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a b s t r a c t

AgraphG is k-ordered if for every sequence of k distinct vertices ofG, there exists a cycle inG
containing these k vertices in the specified order. It is k-ordered-Hamiltonian if, in addition,
the required cycle is a Hamiltonian cycle in G. The question of the existence of an infinite
class of 3-regular 4-ordered-Hamiltonian graphs was posed in Ng and Schultz in 1997 [2].
At the time, the only known examples of such graphs were K4 and K3,3. Some progress was
made by Mészáros in 2008 [21] when the Petersen graph was found to be 4-ordered and
the Heawood graph was proved to be 4-ordered-Hamiltonian; moreover, an infinite class
of 3-regular 4-ordered graphs was found. In 2010, a subclass of the generalized Petersen
graphs was shown to be 4-ordered in Hsu et al. [9], with an infinite subset of this subclass
being 4-ordered-Hamiltonian, thus answering the open question. However, these graphs
are bipartite. In this paper we extend the result to another subclass of the generalized
Petersen graphs. In particular, we find the first class of infinite non-bipartite graphs that are
both 4-ordered-Hamiltonian and 4-ordered-Hamiltonian-connected, which can be seen as
a solution to an extension of the question posted in Ng and Schultz in 1997 [2]. (A graphG is
k-ordered-Hamiltonian-connected if for every sequence of k distinct vertices a1, a2, . . . , ak
of G, there exists a Hamiltonian path in G from a1 to ak where these k vertices appear in the
specified order.)

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Throughout this paper we use standard graph theory terminology as in [1]. A graph G is Hamiltonian if it contains a
Hamiltonian cycle, that is, a cycle that contains all vertices of G; a graph G is Hamiltonian-connected if, for every two distinct
vertices u and v, there exists a path between u and v containing all vertices of G, that is, a Hamiltonian path between u
and v. Clearly, if G is Hamiltonian connected, then G is Hamiltonian. If the graph is bipartite, then obviously it cannot be
Hamiltonian-connected. The corresponding concept is the following: for every two distinct vertices u and v belonging to
different partite sets, there is a Hamiltonian path between them; such a graph is called Hamiltonian-laceable.
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A graph G is called k-ordered if for any sequence of k distinct vertices of G, there exists a cycle in G containing these
k vertices in the specified order. It is k-ordered-Hamiltonian if, in addition, the required cycle is Hamiltonian in G. This
concept was introduced by Ng and Schultz [2], and the following open problem was posed: Find an infinite class of
3-regular 4-ordered-Hamiltonian graphs. (Incidentally, when the concept of k-ordered-Hamiltonian was introduced by
Ng and Schultz [2], it was simply called k-ordered. Only later did researchers use the terms k-ordered and k-ordered-
Hamiltonian as defined here.) Many papers [3–8] studied sufficient conditions for k-orderedness; in particular, Faudree [6]
provides a comprehensive survey. Recently, Hsu et al. [9] answered affirmatively the open question of whether there exists
an infinite class of 3-regular 4-ordered-Hamiltonian graphs posed by Ng and Schultz [2] by considering a subclass of the
generalized Petersen graphs. The answer given in [9] is a class of bipartite graphs. In this paper we provide an example of a
class of non-bipartite graphs. In addition, these graphs have important properties other than 4-ordered-Hamiltonian.

Similar to the concept of k-ordered-Hamiltonian, there are a number of related concepts. A graph G is k-ordered-
Hamiltonian-connected if for any sequence of k distinct vertices t1, t2, . . . , tk of G, there exists a Hamiltonian path between
t1 and tk in G containing these k vertices in the specified order. If G is bipartite, then it is k-ordered-Hamiltonian-laceable if for
any sequence of k distinct vertices t1, t2, . . . , tk of G where t1 and tk are in different partite sets, there exists a Hamiltonian
path between t1 and tk in G containing these k vertices in the specified order. Indeed, [2] posed the following question:
study the existence of k-ordered-Hamiltonian-connected graphswith small degrees. Indeed, as an extension to the question
whether there exists an infinite class of 3-regular 4-ordered-Hamiltonian graphs [2], one can ask whether there exists an
infinite class of 3-regular (bipartite) graphs that are 4-ordered-Hamiltonian and 4-ordered-Hamiltonian-laceable. Similarly,
one can ask whether there exists an infinite class of 3-regular (non-bipartite) graphs that are 4-ordered-Hamiltonian and
4-ordered-Hamiltonian-connected.

The Petersen graph is an important graph in graph theory and there are several generalizations of it. One such generaliza-
tion is the class of generalized Petersen graphs introduced by Watkins [10], which has attracted much research throughout
the years. Some recent research include [11–15]. The generalized Petersen graph GP(n, k), where 1 ≤ k ≤ (n − 1)/2, has
{ui, vi : 0 ≤ i < n} as its vertex set. There are three types of edges. The first is of the form (ui, ui+1) (with i + 1 computed
modulo n) for 0 ≤ i < n. The second is of the form (vi, vi+k) (with i + k computed modulo n) for 0 ≤ i < n. The third is
of the form (ui, vi) for 0 ≤ i < n, which will be called columns. It is clear that GP(n, k) is 3-regular. We note that the sub-
graph induced by the vertices ui, 0 ≤ i < n, form an n-cycle, and the subgraph induced by the vertices vi, 0 ≤ i < n, form
essentially a circulant graph. So GP(5, 2) is the Petersen graph. (We remark that in [12], the authors defined the GP(n, k)
for the range 1 ≤ k < n. The two definitions are equivalent except for the case k = n/2 when n is even. If n/2 < k < n,
then GP(n, k) is isomorphic to GP(n, n − k). If k = n/2, then the resulting graph is not trivalent.) One major task was to
determine which of these graphs are Hamiltonian. There were incremental results in various papers [16,17]. The complete
classification was finally solved by Alspach [18]: GP(n, k) is Hamiltonian except for GP(n, 2) for n ≡ 5(mod 6). We refer
the reader to Alspach [18] for the history, motivation and development of this problem and its solution. For the related
problem in classifying which of these graphs are Hamiltonian-connected/Hamiltonian-laceable, it is still unsolved. Alspach
conjectured over twenty years ago that if GP(n, k) is not isomorphic to GP(6m+5, 2), and n and k are relatively prime, then
GP(n, k) is Hamiltonian-connected unless it is bipartite, in which case it is Hamiltonian-laceable. We note that GP(n, k) is
bipartite if and only if n is even and k is odd. Alspach [12] commented that this condition on n and k is not well under-
stood, and further commented that this condition may bemisleading after proving that the conjecture is true for k = 1, 2, 3
although the relatively prime condition is far from necessary. The more general 4-ordered-Hamiltonian-connected result
of this paper will validate this conjecture for k = 4. At the same time, it also indicates that the relatively prime condi-
tion is somewhat misleading as Alspach has commented in [12]. We will propose a refinement of this conjecture in the
conclusion.

It turns out that the generalized Petersen graphs form a rich class of examples for the k-ordered problem. In particular,
Hsu et al. [9] proved that GP(n, 2) is not 4-ordered-Hamiltonian for every n; for n ≥ 7,GP(n, 3) is 4-ordered-Hamiltonian
if and only if n is even and either n = 18 or n ≥ 24; if n is even, then GP(n, 3) is 4-ordered-Hamiltonian-laceable if and
only if n ≥ 10; if n is odd, then GP(n, 3) is 4-ordered-Hamiltonian-connected if and only if n = 15 or n ≥ 19. We note that
the 4-ordered-Hamiltonian graphs in this class are all bipartite and they are also 4-ordered-Hamiltonian-laceable. So this
gives an infinite class of 3-regular (bipartite) graphs that are 4-ordered-Hamiltonian and 4-ordered-Hamiltonian-laceable.
In this paper we give an infinite class of non-bipartite graphs that are 4-ordered-Hamiltonian and 4-ordered-Hamiltonian-
connected. Given the result on GP(n, 3), it is natural to consider GP(n, 4). Indeed, GP(n, 4) provides a good candidate. (Note
that since n is even, GP(n, 4) is not bipartite; thus 4-ordered-Hamiltonian-connectedness is the correct measure.) We will
show that except for small n,GP(n, 4) is 4-ordered-Hamiltonian and 4-ordered-Hamiltonian-connected.

2. The main results

In this section, we determine for which n the graph GP(n, 4) is 4-ordered-Hamiltonian andwhich of them are 4-ordered-
Hamiltonian-connected. We first note that these two properties are not comparable. Clearly 4-ordered-Hamiltonicity does
not imply 4-ordered-Hamiltonian-connectedness as the latter concept only applies to non-bipartite graphs. On the other
hand, GP(20, 4) is 4-ordered-Hamiltonian-connected but it is not 4-ordered-Hamiltonian. Throughout this section we
assume that n ≥ 9. We first consider the 4-ordered-Hamiltonian-connectedness problem. We note that since GP(n, 4)
is not bipartite, this is the correct measure. Like other papers in this area such as Alspach [12], we use induction. We first
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Fig. 1. Example of a substitution. The faded vertices represent the vertices in F ′ . Notice how the colored edges are replaced by paths spanning the vertices
of F ′ .

Fig. 2. Case 11111.

have to establish the base cases. This is done by a computer verification in the next lemma. We defer the discussion of the
computer program to Section 3.

Lemma 2.1. Let n ∈ [9, 96]. Then GP(n, 4) is not 4-ordered-Hamiltonian-connected if n ∈ [9, 17]. Moreover, GP(n, 4) is
4-ordered-Hamiltonian-connected if n ∈ [18, 96].

Theorem 2.2. Let n ≥ 9. Then GP(n, 4) is 4-ordered-Hamiltonian-connected if and only if n ≥ 18.

Proof. We apply induction on n, with base cases for n up to 96 established in Lemma 2.1. Let m > 96. Assume that the
statement holds for GP(p, 4) for all p < m. Let x1, x2, x3, x4 be the four prescribed vertices in this specific order. We now
select a set of 48 vertices F = {ui, ui+1, . . . , ui+23, vi, vi+1, . . . , vi+23} forming 24 consecutive columns from GP(m, 4) such
that none of x1, x2, x3, x4 is in F . We can find such a set because of the assumption that m > 96. Without loss of generality
(for notational convenience), assume that i = 5.We also define the set F ′

= {u7, u8, . . . , u26, v7, v8, . . . , v26} ⊆ F of twenty
columns for our induction step. We use only 20 columns to form F ′, but for later cases the reason for selecting 24 columns
will become apparent.

TakeGP(m, 4) and delete the vertices of F ′, u7 through u26 and v7 through v26.We then add edges (u6, u27), (v3, v27), (v4,
v28), (v5, v29), (v6, v30), resulting in a graph, G′, isomorphic to GP(m − 20, 4). By our induction hypothesis, GP(m, 4) − F ′

is 4-ordered-Hamiltonian-connected, that is, there is a Hamiltonian path P0 between x1 and x4 containing x1, x2, x3, x4 in
the given order. To complete the induction step, we obtain a Hamiltonian path P between x1 and x4 of GP(m, 4) using
P0 by inserting the vertices u7, u8, . . . , u26, v7, v8, . . . , v26 in P0. Therefore, we consider which of the following five edges
(u6, u27), (v3, v27), (v4, v28), (v5, v29), (v6, v30) are in P0. For each of these edges that is in P0, we find a path consisting of
vertices of F ′ whose endpoints are the same as the given edge;moreover, we need to ensure that all vertices of F ′ are spanned
by the union of all these paths and that these paths are vertex-disjoint. This will give a Hamiltonian path between x1 and x4
of GP(m, 4) containing x1, x2, x3, x4 in the given order.

For example, if (u6, u27) is in C0, we find a path p1 consisting only of vertices in F ′, with endpoints u7 and u26. We can
extend our path of G′ by replacing (u6, u27) with p1 combined with the edges (u6, u7) and (u26, u27). Similarly, if (v6, v30)
is in C0, then we include a path p6 from v10 to v26 and replace (v6, v30) with path p2 and the edges (v6, v10) and (v26, v30).
Similarly the paths p3, p4, p5 replace (v3, v27), (v4, v28), (v5, v29), respectively, if necessary. Moreover, pi’s span the vertices
of F ′ and they are vertex-disjoint. So this gives a Hamiltonian path between x1 and x4 of GP(m, 4) containing x1, x2, x3, x4 in
the given order. Fig. 1 illustrates a substitution of an edge in P0 with a path. (Note: throughout the paper, each figure of this
type consists of consecutive columns in the graph where the upper vertices are the ui’s and the lower vertices are the vi’s.)

Therefore, we must consider which of the five edges are in the Hamiltonian path P0 of G′. Since each of the five edges is
either in P0 or not in P0, there are a total of 32 cases. To help keep track of these cases, we will assign a 5-digit binary code
to each case, depending on which of the edges

(u6, u27), (v3, v27), (v4, v28), (v5, v29), (v6, v30)

are in C0. The first digit corresponds to (u6, u27)with a ‘‘0’’ indicating the absence of this edge and a ‘‘1’’ indicating its presence
in C0. The second, third, fourth, and fifth digits correspond to (v3, v27), (v4, v28), (v5, v29), (v6, v30), respectively.

We now consider these 32 cases separately. Many of these cases occur in pairs that are symmetric. To be precise,
(a0, a1, a2, a3, a4) and (a0, a4, a3, a2, a1) are symmetric under reflection. We now present the solutions to the majority of
these cases in Figs. 2–16; each solution is presented in the form of a collection of replacement paths. In each figure, the top
row of vertices represents, from left to right, u7 through u26, and the bottom row of vertices represents, also from left to
right, v7 through v26. Each different path is color coded for easy reference. We note that these paths do not intersect and
they span the vertices of F ′. For cases that are symmetric, only one will be presented.
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Fig. 3. Case 11110, becomes 10111 when reflected.

Fig. 4. Case 11101, becomes 11011 when reflected.

Fig. 5. Case 11100, becomes 10011 when reflected.

Fig. 6. Case 11010, becomes 10101 when reflected.

Fig. 7. Case 11001.

Fig. 8. Case 10110.

Fig. 9. Case 10000.

Fig. 10. Case 01111.

Fig. 11. Case 01110, becomes 00111 when reflected.

Fig. 12. Case 01101, becomes 01011 when reflected.

Fig. 13. Case 01010, becomes 00101 when reflected.

Fig. 14. Case 01001.
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Fig. 15. Case 01000, becomes 00001 when reflected.

Fig. 16. Case 00110.

Fig. 17. Case 00000—replace (u6, v6) with the black path.

The remaining cases to be covered are 00000, 10100, 10010, 01100, 00011, 00100, 00010, 11000, and 10001. We now
consider these cases separately. For the case concerning 00000, none of the five edges are to be replaced by paths. So P0
must contain the edges (u5, u6), (u6, v6), (v2, v6). Note that P0 contains the path u5 −u6 −v6 −v2. We now replace (u6, v6)
(in red) by a path consisting of precisely the vertices of F ′. This is shown in Fig. 17.

For the other remaining cases, we proceed as before.We have deleted the set F ′, which contains vertices of 20 consecutive
columns. Now F ′ is a subset of F in GP(m, 4). We note that G′ contains the consecutive columns {u5, v5}, {u6, v6}, {u27, v27},
and {u28, v28}. As long as we insert 20 columns in a space between two adjacent columns listed above and perform the
replacement of edges by paths with the constraint given above, the relative ordering of x1, x2, x3, x4 remains the same,
hence our induction remains valid. In the remaining caseswe insert the 20 columns between {u4, v4} and {u5, v5} or between
{u5, v5} and {u6, v6} instead of the original {u6, v6} and {u27, v27} and show that the resulting graph is similar to earlier cases.
This is the reason why we needed at least 22 consecutive columns containing none of x1, x2, x3, x4.

We begin with the case 10100. In P0, vertex v6 must have two incident edges, so P0 contains (v2, v6) and (u6, v6).
Now consider vertex u6. Since (u6, v6) and (u6, u27) are in P0, (u5, u6) is not in P0. By assumption, this case implies that
(v3, v27), (v5, v29) are not in P0 and (v4, v28) is in P0. Thus the only edges in P0 of the form (xi, yj) where x and y can be
either u or v, i ∈ {2, 3, 4, 5} and j ∈ {6, 27, 28, 29} are (v2, v6) and (v4, v28). This is equivalent to inserting our columns
of F ′ between columns {u5, v5} and {u6, v6} for the case 01010, so we are done. We now note that 10010 is a reflection of
10100, so it is done by symmetry. (This is the reason to ensure that we have 24 consecutive columns containing none of
x1, x2, x3, x4.)

For case 01100,wenote that (u5, u6) and (u6, v6)must be in P0 by considering u6. So (v2, v6) is in P0.We cannowconclude
that the only edges in P0 of the form (xi, yj) where x and y can be either u or v, i ∈ {2, 3, 4, 5} and j ∈ {6, 27, 28, 29} are
(u5, u6), (v2, v6), (v3, v27), (v4, v28). Therefore we may insert F ′ between columns {u5, v5} and {u6, v6} for the case 11110.
We now note that 00011 is a reflection of 01100, so it is done by symmetry.

For case 00100, we see that (u5, u6) must be in P0 by considering u6. Now from v6, we see that (v2, v6) must be in P0.
Thus we may insert F ′ between columns {u5, v5} and {u6, v6} as in case 11010. We now note that 00010 is a reflection of
00100, so it is done by symmetry.

Finally for case 11000, we see that (u6, v6) and (v2, v6) must be in P0 by considering v6. Then since (u6, v6) and (u6, u7)
are in P0, (u5, u6) cannot be in P0, so (u4, u5) and (u5, v5) must be in P0. Now consider v5 to conclude that (v1, v5) must also
be in P0. Thus, we insert F ′ between columns {u4, v4} and {u5, v5}, leaving us with case 11110. We now note that 10001 is a
reflection of 11000, so it is done by symmetry.

This completes the proof. �

Obviously, Theorem2.2 implies thatGP(n, 4) is Hamiltonian-connected for n ≥ 18. This togetherwith a computer search
for n ∈ [9, 17] gives the following result.

Corollary 2.3.1 Let n ≥ 9. Then GP(n, 4) is Hamiltonian-connected if and only if n ≠ 12.

We note that Corollary 2.3 verifies that Alspach’s conjecture for k = 4 is correct as 12 and 4 are not relatively prime.
However, it also shows that the relatively prime condition is far from necessary.

We now turn our attention to the 4-ordered-Hamiltonicity for GP(n, 4). As before, we start with the following computer
verified result, and we will defer the discussion to Section 3.

Lemma 2.4. Let n ∈ [9, 96]. Then GP(n, 4) is not 4-ordered-Hamiltonian if n ∈ [9, 17] and n = 20. Moreover, GP(n, 4)
is 4-ordered-Hamiltonian if n ∈ {18, 19} or n ∈ [21, 96].

1 This corollary was presented as an individual result at the Forty-Second Southeastern International Conference on Combinatorics, Graph Theory and
Computing [19].
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Theorem 2.5. Let n ≥ 9. Then GP(n, 4) is 4-ordered-Hamiltonian if and only if n ∈ {18, 19} or n ≥ 21.
Proof. The proof is the same as the proof of Theorem 2.2. The initial step is given by Lemma 2.4. The induction step is exactly
as in the proof of Theorem 2.2 by replacing the Hamiltonian path P0 with a Hamiltonian cycle C0. We note that despite the
gap at n = 20, the induction step still starts atm = 97 as the induction step is applied toGP(m−20, 4) andm−20 > 20. �

3. Computer verification of initial steps

Since Lemmas 2.1 and 2.4 rely on computer programs as justification, we will now describe this approach. As in any
computer search, an existence result is easy to justify as it is unnecessary to check the details of the program as long as the
existence of the desired object, in this case, a Hamiltonian cycle/path with restriction, is given, and the condition can be
easily verified.

We first consider Lemma 2.1. For n ∈ [18, 96], for every four vertices x1, x2, x3, x4 in GP(n, 4), we need to find a Hamil-
tonian path between x1 and x4 containing x1, x2, x3, x4 in the prescribed order. The first observation is that we do not have
to consider all such 4-tuples as GP(n, 4) is highly symmetric. Let U = {ui : 0 ≤ i < n} and V = {vi : 0 ≤ i < n}. Then
it is clear that the vertices in U form a vertex-transitive class and the vertices in V form a vertex-transitive class. It is pos-
sible that for some n, the vertices in U and V form one vertex-transitive class, that is, GP(n, 4) is vertex-transitive. (Indeed,
it is known, in general, the precise condition for which GP(n, k) is vertex-transitive.) Thus, we only have to consider the
following possibilities:
(1) x1 = u0, and
(2) x1 = v0.

We note that we can further tighten the cases into (1) x1 = u0 and (2) x1 = v0 and x4 ∈ V .
We now consider Lemma 2.4. For n ∈ {18, 19}∪ [21, 96], for every four vertices x1, x2, x3, x4 in GP(n, 4), we need to find

a Hamiltonian cycle containing x1, x2, x3, x4 in the prescribed order. Again, since the vertices in U form a vertex-transitive
class and the vertices in V form a vertex-transitive class, we only have to consider the following possibilities:
(1) x1 = u0, and
(2) x1 = v0.

We note that we can further tighten the cases into (1) x1 = v0 and (2) x1 = v0 and x2, x3, x4 ∈ V .
Obviously, in the verification of Lemmas 2.1 and 2.4, one can generate all such Hamiltonian cycles/paths and use them

to verify the claim. However, the number of Hamiltonian cycle/paths increases rapidly when n increases. We considered
both depth-first search (DFS) and breadth-first search (BFS). The idea is to find a small set of Hamiltonian cycles/paths
and hope that they are enough to certify that for every x1, x2, x3, x4, there is a Hamiltonian cycle containing them in the
prescribed Hamiltonian path between x1 and x4 containing x1, x2, x3, x4 in the prescribed order. At first glance, DFS may be
ideal for this task as one can find a Hamiltonian cycle/path quickly. Then once we have foundwhat we estimate to be a large
enough number of Hamiltonian cycles/paths, we will test whether they are sufficient for all certifications. Unfortunately,
although one may be able to find a group of Hamiltonian cycles/paths quickly, there is not enough variation among them,
thus rendering them insufficient. Instead, we use BFS. Here we need a queue to store every path that we find during the
execution of the algorithm. We need to copy every path and determine the next vertex to be in the path. The number of
paths is factorially large. In fact, the space we have allocated for the queue is not large enough to store every path of BFS.
In our algorithm, the path is discarded when the queue is full. Thus, the algorithm is unable to find every Hamiltonian
cycle/path of GP(n, 4). Nevertheless, some Hamiltonian cycles/paths can be found rapidly, and fortunately, the program
found enough Hamiltonian cycles/paths to certify that for every x1, x2, x3, x4, there is a Hamiltonian cycle containing them
in the prescribed order or a Hamiltonian path between x1 and x4 containing x1, x2, x3, x4 in the prescribed order. For
example, for the graph GP(88, 4), the program found 311Hamiltonian cycles and they are enough to certify that GP(88, 4) is
4-ordered-Hamiltonian.

We now turn our attention to the negative statements asserted by the lemmas. For example, for n ∈ [9, 17] ∪ {20}, we
want to show that GP(n, 4) is not 4-ordered-Hamiltonian. Here the computer program needs to verify a negative result for
which there is no simple certificate as it is not known (and is probably unlikely) that 4-ordered-Hamiltonicity is in co-NP.
Fortunately, the graphs are small and an exhaustive search is feasible.

We will now mention the computation time. These results were verified on two computers running Windows. Each
machine has four processorswith 3GBofmemory. The computation for Lemma2.1was done in 15 days and the computation
for Lemma 2.4 was done in about 6 days. The sets of Hamiltonian cycles/paths that are sufficient to certify these results are
given in http://www.csie.dyu.edu.tw/~spring/Fourordered/index.html.

4. Conclusion

We remark that although the proof of Theorems 2.2 and 2.5 relies on a computer search, these cases (except n ≤ 12)
are positive in the sense that the program verified the existence of a Hamiltonian cycle/path with the required properties
by providing one. If one is not comfortable with using computers to verify negative results, one can simply replace these
theorems by slightly weaker statements, that is, GP(n, 4) is 4-ordered-Hamiltonian if n ≥ 21 and GP(n, 4) is 4-ordered-
Hamiltonian-connected if n ≥ 18. On the other hand, GP(n, 4) is small enough if n ∈ [9, 17] or n = 20 so that the claim is

http://www.csie.dyu.edu.tw/~spring/Fourordered/index.html
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checkable by hand using an ad hoc argument although we have not done so. (Note that even here, a computer program is
helpful as it gives us the proper x1, x2, x3, x4 to show that GP(n, 4) is not 4-ordered-Hamiltonian (connected).)

Based on the results for k = 2, 3, 4 and additional computational data, we propose the following refinement of the
conjecture of Alspach. We omit the case k = 2 as the result does not fit the pattern, whose classification is proved in [12].

Conjecture 4.1. Let k ≥ 3 be a fixed integer. Then there exists a finite set of integers S ⊆ [2k + 1, ∞) such that GP(n, k) is
Hamiltonian-connected/laceable if and only if n ∉ S. Moreover, if n ∈ S, then n and k are not relatively prime.

The conjecture does not specify S. An open problem is to classify S. In our studies, we found a subclass of GP(n, k) with
graphs that are not Hamiltonian-connected.

Proposition 4.2. Let k ≥ 3 and k be even. Then GP(3k, k) is not Hamiltonian-connected.

Proof. We claim that there is no Hamiltonian path between u0 and u2. Suppose there is a Hamiltonian path P between
u0 and u2. The subgraph induced by the vi’s form k disjoint triangles. Note that the three vertices on such a triangle must
appear consecutively on P . ConstructG′ by contracting each triangle into a vertex. Then P will become P ′, a Hamiltonian path
between u0 and u2. It is easy to see that G′ is bipartite with u0 and u2 on the same bipartition set. So there is no Hamiltonian
path between u0 and u2, which is a contradiction. �

With this result, computer data and known results, a possible classification is the following. Let k ≥ 2 and n ≥ 2k + 1.
Then GP(n, k) is Hamiltonian-connected/laceable except for the following: (1) k = 2 and n ≡ 0, 4, 5 (mod 6), (2) n = 3k
and k is even, and (3) GP(n, k) that is isomorphic to a graph in (1).

Conjecture 4.3. Let k ≥ 3 be a fixed integer. Then there exists a finite set of integers S ⊆ [2k + 1, ∞) such that GP(n, k) is
4-ordered-Hamiltonian-connected/laceable if and only if n ∉ S.

These types of problems are difficult. It took considerable effort to finally completely solve the Hamiltonian problem
for P(n, k) as given in [18]. The result can actually be extended to the case when an edge or a vertex is deleted from
the graph as given in [20]. The corresponding Hamiltonian-connected/laceable problems seem even more difficult as the
original conjecture of Alspach is still not settled after over 20 years. This would indicate that the corresponding 4-ordered-
Hamiltonian and 4-ordered-Hamiltonian-connected/laceable problem is even more difficult. We hope that the recent
paper of [9,12] and the result in this paper would lead to an eventual complete classification of P(n, k) for Hamiltonian-
connectedness/laceability, 4-ordered-Hamiltonicity and 4-ordered-Hamiltonian connectedness/laceability.
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