select Broadcast Plane f o r Each Variable

Various broadcast planes can be selected depending on the con-
straints of YO bandwidth, YO port location, supported hardware and
so forth of a regular array. Then, broadcast vectors are transformed
into propagation vectors by the method proposed in [ll]. Finally,
spacetime mapping is applied to derive regular arrays. From Algo-

rithm 3.3, if the U 0 ports of the regular array are confined at boundary
PE's, then the broadcast planes j = 1, i = 1, and k = 1 are selected
for variables a, b, and e, respectively. For the variable a, we have
a (i , j , k) = a (i , I , k) , v 2 5 j 5 and a (i , 1 , k) = n z . k . It is
easy to replace the broadcast vectors [0 I 01, 1 5 1 5 N - 1,
by the propagation vector [0 1 01. Then we have the recurrence
equation a (i , j + 1 , k) = a (i , j , k) . Applying the same method to
variables b and c, we obtain Algorithm 3.5. The correctness of an
RIA can be checked by resubstituting initial values into the recurrence
equations and calculating the final results. That is, if cZ.) is equal to
a , , ~ x b l ,] + ... + a , , N x b!Y,,, for 1 5 i , j 5 N, then the RIA
is correct. It is easy to prove that Algorithm 3.5 is correct. A mesh
array (Fig. 3) can be derived by projecting Algorithm 3.5 in the k -
direction. This well-known mesh array was devised by Kung in [2].
We call this Design mm 1. Its execution time is t , = t , + t , + to =
(Ai - 1) + (N - 1) + (n r) = 3 N - 2 .

Algorithm 3.5:
For all indices (i , j , k) , 1 5 i . j , k 5 N, do

c (i , j , k + 1) = c (i , j , k) + n (i , j , k) x b (i , j , k)
a(i , j + I, k) = a (i , j , k)
b (i + 1, j , k) = b (i , j , k)

initial values
c (i , j , 1) = 0
a (i , 1, k) = a r . k

b(1 , j , k) = bk,]
final results et,, = c (i , j , N + 1) .

Again, with Algorithm 3.3, if the YO ports of the regular array are
located at the diagonal PE's, then the broadcast plane i = j is selected
for both variables a and b. Thus, we have broadcast vectors [0 I 01
forthevariablea, with 1 5 I5 N - 1 if i 5 j and 1 - N 5 I < -1
if i 2 j , and [I 0 01 for the variable b, with 1 5 I 5 N - 1 if
i 2 j and 1 - N 5 1 5 -1 if i 5 j . In this way, we decompose
the computation domain into two phases: i 5 j and i 2 j. In the
i 5 j phase, the propagation vectors of variables a and b are in the
[0 1 01 and [-1 0 01 directions, respectively. In the i 2 j phase,
the propagation vectors of variables a and b are in the [0 -1 01 and
[l 0 01 directions, respectively. Finally, we obtain Algorithm 3.6.
By projecting this algorithm in the k-direction, we obtain a mesh
array (Fig. 4), which we call Design " 2 . Its execution time is
t , = t , + tu, + to = (Ar - 1) + 0 + (N) = 2 N - 1. An alternative
way to calculate t , is by the two-phase linear schedule proposed in
~71.

Algorithm 3.6:
[Phase I] : i 5 j
For all indices (i , j , k) , 1 5 i, k 5 N , i 5 j 5 N, do

c (i , j , k + 1) = e (i , j , k) + a (i , j , k) x b (i , j , k)
a (i , j + 1 , k) = a (i , j , k)
b (i - 1, j , k) = b (i , j , k)

[Phase 21: i 2 j
For all indices (i , j , k) , 1 5 i . k 5 N , 1 5 j 5 i , do

c (i , j , k + 1) = c (i , j , k) + a (i , j , k) x b (i , j , k)
n (i , j - 1 , k) = a (i , j , k)
b (i + 1. j , k) = b (i , j , k)

c (i , j, 1) = 0
initial values

a (i , i, k) = a * , k

b (j t j 3 k) = bk,J
final results

For Algorithm 3.4, if the YO ports are confined at the boundary
PE's, then we select the broadcast plane j = 1 for both variables a
and b and the (k = 1)-plane for the variable c. For the variable b, from
b (i , j , k) = b k , l , - l (,) in Algorithm 3.4 and the broadcast planej = 1,
we can derive recurrence equations b (i - 1 , j + 1 , k) = b (i , j , k)

= c (i , j , N + 1) .

218 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 2, FEBRUARY 1995

b41
b3 1
b21
bl1

a14 b41 b42 a24 a34 b43 b44 a44
a13 b31 b32 a23 a33 b33 b34 a43
a12 b21 b22 a22 a32 b23 b24 a42
a l l bll bl2 a21 a31 b13 b14 a41

Fig. 4. Mesh array of Design mm2. Fig. 6. Two-layered mesh array of Design mm4.

Fig. 5. Cylindrical array of Design "3.

from b (i - 131 + 1 , k) = b t i t - 2 (j + ~) = b k , l , - , (j) = b (i , j , k) and
b (N , j + 1 , k) = b (L j , k) from b (N , j + L k) = b k , t N - l (3 + 1) =
b k , [&) = b (l , j , k) . Combining these recurrence equations with
b (i , 1, k) = b k , [% - l (l) , we have Algorithm 3.7. By projecting this
algorithm in the k-direction, the cylindrical array proposed in [5] is
obtained (Fig. 5) . We call this Design mm3. Its execution time is
t , = t , + t , +to = (N - 1) + 0 + (N) = 2N - 1.

c (i , j , k + 1) = c(i,j,IC) + a (i , j , k) x b (z , j , I C)
u (i , j + 1, I C) = a (i , j , k)

Algorithm 3.7:
For all indices (i , j , k) , 1 5 i , j , k 5 N , do

b (i - 1,j + 1, k) = b (i , j , k) if i # 1
b (N , j + 1 , k) = b (i , j , k) if z = 1

initial values
c (i , j , 1) = 0
a(i7 1, k) = a z , k

b (i , 1, k) = b k , i % - l (l)

final results c ~ , ~ , - , (~) = c (i , j , N + 1).
The two-layered mesh array proposed in [6] can be designed by

letting $ (c y) = o % - ~ (j) , p z ((p) = e z - l (j) and p 3 (7) = u (k)
and choosing the broadcast plane i = 1 for variables a and b
and the (IC = 1)-plane for the variable c. It is not difficult to
derive Algorithm 3.8. By projecting this algorithm in the k-direction,
we obtain a two-layered mesh array (Fig. 6) with execution time

Fig. 7. Two-layered mesh array of Design mm5.

t , = 2IV - 1. We call this Design mm4. Furthermore, if the same
permutation sequences but the broadcast plane i = are selected
for variables a and b, a two-layered mesh array with execution time
t , = r-1 can be obtained (Fig. 7). We call this Design "5.
It has been proposed in 171.

Algorithm 3.8: For all indices (i , j , k) , 1 5 i , j , k 5 N , do

c (i , j , k + 1) = c (i , j , k) + O (i , j , k) x b (i , j , k)
a (i - l , j - l , k) , i f i + j iseven A j # 1
a (i - l , j + l , k) , i f i + j isodd A j # N
a(i - Lj , k) , if i + j is even A j = 1
a(i - l ,j, k) , i f i + j isodd A j = N
b (i - l , j - - l , k) , i f i + j isodd A j # 1
b (i - - l , j + l , k) , i f i + j iseven A j # N
b(i - 1, j, k) , i f i + j isodd A j = l
b (i - Lj, k) , if i + j is even A j = N

{
{

a (i , j , k) =

c (i , j , 1) = 0

a (l , j , k) = a 3 . k

b (? , j , k) =

initial values

b (l , j , k.) = b k , ,

final results c o t - l (J) , e ~ - l (J) = c (i , j , N + 1) .

IV. ARRAYS WITH EXECUTION TIME APPROACHING N
In the previous section, each variable has only one broadcast plane

in the computation domain. If the given regular array has more U0

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 2. FEBRUARY 1995 219

Fig. 8. The eight regions of the computation domain of matrix multiplica-
tion.

ports, then we can let a variable have more than one broadcast
plane. That is, we let each variable have different broadcast planes
in different regions of the computation domain. Then we can design
regular arrays with execution time approaching or equal to N .

The computation domain of matrix multiplication can be divided
into eight regions (Fig. 8). For simplicity, we assume N is an even
number and define il 3 1 5 i 5 $, i 2 = + + 1 5 i 5 N ,
j1 = 1 5 j 5 $, j 2 1 5 k 5 $,
and k 2 = $ + 1 5 k 5 N . These eight regions are then denoted
by 1111 = il A j1 A kl (region l), 1112 = i l A jl A k2 (region
2), 1121 il A j 2 A k l (region 3). 1122 = il A j 2 A k2 (region
4), 1211 = i z A jl A k l (region 5) , 1212 i 2 A j l A k 2 (region 6),
1221 i z A j 2 A k l (region 7), and 1222 ZE i 2 A j 2 Akz (region 8). The
broadcast plane in a region for a variable is denoted by, for example,
1 1 1 ~ 1 , which implies il A j 1 A (j = 1) A h , when the (j = 1)-plane
is selected for the broadcast plane in region 1.

For Algorithm 3.3, let the smallest possible values of i, j, and
k be chosen as the broadcast planes for variables b, a, and c,
respectively, in regions 1, 4, 6, and 7 (the shaded regions in Fig. 8).
For example, 11 1 1 11 11 A (j = 1) for the variable a in region 1,
and 1 ~ ~ 1 2 = 1212 A (i = $ + 1) for the variable b in region 6. Then
the variable a has broadcast planes 1 1 1 ~ 1 . 1 1 2 ~ 2 , 1 2 1 ~ 2 , and 1 ~ 2 ~ 1 ,

and the variable b has Ilgll, 1 1 ~ 2 2 , 1 ~ ~ 1 2 , and 1 ~ ~ 2 1 .

Since a, ,k and bk,, are input in regions 1 , 4 , 6 , and 7, the remaining
regions obtain these input data from propagation vectors. That is,
region 3 (and 8) obtains the input data at,k of region 1 (and 6) from
the propagation vector [0 1 01. This vector can be carried out by the
recurrence equation u (i , j , k) = u (i , j - 1 , k) . But region 2 (and 5)
gets u,,k of region 4 (and 7) from the propagation vector [O - 1 01.
In regions 2 and 5, in order to ensure that every U z , k meets with its
respective b k , l , a new variable a1 is introduced to carry U z , k . a l ,k
carried by a 1 is moved leftward, reflected on 11 1 B 2 V 1 2 1 1, and then
moved rightward to meet with bk, l . Hence, new recurrence equations,
a l (i , j , k) = az,k if 1 1 2 ~ 2 V 1 2 2 B 1 , a l (i , j , k) = a l (i , j + l , k) ,
and u (i , j , k) = u l (i , j , k) if 1 1 1 ~ 2 V 1 2 1 ~ 1 , are added to propagate
a, k in regions 2 and 5. Similarly, for the variable b, we can derive
recurrence equations b l (i , j , k) = bk,, if 12,12 V 1 2 B 2 1 , b l (i , j , k) =
b l (i + l , j , k) , and b (i , j , k) = b l (i , j , k) if 1 1 ~ 1 2 V 1 1 ~ 2 1 .

In regions 1 , 2 (denoted by 1 1 1) and regions 7, 8 (1 2 2) , the variable
c satisfies c (i , j , k + 1) = c (i , j , k) + a (i , j , k) x b (i , j , k) with
c (i , j , l) = 0. However, in regions 3, 4 (112) and regions 5, 6
(IzI), c (i , j, $ + 1) is computed first, followed by the sequence
~ (i , j, $ + 2), ~ (i , j, $ + 3), . . . , c (i , j , N) , ~ (i , j, l), . . ., ~ (i , j , $).
To unify these two different recurrence equations for calculating the
variable c in 111, 1 2 2 and 112, 121 , we introduce the binary operator
$, i $ j = (i + j - l) m o d ~ + l , 1 5 i , j 5 N . (Similarly, e, iej
(i - j - l) m o d ~ + I r 15 i , j 5 N.)Then therecurrenceequation for
thevariable c becomesc(i , j ,k$l) = c(i , j , k) + a (i , j , k) x b (i , j , k) ,
which is applied in all regions of the computation domain. Finally, we

$ + l 5 j 5 N, kl

b22 t4l
b21 bl2 b43 b34
bl 1 8 b33 8

a44a438- 41

Fig. 9. Mesh array of Design “6.

obtain Algorithm 4.1. A mesh array (Fig. 9) is obtained by projecting
this algorithm in the k-direction. We call this Design “ 6 .

Algorithm 4.1: For all indices (i , j , k) , 1 5 i , j , k 5 N, do

c(i , j , k @ 1) = c (i , j , k) + u(i , j , k) x b (i , j , k)

u l (i , j , k) = u l (i , j + 1, k)

The execution time of Design m m 6 is t , = t , + t , + to =
($ - 1) + ($ - 1) + N = 2 N - 2. Comparing Design m m 6
(Fig. 9) with its counterpart Design mml (Fig. 3), we see that the
execution time has been reduced from 3N - 2 to 2 N - 2 , although
the VO bandwidth has been doubled.

The same design criteria can be applied to the other designs in
the last section. For example, we apply this idea to Design “ 5 .
If the VO bandwidth is 2N (4 N , 8 N , 16N,. . .), then the execution
time becomes t , (y, y, z,. . .). The extreme case is that
where the VO bandwidth becomes N 2 (or U and b reside in each
PE initially), in which case the execution time is N . We call this
Design m m 7 (Fig. 10(a)). The RIA for design m m 7 is depicted in
Algorithm 4.2.

Algorithm 4.2: For all indices (i,j , k), 1 5 i, j, k 5 N, do the
calculations on the bottom of the next page.

Notice that in this algorithm the value of an input variable is
assigned as zero if its index is located outside the computation

220

a l (i - l , j + l , k) , i f i + j isodd A j # N
a l (i - 1 , j , k) , if i + j is even A j = 1
a l (i - 1 , j , k), i f i + j isodd A j = N
b l (i - 1 , j - l , k) , i f i + j isodd A j # l
b l (z - l , j + l , k) , i f i + j iseven A j # N
bl(2 - l , j , k) , i f i + j isodd A j = l

c i l (i , j , k) =

b l (i , j , k) =

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6. NO. 2, FEBRUARY 1995

A k z i '

Fig. 11. Orbital array of Design " 8 .

Fig. 10. Two-layered mesh array of Design mni7 and its snapshots.

domain. Snapshots of Design mm7 are shown in Fig. 10(a)-(d).
For example, c4.2 is computed at PE2.3. First, 0 4 . 2 and b2,2 meet
when t = 1; then when t = 2, (14.3, b 3 2 and a4.1, b1.2 arrive at
PE2.3 simultaneously. Note that two copies of the multiplier and
accumulator are necessary in that PE. Then, 04,4 and b4.2 arrive at
PE2.3 when t = 3. Finally, the results in these two accumulators
are added to obtain the final result of c4.2. Comparing Design mm7
and the orbital array in [4], we see that although both of them have
execution time N , the former has the advantage that spiral links are
not necessary.

Porter and Aravena proposed an orbital array [4], yet they designed
it in an ad hoc fashion. Designing an algorithm for an orbital array
can be done by selecting the permutation sequences pl(cy) = ~ (i) ,
p z (,!?) = U (), and p 3 (y) = U (k) and selecting the broadcast point
k = Z t - l (j) for all variables, so that we have a (i , j , k) = a z , k r
b (i , j , k) = bk ,, and c (i , j , k) = 0 if k = l z - l (j) . The orbital links
are constructed by using the G? and E- operators. Thus we obtain
Algorithm 4.3. By projecting this algorithm in the k-direction, we
produce an orbital array (Fig. 11). We call this Design "8. Its
execution time is t , = t , + tu, + to = 0 + 0 + N = N .

Algorithm 4.3: For all indices (i , j , k), 1 5 i , j , k 5 N , do

c (i , j , k 6 1) = c (i , j , k) + a (i , j , k) x b(i , j , k)

a (i , j @ 1, k) = a (i , j , k)

b (i 1 , j , k) = b (i , j , k)

initial values

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 2, FEBRUARY 1995 22 1

Fig. 12. Bidirectional orbital array of Design mm9

initial values

a(z, j , k) = az,k
c (i , j , k) = O

b (i , j , k) = bk.,
if k = Zz-l(j) }

final results = c(i , j ,Zz- l (j)) .

v. ARRAYS WITH EXECUTION TIME LESS THAN
To the best of our knowledge, is the minimal execution time

achieved to date for calculating matrix multiplication on a 2-D regular
array. In this section, two orbital array derivations with execution
time of $ are proposed.

The first array is obtained by expanding the uni-directional orbital
array into a bidirectional one (Fig. 12). We call this Design “ 9 .
In this design, two copies of the multiplier and accumulator are
necessary in each PE. The RIA for Design m m 9 is depicted in
Algorithm 5.1. The execution time of Design m m 9 is t , = t , +
t , + to = 0 + 0 + +l. The extra time step
is for adding the results in the two accumulators of each PE.

c l (i , j, k 6 1) = c l (i , j. k) + a l (i , j , k) x b l (i , j, k)
a l (i , j 6 1, k) = al(i , j , k)
b l (i 6 1, j , 1) = b l (i , j , k)
c2(i , j , k @ 1) = c2(i, j. k) + a 2 (i , j , k) x b2(i, j , k)
a2(i , j 9 1, k) = a (i , j, k)
b2(i 6 1, j, k) = b(i , j , k)

+ 1 =

Algorithm 5.1: For all indices (i , j, k), 1 5 i , j , k 5 N, do

initial values

a l (i , j , k) = a2(i , j , k) = az,k
c l (i , j , k) = c 2 (i , j , k % l) = O

b l (i , j, k) = b 2 (i , j , k) = bk,,
if IC = Z2-l(j) 1

final results e,,, = c l (i , j . l t - l (j) e + c2(i, j ,zZ-1(j) e
Yet another new design for a 2-D regular array with execution

time of about is to let four pairs of input data a and b, az,k, bk,,,

stay in each PE,,, on a unidirectional orbital array initially, where
1 5 i , j, k 5 and IC = Zt-l(j). The advantage of this arrangement
is that two multiplications, az.k x b k , , and a,,k+% x bk++,,, in PE,, j
for cz ,) are computed at the same time. The same condition occurs on
c2,,++ ci+%,,, and C ~ + % , ~ + % . Since computing each c z , j requires

[vi).

a t . k + $ 3 ‘k+$,j 1 ‘ t i + , k ? ‘k,3+% 9 and ‘ z+$! .k+f; ,bk+$ x j + $

a23 b32

a41 b12

b k j

bk ja 2

ai++,k

a ik+-N
2

bki-$j

bk+lj+N
2 2

a i+E,k+E
2 2

(b)

Fig. 13. (a) Orbital array of Design mmlO. (b) The function of each PE.

N multiplications of a and b and each time two of them can be done,
the execution time is t , = g + 1. The extra time step is for adding
the results in the two accumulators of PE,,, for each c2,).

From the DG viewpoint, the above design criteria are the first to
cut the DG of Algorithm 4.3 into eight regions (Fig. 8), pile all of
these eight regions into region 1, and finally project this new DG in
the k-direction.

The RIA for this array can be derived by modifying Algorithm
4.3. First, the index (i , j , k) in Algorithm 4.3 is renamed (i ‘ , j‘ ,k‘) ,
and then the index (i’, j‘, IC’) is expanded to (a, P, y, i, j, IC), where
i‘ = a + i , j’ = ,!3 + j , 1’ = y + k and i = (i ’ - l)mod+ + 1,
j = (j ‘ - l) m o d ~ + 1, k = (k’ - l) m o d ~ + 1. The new index
(a, P , y, i , j, k) iskvided into two parts: (a,’b’, y) and (i , j, k). The
first part (a, 8, y) is used to indicate which one of the multipliers
and accumulators will be used inside a PE; the second part (i, j, k)
has the same effect of DG piling. In this way, we obtain Algorithm
5.2. Note that the binary operators @ and 9 and the permutation
sequence L are all defined for $ rather than N in this algorithm.
Finally, by projecting the index (i, j, k) in Algorithm 5.2 in the k-
direction, we obtain an orbital array with execution time t , = g + 1
(Fig. 13(a)). The function of each PE is as shown in Fig. 13(b). We
call this Design m m 10.

Algorithm 5.2: For all indices (a, P,y, i, j, k), a, /3,y E (0, $},
1 5 i , j , k 5 $ do

initial values

222 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. 6. NO. 2, FEBRUARY 1995

final results c ~ , , ~ ! = c(i’ - i ,.I ” - j , 0 , i , j , Ll(j)) + c(i’ - i , j ’ - j ,

where i = (if - l)mod+ + 1, j = (j’ - l)mod+ + 1.

N . .
~ A . L L - l (j))

VI. CONCLUSION
We have described a unified approach, two-step regularization, to

derive the RIA’S for matrix multiplication. The RIA’S were then
spacetime mapped to regular arrays. These regular arrays include
mesh arrays, cylindrical arrays, two-layered mesh arrays, and orbital
arrays. We note that the array type relies mainly on the permutation
sequences and broadcast planes selected in the two-step regulariza-
tion. The methodology proposed in this paper can be used to solve
many other problems, especially problems that can be formulated in
matrix form, e.g., LU-decomposition, transitive closure, and algebraic
path problem. Using this methodology, we can design even faster
regular arrays for these problems.

REFERENCES

[l] H. T. Kung and C. E. Leiserson, “Systolic arrays for VLSI,” in Proc.
I978 Soc. Indust., Appl. Math., 1979, pp. 256-282.

S. Y. Kung, “VLSI array processor for signal processing,” in Proc. Con$
Advanced Res. Integrat. Circuits, 1980.
G. J. Li and B. W. Wah, “The design of optimal systolic arrays,” IEEE
Trans. Comput., vol. C-34, Jan. 1985, pp. 66-77.
W. A. Porter and J. L. Aravena, “Orbital architectures with dynamic
reconfiguration,” in IEE Proc., vol. 134, Nov. 1987, pp. 281-287.
-, “Cylindrical arrays for matrix multiplication,” in Proc. 24th Annu.
Alleroron Con$ Commun., Control, Computing, Mar. 1988, pp. 595-602.
S. C. Kak, “A two-layered mesh array for matrix multiplication,”
Parallel Computing, vol. 6, pp. 383-385, 1988.
J. C. Tsay and P. Y. Chang, “Some new designs of 2-D array for matrix
multiplication and transitive closure,” IEEE Trans. Parallel, Disfrib.
Sysr., to be published.
H. V. Jagadish and T. Kailath, “A family of new efficient arrays for
matrix multiplication,” IEEE Trans. Comput., vol. 38, pp. 149-155, Jan.
1989.
A. Benaini and Y. Robert, “An even faster systolic array for matrix
multiplication,” Parallel Computing, vol. 12, pp. 249-254, 1989.
S. K. Rao, “Regular iterative algorithms and their implementations on
processor arrays,” Ph.D. dissertation, Stanford Univ., Stanford, CA,
1985.
Y. Wong and J. M. Delosme, “Transformation of broadcasts into
propagations in systolic algorithms,” J. Parallel Disfrib. Compuf , vol.
14, pp. 121-145, 1992.
S. Y. Kung, V U I Array Processor. Englewood Cliffs, NJ: Prentice-
Hall, 1988.

