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given k and n, one can choose any value of nz in the range from 
2 to n to construct a multiway merging network. However, use of 
certain values of m results in less delay than others for the same 
value of n .  One choice of the value of m is m = n. In this case, 
T ( k , n , n )  = T ( k )  + [log, n1 [log, k1. Other values of m, which 
can achieve this time bound for the given value of n, are m = 2‘ 
with c < [log, n1. 

We have also assumed that there are n keys in each ascending 
sequence and m divides n for simplicity and clarity of exposition. 
In general, a multiway merging network can be constructed to merge 
k sorted lists of different lengths with the ith list having n, keys 
not necessarily equal to n. One way of doing this is to construct a 
k-way merger of size n first using keys with the value of positive 
infinity to fill the difference, and then remove these positive infinity 
keys together with the comparison-exchange elements associated with 
them, resulting in a simpler k-way merging network. Thus, there are 
no restrictions on the property of n,, k, and m. 

A sorter can be constructed from k-way mergers: the keys are 
combined k at a time to form ordered lists of length k; these lists 
are merged k at a time to form ordered lists of length k 2 ,  etc., 
until all keys are merged into one ordered list. To sort k p  keys 
using the mergers requires kp-’ mergers of size 1 followed by ICp-’ 
mergers of size k followed by kp-3  mergers of size k2 followed by 
k p - 4  mergers of size k 3 ,  etc., etc. The longest path will go through 

steps. 
E::; ~ ( k ,  m, k ‘ )  = P T ( ~ )  + [log, k i  [log, m l  (Z::; [i log, k i )  

V. CONCLUSION 
The multiway merge described in this paper merges k ascending 

sequences into an ascending sequence for any integer k .  This differs 
from existing merging networks that merge only two ascending 
sequences into one. Furthermore, the k-way merge represents a 
complete generalization of the odd-even merge, when k = 2. In 
this case, it uses m small two-way mergers to merge two ascending 
sequences into one, where m  is not restricted to 2. The odd-even 
merge is a special case of the k-way merge, when k = 2 and m = 2. 
The multiway merges does not reduce the number of comparators nor 
does it reduce the delay over the odd-even merge. However, it does 
provide a comprehensive extension and generalization of the odd- 
even merge method, allowing more flexible construction of merge 
sorting networks. 

REFERENCES 

K. E. Batcher, “Sorting networks and their applications,” in AFIPS Proc. 
Spring Joint Compuf. Con$, 1968, pp. 307-314. 
K. E. Batcher, “On bitonic sorting networks,” in Proc. 19th Int. Con$ 
Parallel Process., 1990, pp. 376-379. 
D. E. Knuth, “Sorting and searching,” The Arr of Compurer Program- 
ming. Reading, PA: Addison-Wesley, 1973, vol. 3. 

Design of Efficient Regular Arrays for Matrix 
Multiplication by Two-step Regularization 

Jong-Chuang Tsay and Pen-Yuang Chang 

Abstract-A two-step regularization method in which first permutation 
sequences and then broadcast planes are selected is proposed to design 
various regular iterative algorithms for matrix multiplication. The regular 
iterative algorithms are then spacetime mapped to regular arrays, such 
as mesh, cylindrical, two-layered mesh, and orbital arrays. The proposed 
method can be used to design regular arrays with execution time of less 
than N (problem size). 

Index Terms- Broadcast, cylindrical array, mesh array, orbital ar- 
ray, parallel algorithm design, permutation sequence, propagation, two- 
layered mesh array, VLSI architecture 

I. INTRODUCTION 
The topic of designing 2-D regular arrays for matrix multiplication 

has been studied for over a decade. Most existing designs are based 
on the well-known sequential algorithm of C = A x B (A, B ,  C 
are all N x N matrices). These include, in chronological order, the 
hexagonal array (with execution time on the order of 5N) proposed 
by Kung and Leiserson [ 11, the mesh array (3N) proposed by Kung 
[2], the hexagonal array (3N) of Li and Wah [3], the orbital array 
(N) of Porter and Aravena [4], the cylindrical array ( 2 N )  of Porter 
and Aravena [ 5 ] ,  the two-layered mesh array ( 2 N )  of Kak [6], and 
the cylindrical array, two-layered mesh array, and mesh array (y) 
proposed by Tsay and Chang [7]. Other designs are based on the 
Winograd algorithm. These include the mesh array (y) proposed 
by Jagadish and Kailath [8] and the two-layered mesh array (y) 
presented by Benaini and Robert [9]. 

Some of the regular array designs based on C = A x B were 
proposed in a rather ad hoc fashion. Although they are derived 
from the same sequential algorithm, no one has ever written regular 
iterative algorithms (RIA’s) [lo] for all of them and stated the 
relationship between them. To derive these RIA’s in a unified way, 
in this paper we propose a two-step regularization method: in the 
first step a permutation sequence is selected for each index and 
in the second step a broadcast plane is selected for each variable. 
Then, by spacetime mapping, various regular arrays can be designed. 
Furthermore, with knowledge of the derivation of these RIA’s, regular 
arrays with execution time of less than N ,  faster than any other 
designs we know of, can be obtained. 

This paper is organized as follows: Section I1 presents some 
preliminary definitions. In Section 111, the two-step regularization 
method is proposed. Using this method, we can design RIA’s in 
a unified manner for mesh arrays, cylindrical arrays, and two-layered 
mesh arrays. In Section IV, we design regular arrays with execution 
time approaching and then equal to N .  Section V studies orbital array 
derivations with execution time of less than N .  Finally, concluding 
remarks are presented in Section VI. 
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Fig. 1. (a) Multiple fan-in, broadcast point, and broadcast line. (b) Multiple 
fan-out, broadcast point, and broadcast line. (c) Transformation of broadcast 
vectors to propagation vectors. 

11. PRELIMINARY DEFINITIONS 
In this section, we give some preliminary definitions as a basis for 

the descriptions that follow. The permutation sequences introduced 
here are useful for determining which data will appear in which posi- 
tion and for constructing the various types of links between nodes in a 
dependence graph (DG) [ 101-a graphical representation of an RIA. 

Definition 2.1: A permutation sequence P ( 1 ,  N )  = ( p (  l ) ,  
p (  2), . . . , p (  N) ) is a sequence of integers resulting from permuting 
the sequence ( 1 , 2 , .  . . , N). The ith element in P is denoted by p ( i ) ,  
where 1 5 i 5 N .  

By observing the types of links in various regular arrays, we 
define four types of permutation sequences. They are the increasing 
sequence, for horizontal (or vertical) links, the left-shift sequence, for 
spiral links, and the even-odd and odd-even transposition sequences, 
for diagonal links. 

Definition 2.2: A permutation sequence U (  1, N )  = (U ( l ) ,  
u ( 2 ) , . - .  , i i ( N ) )  is an increasing sequence if the ith element in 
U is u ( i )  = i ,  where 1 5 i 5 N .  

Definition 2.3: A permutation sequence L( i ;  1, N )  = (Z,( l ) ,  
Z,(2),. . .  ,Zt(LV)) is a left-shift sequence if it is formed from 
shifting the sequence (1 ,2 ,  . . . , N)  left cyclically i times, where 
0 5 i 5 N-l .The  jthelement in L isZ,( j )  = ( i + j - l ) m o d , ~ + l ,  
where 1 5 j 5 N .  

Definition 2.4: A permutation sequence E ( i ;  1 , R )  = ( e t ( l ) ,  
e ,  (2) ,  . . . , e ,  ( N )  ) is an even-odd transposition sequence if the j t h  
element in E is 

j - i ,  i f i + j  iseven A j > i  
i - j + l ,  if i + j is even A j 5 i 

i f i + j  isodd A i + j < N  { 2 N + l - i - j ,  i f i + j  isodd A i + j > i V  

e * ( j ) =  i + j ,  

where 0 5 i 5 N - 1 and 1 5 j 5 N .  
Definition 2.5: A permutation sequence O( i ;  1, = 

(0, ( l ) , ~ ,  (2) ,  . . . , 0, ( N ) )  is an odd-even transposition sequence if 
the j t h  element in 0 is 

i + j ,  
2 N + l - i - j ,  i f i + j  iseven A i + j > N  

if i + j is even A i + j 5 

i f i + j  isodd A j > i  { i - j + l ,  i f i + j  isodd A j < i  

o , ( j )  = - i, 

where 0 5 i 5 N - 1 and 1 5 j 5 N .  
The multiple fan-in (Fig. ](a)) and multiple fan-out (Fig. l(b)) 

data dependence vectors are called broadcast vectors. All broadcast 
vectors can be systematically transformed into propagation vectors 

' t w  

0 a 0 

0 a 

Fig. 2. The execution time t ,  = t ,  + t ,  + t o  

(e.g., Fig. I(c)) [ l  11. We use the term broadcast point to denote the 
starting position for data propagation. A broadcast line is composed 
of several broadcast points. By aggregating broadcast lines, we obtain 
a broadcast plane. 

The execution time ( t e )  of a regular array is defined as the time 
interval between the time when the first operation is executed and 
the time when the last result is calculated. t ,  can be decomposed 
into three parts: the queuing time ( t 4 ) ,  the waiting time (tw), and the 
operating time ( t o )  (Fig. 2). t ,  is the time interval between the time 
execution begins and the time when ZN,N arrives at position a.  t,, 
is the time interval between the time when ZN,N leaves position a 
and the time when I N , N  arrives at position b ;  this time is incurred 
because ZN,N must wait to meet another datum at the first P E .  t ,  is 
the time interval between the time when S N , N  leaves position b and 
the time when Z N , . ~  arrives at position e; in this time interval, x.rv .iv 
actually operates with other data. 

111. TWO-STEP REGULARIZATION 
The matrix multiplication can be carried out in N recursions, as 

Algorithm 3. I: 
described in Algorithm 3.1. 

For i = 1 to N 
For j = 1 to N 
For IC = 1 to N 

initially e,,, = 0. 
Before the selection of a permutation sequence for each index, we 

must fully index all variables [12]. This can be done by substituting 
a,( i ,  j ,  k ) ,  b ( i ,  j ,  k), and c ( i ,  j, IC) for az ,k ,  bk,J, and et,J, respectively, 
in Algorithm 3.1. Let p1 (a), p z  (b ) ,  and p 3  (7 )  denote the permutation 
sequences for indexes i ,  j ,  and IC, respectively, where a, P ,  7 are 
functions of ( i , j ,  IC). Then Algorithm 3.1 can be rewritten as follows: 

For all indices ( i ,  j ,  k ) ,  1 < i , j ,  k 5 N, do 

C Z , J  = C z , j  a z , k  X b k , j  

Algorithm 3.2: 

c ( i , j , k ) = a ( i , j , k )  x b( i , j , k )  
4 i 3 j .  k )  = a p l ( e ) , p 3 ( , )  

b ( i , j ,  k) = b p 3 ( 7 ) , p 2 ( 0 )  

Final results e p ~ ( a ) , p ~ ( 8 )  = c ( i , j , l ) + . . . + c ( i , j , N )  . 
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Fig. 3. Mesh array of Design mm1 (JT = 4). 

A. Step I :  Select Permutation Sequence f o r  Each Index 

A selection of p l ( n ) ,  p z ( ; 3 ) ,  and p 3 ( 7 )  is said to be correct if 
the final results of Algorithm 3.2 are correct for calculating matrix 
multiplication, i.e., if C ~ I ( ~ ) , ~ ~ ( , ~ )  = a p l ( n ) , l  x b l , p ~ ( i 3 )  + . . . + 
a p l ( n ) , N  x bN,pz ( ,9 ) ,  V p l (o ) ,  p 2 ( d ) .  Thus, the simplest way to 
select p 3 ( 3 )  is to let p 3 ( 3 )  = u ( k )  = k .  The selection of p l ( n )  
and p 2  (;3) is based on the types of links (e.g;, horizontal, vertical, 
spiral, or diagonal) given by the regular array that is to be designed. 
Horizontal or vertical links correspond to the increasing sequence; 
spiral links correspond to the left-shift sequence; and diagonal links 
correspond to the even-odd (or odd-even) transposition sequence. 

For example, a mesh array has only horizontal and vertical links, 
so we select u ( i ) ,  u ( j ) ,  and ~ ( k )  for p ' ( a ) ,  p 2 ( i 3 ) ,  and p 3 ( 7 ) ,  
respectively. Then we obtain Algorithm 3.3. It is easy to see that 
the selection is correct, because Algorithm 3.3 can correctly perform 
matrix multiplication. 

For all indices ( i ,  j ,  k) ,  1 5 i ,  j ,  k 5 N ,  do 
Algorithm 3.3: 

c ( i , j , k )  = a ( i , j . k )  x b ( i , j . k )  
a ( i ,  j, k )  = a , . k  

b ( i , j ,  k )  = bk.] 
finalresults = c ( i , j , l ) + . . . + c ( i , j , N )  . 

Another example is a cylindrical array, which has two types of 
links. For the first type, the horizontal links, we select the increasing 
sequence. For the second, the spiral links, we select the left-shift 
sequence. Thus, we select u ( i ) ,  l t - l ( j ) ,  and u ( k )  forpl(Cy), p 2 ( $ ) ,  
and p 3  (7  ), respectively. The result is Algorithm 3.4. 

For all indices ( i ,  j ,  k ) ,  1 5 i ,  j ,  k 5 N ,  do 
Algorithm 3.4: 

c ( i ,  j, 1) = a ( i ,  j ,  k )  x b ( i .  j ,  k )  
a ( i ,  j ,  k )  = nr.k 
b ( G j ,  k )  = b k , ~ , - ~ ( J )  

final results = c ( i ,  j ,  I )  + .. .  + c ( i ,  j , A V ) .  

B. Step 2: Select Broadcast Plane f o r  Each Variable 

Various broadcast planes can be selected depending on the con- 
straints of YO bandwidth, YO port location, supported hardware and 
so forth of a regular array. Then, broadcast vectors are transformed 
into propagation vectors by the method proposed in [ll]. Finally, 
spacetime mapping is applied to derive regular arrays. From Algo- 

rithm 3.3, if the U 0  ports of the regular array are confined at boundary 
PE's, then the broadcast planes j = 1,  i = 1,  and k = 1 are selected 
for variables a, b, and e, respectively. For the variable a, we have 
a ( i ,  j , k )  = a ( i , I , k ) ,  v 2  5 j 5 and a ( i ,  1 , k )  = n z . k .  It is 
easy to replace the broadcast vectors [0 I 01, 1 5 1 5 N - 1,  
by the propagation vector [0 1 01. Then we have the recurrence 
equation a ( i ,  j + 1 ,  k )  = a ( i ,  j ,  k ) .  Applying the same method to 
variables b and c, we obtain Algorithm 3.5. The correctness of an 
RIA can be checked by resubstituting initial values into the recurrence 
equations and calculating the final results. That is, if cZ.) is equal to 
a , , ~  x b l , ]  + ... + a , , N  x b!Y,,, for 1 5 i , j  5 N, then the RIA 
is correct. It is easy to prove that Algorithm 3.5 is correct. A mesh 
array (Fig. 3) can be derived by projecting Algorithm 3.5 in the k -  
direction. This well-known mesh array was devised by Kung in [2]. 
We call this Design mm 1.  Its execution time is t ,  = t ,  + t ,  + to = 
(Ai - 1) + ( N  - 1 )  + ( n r )  = 3 N  - 2 .  

Algorithm 3.5: 
For all indices ( i ,  j ,  k ) ,  1 5 i .  j ,  k 5 N, do 

c ( i ,  j ,  k + 1 )  = c ( i ,  j ,  k )  + n ( i ,  j ,  k )  x b ( i ,  j ,  k )  
a(  i ,  j + I, k )  = a ( i ,  j ,  k )  
b ( i  + 1, j ,  k )  = b ( i ,  j ,  k )  

initial values 
c ( i , j ,  1 )  = 0 
a ( i ,  1, k )  = a r . k  

b( 1 ,  j ,  k )  = bk,]  
final results et,, = c ( i ,  j ,  N + 1 ) .  

Again, with Algorithm 3.3, if the YO ports of the regular array are 
located at the diagonal PE's, then the broadcast plane i = j is selected 
for both variables a and b. Thus, we have broadcast vectors [0 I 01 
forthevariablea, with 1 5  I5  N - 1  if i 5 j and 1 - N  5 I <  -1  
if i 2 j ,  and [ I  0 01 for the variable b, with 1 5 I 5 N - 1 if 
i 2 j and 1 - N 5 1 5 -1  if i 5 j .  In this way, we decompose 
the computation domain into two phases: i 5 j and i 2 j. In the 
i 5 j phase, the propagation vectors of variables a and b are in the 
[0 1 01 and [-1 0 01 directions, respectively. In the i 2 j phase, 
the propagation vectors of variables a and b are in the [0 -1 01 and 
[ l  0 01 directions, respectively. Finally, we obtain Algorithm 3.6. 
By projecting this algorithm in the k-direction, we obtain a mesh 
array (Fig. 4), which we call Design " 2 .  Its execution time is 
t ,  = t ,  + tu, + to  = (Ar - 1) + 0 + ( N )  = 2 N  - 1.  An alternative 
way to calculate t ,  is by the two-phase linear schedule proposed in 
~71. 

Algorithm 3.6: 
[Phase I ] :  i 5 j 
For all indices ( i ,  j ,  k ) ,  1 5 i, k 5 N ,  i 5 j 5 N, do 

c ( i ,  j , k  + 1 )  = e ( i ,  j ,  k )  + a ( i ,  j ,  k )  x b ( i ,  j ,  k )  
a ( i ,  j + 1 ,  k )  = a ( i , j ,  k )  
b ( i  - 1, j ,  k )  = b ( i ,  j ,  k )  

[Phase 21: i 2 j 
For all indices ( i ,  j ,  k ) ,  1 5 i .  k 5 N ,  1 5 j 5 i ,  do 

c ( i ,  j , k  + 1 )  = c ( i ,  j , k )  + a ( i ,  j , k )  x b ( i , j , k )  
n ( i ,  j - 1 ,  k )  = a ( i ,  j ,  k )  
b ( i  + 1. j ,  k )  = b ( i ,  j ,  k )  

c ( i ,  j, 1 )  = 0 
initial values 

a ( i ,  i, k) = a * , k  

b ( j t j 3  k )  = bk,J 
final results 

For Algorithm 3.4, if the YO ports are confined at the boundary 
PE's, then we select the broadcast plane j = 1 for both variables a 
and b and the ( k  = 1)-plane for the variable c. For the variable b, from 
b ( i ,  j ,  k )  = b k , l , - l ( , )  in Algorithm 3.4 and the broadcast planej = 1, 
we can derive recurrence equations b ( i  - 1 , j  + 1 , k )  = b ( i ,  j , k )  

= c ( i ,  j ,  N + 1 ) .  
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b41 
b3 1 
b21 
bl1 

a14 b41 b42 a24 a34 b43 b44 a44 
a13 b31 b32 a23 a33 b33 b34 a43 
a12 b21 b22 a22 a32 b23 b24 a42 
a l l  bll bl2 a21 a31 b13 b14 a41 

Fig. 4. Mesh array of Design mm2. Fig. 6. Two-layered mesh array of Design mm4. 

Fig. 5. Cylindrical array of Design "3. 

from b ( i  - 131 + 1 , k )  = b t  i t - 2 ( j + ~ )  = b k , l , - , ( j )  = b ( i , j , k )  and 
b ( N , j  + 1 , k )  = b ( L j , k )  from b ( N , j  + L k )  = b k , t N - l ( 3 + 1 )  = 
b k , [ & )  = b ( l , j ,  k ) .  Combining these recurrence equations with 
b ( i ,  1, k )  = b k , [ % - l ( l ) ,  we have Algorithm 3.7. By projecting this 
algorithm in the k-direction, the cylindrical array proposed in [ 5 ]  is 
obtained (Fig. 5 ) .  We call this Design mm3. Its execution time is 
t ,  = t ,  + t ,  +to  = ( N  - 1 ) + 0 +  ( N )  = 2N - 1. 

c ( i , j , k  + 1) = c(i,j,IC) + a ( i , j , k )  x b ( z , j , I C )  
u ( i , j  + 1, I C )  = a ( i , j ,  k )  

Algorithm 3.7: 
For all indices ( i , j , k ) ,  1 5 i , j ,  k 5 N ,  do 

b ( i  - 1,j  + 1, k )  = b ( i , j ,  k )  if i # 1 
b ( N , j  + 1 , k )  = b ( i , j , k )  if z = 1 

initial values 
c ( i , j ,  1)  = 0 
a(i7 1, k )  = a z , k  

b ( i ,  1, k )  = b k , i % - l ( l )  

final results c ~ , ~ , - , ( ~ )  = c ( i , j ,  N + 1). 
The two-layered mesh array proposed in [6] can be designed by 

letting $ ( c y )  = o % - ~ ( j ) ,  p z ( ( p )  = e z - l ( j )  and p 3 ( 7 )  = u ( k )  
and choosing the broadcast plane i = 1 for variables a and b 
and the (IC = 1)-plane for the variable c. It is not difficult to 
derive Algorithm 3.8. By projecting this algorithm in the k-direction, 
we obtain a two-layered mesh array (Fig. 6) with execution time 

Fig. 7. Two-layered mesh array of Design mm5. 

t ,  = 2IV - 1. We call this Design mm4. Furthermore, if the same 
permutation sequences but the broadcast plane i = are selected 
for variables a and b, a two-layered mesh array with execution time 
t ,  = r-1 can be obtained (Fig. 7). We call this Design "5.  
It has been proposed in 171. 

Algorithm 3.8: For all indices ( i , j ,  k ) ,  1 5 i ,  j ,  k 5 N ,  do 

c ( i , j ,  k + 1) = c ( i ,  j ,  k )  + O ( i , j ,  k )  x b ( i , j ,  k )  
a ( i - l , j - l , k ) ,  i f i + j  iseven A j # 1  
a ( i - l , j + l , k ) ,  i f i + j  isodd A j # N  
a( i  - Lj ,  k ) ,  if i + j is even A j = 1 
a( i  - l ,j,  k ) ,  i f i + j  isodd A j = N  
b ( i - l , j - - l , k ) ,  i f i + j  isodd A j # 1  
b ( i - - l , j + l , k ) ,  i f i + j  iseven A j # N  
b( i  - 1,  j, k) ,  i f i + j  isodd A j = l  
b ( i  - Lj, k ) ,  if i + j is even A j = N 

{ 
{ 

a ( i , j ,  k )  = 

c ( i , j ,  1) = 0 

a ( l , j ,  k )  = a 3 . k  

b ( ? , j ,  k )  = 

initial values 

b ( l , j ,  k.) = b k , ,  

final results c o t - l ( J ) , e ~ - l ( J )  = c ( i , j , N  + 1) .  

IV. ARRAYS WITH EXECUTION TIME APPROACHING N 
In the previous section, each variable has only one broadcast plane 

in the computation domain. If the given regular array has more U0 
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Fig. 8. The eight regions of the computation domain of matrix multiplica- 
tion. 

ports, then we can let a variable have more than one broadcast 
plane. That is, we let each variable have different broadcast planes 
in different regions of the computation domain. Then we can design 
regular arrays with execution time approaching or equal to N .  

The computation domain of matrix multiplication can be divided 
into eight regions (Fig. 8). For simplicity, we assume N is an even 
number and define il 3 1 5 i 5 $, i 2  = + + 1 5 i 5 N ,  
j1  = 1 5  j 5 $ , j 2  1 5  k 5 $, 
and k 2  = $ + 1 5 k 5 N .  These eight regions are then denoted 
by 1111 = il A j1  A kl (region l), 1112 = i l  A jl A k2 (region 
2), 1121 il A j 2  A k l  (region 3). 1122 = il A j 2  A k2 (region 
4), 1211 = i z  A jl A k l  (region 5) ,  1212 i 2  A j l  A k 2  (region 6), 
1221 i z  A j 2  A k l  (region 7), and 1222 ZE i 2  A j 2  Akz (region 8). The 
broadcast plane in a region for a variable is denoted by, for example, 
1 1 1 ~ 1 ,  which implies il A j 1  A (j = 1 )  A h ,  when the ( j  = 1)-plane 
is selected for the broadcast plane in region 1. 

For Algorithm 3.3, let the smallest possible values of i, j, and 
k be chosen as the broadcast planes for variables b, a, and c, 
respectively, in regions 1, 4, 6, and 7 (the shaded regions in Fig. 8). 
For example, 11 1 1 11 11 A (j = 1 )  for the variable a in region 1, 
and 1 ~ ~ 1 2  = 1212 A (i = $ + 1 )  for the variable b in region 6. Then 
the variable a has broadcast planes 1 1 1 ~ 1 .  1 1 2 ~ 2 ,  1 2 1 ~ 2 ,  and 1 ~ 2 ~ 1 ,  

and the variable b has Ilgll, 1 1 ~ 2 2 ,  1 ~ ~ 1 2 ,  and 1 ~ ~ 2 1 .  

Since a, ,k  and bk,, are input in regions 1 , 4 , 6 ,  and 7, the remaining 
regions obtain these input data from propagation vectors. That is, 
region 3 (and 8) obtains the input data at,k of region 1 (and 6) from 
the propagation vector [0 1 01. This vector can be carried out by the 
recurrence equation u ( i , j , k )  = u ( i , j  - 1 , k ) .  But region 2 (and 5) 
gets u,,k of region 4 (and 7) from the propagation vector [O - 1  01. 
In regions 2 and 5, in order to ensure that every U z , k  meets with its 
respective b k , l ,  a new variable a1  is introduced to carry U z , k .  a l ,k  
carried by a 1 is moved leftward, reflected on 11 1 B 2  V 1 2 1  1, and then 
moved rightward to meet with bk, l .  Hence, new recurrence equations, 
a l ( i , j , k )  = az,k if 1 1 2 ~ 2  V 1 2 2 B 1 ,  a l ( i , j , k )  = a l ( i , j  + l , k ) ,  
and u ( i , j , k )  = u l ( i , j , k )  if 1 1 1 ~ 2  V 1 2 1 ~ 1 ,  are added to propagate 
a, k in regions 2 and 5. Similarly, for the variable b, we can derive 
recurrence equations b l ( i , j ,  k) = bk,, if 12,12 V 1 2 B 2 1 ,  b l ( i , j ,  k) = 
b l ( i  + l , j ,  k ) ,  and b ( i , j ,  k )  = b l ( i , j ,  k) if 1 1 ~ 1 2  V 1 1 ~ 2 1 .  

In regions 1 , 2  (denoted by 1 1 1 )  and regions 7, 8 ( 1 2 2 ) ,  the variable 
c satisfies c ( i , j , k  + 1 )  = c ( i , j , k )  + a ( i , j , k )  x b ( i , j , k )  with 
c ( i , j , l )  = 0. However, in regions 3, 4 (112) and regions 5, 6 
(IzI), c ( i ,  j, $ + 1) is computed first, followed by the sequence 
~ ( i ,  j, $ + 2), ~ ( i ,  j, $ + 3), . . . , c ( i , j ,  N ) ,  ~ ( i ,  j, l), . . ., ~ ( i ,  j ,  $). 
To unify these two different recurrence equations for calculating the 
variable c in 111,  1 2 2  and 112,  121 ,  we introduce the binary operator 
$, i $ j  = ( i + j - l ) m o d ~ + l ,  1 5 i , j  5 N .  (Similarly, e, iej 
( i - j - l ) m o d ~ + I r  15 i , j  5 N.)Then therecurrenceequation for 
thevariable c becomesc(i , j ,k$l)  = c( i , j ,  k ) + a ( i , j ,  k ) x b ( i , j , k ) ,  
which is applied in all regions of the computation domain. Finally, we 

$ + l  5 j 5 N, kl 

b22 t4l 
b21 bl2 b43 b34 
bl 1 8 b33 8 

a44a438- 41 

Fig. 9. Mesh array of Design “6. 

obtain Algorithm 4.1. A mesh array (Fig. 9) is obtained by projecting 
this algorithm in the k-direction. We call this Design “ 6 .  

Algorithm 4.1: For all indices ( i , j , k ) ,  1 5 i , j , k  5 N, do 

c( i , j ,  k @ 1 )  = c ( i , j ,  k )  + u( i , j ,  k) x b ( i , j ,  k) 

u l ( i , j ,  k) = u l ( i , j  + 1, k )  

The execution time of Design m m 6  is t ,  = t ,  + t ,  + to = 
($ - 1 )  + ($ - 1 )  + N = 2 N  - 2.  Comparing Design m m 6  
(Fig. 9) with its counterpart Design mml (Fig. 3), we see that the 
execution time has been reduced from 3N - 2 to 2 N  - 2 ,  although 
the VO bandwidth has been doubled. 

The same design criteria can be applied to the other designs in 
the last section. For example, we apply this idea to Design “ 5 .  
If the VO bandwidth is 2N ( 4 N ,  8 N ,  16N,. . .), then the execution 
time becomes t ,  (y, y, z,. . .). The extreme case is that 
where the VO bandwidth becomes N 2  (or U and b reside in each 
PE initially), in which case the execution time is N .  We call this 
Design m m 7  (Fig. 10(a)). The RIA for design m m 7  is depicted in 
Algorithm 4.2. 

Algorithm 4.2: For all indices (i,j ,  k), 1 5 i, j, k 5 N, do the 
calculations on the bottom of the next page. 

Notice that in this algorithm the value of an input variable is 
assigned as zero if its index is located outside the computation 
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a l ( i - l , j + l , k ) ,  i f i + j  isodd A j # N  
a l ( i  - 1 ,  j ,  k ) ,  if i + j is even A j = 1 
a l ( i  - 1 ,  j ,  k), i f i + j  isodd A j = N  
b l ( i - 1 , j - l , k ) ,  i f i + j  isodd A j # l  
b l ( z - l , j + l , k ) ,  i f i + j  iseven A j # N  
bl(2 - l , j , k ) ,  i f i + j  isodd A j = l  

c i l ( i ,  j ,  k) = 

b l (  i ,  j ,  k )  = 
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A k z i  ' 

Fig. 11. Orbital array of Design " 8 .  

Fig. 10. Two-layered mesh array of Design mni7 and its snapshots. 

domain. Snapshots of Design mm7 are shown in Fig. 10(a)-(d). 
For example, c4.2 is computed at PE2.3. First, 0 4 . 2  and b2,2 meet 
when t = 1;  then when t = 2, (14.3, b 3 2  and a4.1, b1.2 arrive at 
PE2.3 simultaneously. Note that two copies of the multiplier and 
accumulator are necessary in that PE. Then, 04,4 and b4.2 arrive at 
PE2.3 when t = 3. Finally, the results in these two accumulators 
are added to obtain the final result of c4.2. Comparing Design mm7 
and the orbital array in [4], we see that although both of them have 
execution time N ,  the former has the advantage that spiral links are 
not necessary. 

Porter and Aravena proposed an orbital array [4], yet they designed 
it in an ad hoc fashion. Designing an algorithm for an orbital array 
can be done by selecting the permutation sequences pl(cy) = ~ ( i ) ,  
p z  (,!? ) = U ( ), and p 3  ( y) = U ( k )  and selecting the broadcast point 
k = Z t - l ( j )  for all variables, so that we have a ( i ,  j , k )  = a z , k r  
b ( i , j , k )  = bk ,, and c ( i , j , k )  = 0 if k = l z - l ( j ) .  The orbital links 
are constructed by using the G? and E- operators. Thus we obtain 
Algorithm 4.3. By projecting this algorithm in the k-direction, we 
produce an orbital array (Fig. 11). We call this Design "8. Its 
execution time is t ,  = t ,  + tu, + to  = 0 + 0 + N = N .  

Algorithm 4.3: For all indices ( i ,  j ,  k), 1 5 i ,  j ,  k 5 N ,  do 

c ( i ,  j ,  k 6 1 )  = c ( i ,  j ,  k )  + a ( i ,  j ,  k )  x b( i ,  j ,  k )  

a ( i ,  j @ 1,  k) = a ( i ,  j ,  k) 

b ( i  1 ,  j ,  k )  = b ( i ,  j ,  k )  

initial values 
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Fig. 12. Bidirectional orbital array of Design mm9 

initial values 

a(z, j , k )  = az,k  
c ( i , j , k ) = O  

b ( i , j ,  k) = bk., 
if k = Zz-l(j) } 

final results = c( i ,  j ,Zz- l ( j ) ) .  

v. ARRAYS WITH EXECUTION TIME LESS THAN 
To the best of our knowledge, is the minimal execution time 

achieved to date for calculating matrix multiplication on a 2-D regular 
array. In this section, two orbital array derivations with execution 
time of $ are proposed. 

The first array is obtained by expanding the uni-directional orbital 
array into a bidirectional one (Fig. 12). We call this Design “ 9 .  
In this design, two copies of the multiplier and accumulator are 
necessary in each PE. The RIA for Design m m 9  is depicted in 
Algorithm 5.1. The execution time of Design m m 9  is t ,  = t ,  + 
t ,  + to = 0 + 0 + +l.  The extra time step 
is for adding the results in the two accumulators of each PE. 

c l ( i ,  j, k 6 1) = c l ( i ,  j. k) + a l ( i ,  j ,  k) x b l ( i ,  j, k) 
a l ( i ,  j 6 1,  k )  = al( i ,  j ,  k) 
b l ( i  6 1, j ,  1) = b l ( i ,  j ,  k )  
c2(i ,  j , k  @ 1) = c2(i, j. k) + a 2 ( i , j ,  k )  x b2(i, j ,  k) 
a2( i ,  j 9 1, k) = a ( i ,  j, k )  
b2(i 6 1,  j, k )  = b( i ,  j ,  k) 

+ 1 = 

Algorithm 5.1: For all indices ( i ,  j, k), 1 5 i ,  j ,  k 5 N, do 

initial values 

a l ( i ,  j , k )  = a2( i ,  j , k )  = az,k 
c l ( i , j , k )  = c 2 ( i , j , k % l )  = O  

b l ( i ,  j, k )  = b 2 ( i ,  j ,  k )  = bk,, 
if IC = Z2-l(j) 1 

final results e,,, = c l ( i ,  j . l t - l ( j )  e + c2(i, j ,zZ-1(j)  e 
Yet another new design for a 2-D regular array with execution 

time of about is to let four pairs of input data a and b,  az,k, bk,,, 

stay in each PE,,, on a unidirectional orbital array initially, where 
1 5 i ,  j, k 5 and IC = Zt-l(j). The advantage of this arrangement 
is that two multiplications, az.k x b k , ,  and a,,k+% x bk++,,, in PE,, j  
for cz ,) are computed at the same time. The same condition occurs on 
c2,,++ ci+%,,, and C ~ + % , ~ + % .  Since computing each c z , j  requires 

[vi). 

a t . k + $ 3  ‘k+$,j 1 ‘ t i +  , k ?  ‘k,3+% 9 and ‘ z+$! .k+f;  ,bk+$ x j + $  

a23 b32 

a41 b12 

b k j  

bk ja 2 

ai++,k 

a ik+-N 
2 

bki-$j 

bk+lj+N 
2 2  

a i+E,k+E 
2 2  

(b) 

Fig. 13. (a) Orbital array of Design mmlO. (b) The function of each PE. 

N multiplications of a and b and each time two of them can be done, 
the execution time is t ,  = g + 1. The extra time step is for adding 
the results in the two accumulators of PE,,, for each c2,). 

From the DG viewpoint, the above design criteria are the first to 
cut the DG of Algorithm 4.3 into eight regions (Fig. 8), pile all of 
these eight regions into region 1, and finally project this new DG in 
the k-direction. 

The RIA for this array can be derived by modifying Algorithm 
4.3. First, the index ( i , j , k )  in Algorithm 4.3 is renamed ( i ‘ ,  j‘ ,k‘) ,  
and then the index (i’, j‘, IC’) is expanded to (a, P, y, i, j, IC), where 
i‘ = a + i ,  j’ = ,!3 + j ,  1’ = y + k and i = ( i ’  - l)mod+ + 1,  
j = ( j ‘  - l ) m o d ~  + 1, k = (k’ - l ) m o d ~  + 1. The new index 
(a, P ,  y, i ,  j, k) iskvided into two parts: (a,’b’, y) and ( i ,  j, k). The 
first part (a, 8,  y)  is used to indicate which one of the multipliers 
and accumulators will be used inside a PE; the second part (i,  j, k )  
has the same effect of DG piling. In this way, we obtain Algorithm 
5.2. Note that the binary operators @ and 9 and the permutation 
sequence L are all defined for $ rather than N in this algorithm. 
Finally, by projecting the index (i, j, k) in Algorithm 5.2 in the k- 
direction, we obtain an orbital array with execution time t ,  = g + 1 
(Fig. 13(a)). The function of each PE is as shown in Fig. 13(b). We 
call this Design m m  10. 

Algorithm 5.2: For all indices (a, P,y, i, j, k), a, /3,y E (0, $}, 
1 5 i , j , k  5 $ do 

initial values 
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final results c ~ , , ~ !  = c(i’ - i ,.I ” - j  , 0 , i , j ,  Ll(j ) )  + c(i’ - i , j ’  - j ,  

where i = (if - l)mod+ + 1, j = (j’ - l)mod+ + 1. 

N . .  
~ A . L L - l ( j ) )  

VI. CONCLUSION 
We have described a unified approach, two-step regularization, to 

derive the RIA’S for matrix multiplication. The RIA’S were then 
spacetime mapped to regular arrays. These regular arrays include 
mesh arrays, cylindrical arrays, two-layered mesh arrays, and orbital 
arrays. We note that the array type relies mainly on the permutation 
sequences and broadcast planes selected in the two-step regulariza- 
tion. The methodology proposed in this paper can be used to solve 
many other problems, especially problems that can be formulated in 
matrix form, e.g., LU-decomposition, transitive closure, and algebraic 
path problem. Using this methodology, we can design even faster 
regular arrays for these problems. 
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