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Variable interdependency, referred to as linkage in genetic algorithms (GAs), has been among the most useful
information in evolutionary optimisation. With the aid of linkage information, efficient evolution can be attained
by GAs. Among variants of advanced GAs, linkages are either explicitly identified, as in perturbation-based
methods, or implicitly extracted, as in estimation of distribution algorithms (EDAs). As linkage discovery can be
considered a matter of information extraction, Shannon’s entropy, a renowned metric, has been widely adopted
in modern GAs. Despite the validation of theoretical bounds, which is not algorithm-specific, on evaluation
complexity of linkage problems, a representative population sizing model for discrete EDAs has been developed
based on the distribution of entropy measurement. On the other hand, though entropy metrics have been adopted
in recent perturbation-based methods, relevant complexity analysis on these methods is still absent. In this article,
we propose a population sizing model for a recently developed linkage identification method, called inductive
linkage identification (ILI). The proposed model takes the entropy-based classification algorithm into account
and is capable of providing an accurate estimation of population requirement. The adopted modelling approach
is different than that for discrete EDAs and may give researchers insights into entropy-based linkage discovery
approaches.

Keywords: inductive linkage identification; perturbation-based methods; building blocks; population sizing;
decision trees; genetic algorithms

1. Introduction

Genetic algorithms (GAs), as optimisation methods,

are popular for their simplicity and applicability.

Inspired by natural evolution, a GA commonly starts

with initialising a population of chromosomes which

represent candidate solutions to the optimisation

problem. Then, evolutionary operations such as

parent selection, recombination, mutation and survi-

vor selection are applied to the population to generate

offspring and to evolve the population towards better

solutions with higher fitness. These operations are

usually easy to implement. In addition to the imple-

mentation simplicity, GAs also require little or limited

problem domain knowledge and exhibit a high level

of global exploration ability. All these features enable

GAs to be widely applied in many areas, including

scheduling problems, telecommunication, robotics,

engineering design, chemistry, finance and others.
One underlying mechanism that leads to their

success is stated in the building block hypothesis

(Goldberg 1989): GAs can implicitly decompose a

problem into sub-problems via recombining promising

partial solutions, which are referred to as building

blocks. When a problem is decomposable into low

correlated sub-problems, solving each sub-problem is

more efficient than solving the whole problem.

Acquiring the information of variable interdependency

and thus separating the problem into proper sub-

problems are hence crucial to the GA performance.

To cope with this issue, early studies aimed on evolving

the recombination operators and representation of

solutions to capture the data interdependency, or

linkage, during the optimisation (Goldberg, Korb,

and Deb 1989; Kargupta 1996; Harik 1997). However,

these evolutionary processes capture linkage in a much

slower pace than the selection process and conse-

quently leads to premature convergence.

The succeeding popular algorithms can be roughly

classified into two categories: estimation of distribu-

tion algorithms and perturbation based methods

(Munetomo and Goldberg 1998).
These two categories of techniques solve the

linkage problem in different ways. The estimation of

distribution algorithms (EDAs) implicitly identify

linkages by building probability models on promising

solutions and generating new solutions accordingly,

while the perturbation based methods explicitly iden-

tify linkage by perturbing variables and observing the

induced fitness difference. Nevertheless, they both

utilise entropy related metrics to select models or
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identify linkages. As entropy related metrics assess the
impurity of a collection, the population size of these
techniques is required to be sufficient to guarantee the
correctness of the probability model or the identified
linkage. The population size has been a crucial
parameter relevant to the performance of a GA.
Along the research line of EDAs, Yu, Sastry,
Goldberg, and Pelikan (2007) proposed a general
population sizing model for entropy based discrete
estimation of distribution algorithms. Their model was
developed based on the distribution of entropy mea-
surement and took into account the selection pressure
and the variance of fitness. They proved that utilising
EDAs to solve a problem with m sets of interdependent
variables requires a �(m log m) population to guaran-
tee (1� 1/m) model accuracy. Along the research line
of perturbation based methods, Tsuji, Munetomo, and
Akama (2006) proposed the dependency detection for
distribution derived from fitness differences (D5) and
provided a recent population sizing model for pertur-
bation based methods. Though D5 adopts a clustering
technique and entropy metric in linkage identification,
its population model was developed based on the
statistics of fitness difference in the population regard-
less of the influence of entropy. The population sizing
model states that D5 requires a O(2k log ‘) population
to handle an order-k additively separable function
defined on strings of length ‘.

In this article, we propose a population sizing
model for the inductive linkage identification (ILI)
(Chuang and Chen 2007; Chen, Chuang, and Huang
2011). ILI is a perturbation-based linkage identifica-
tion method which utilises ID3 decision trees to
identify sets of dependent variables. It identifies
dependent variables by constructing a decision tree
based on the fitness differences caused by perturbing
one selected variable. The variables used as nodes in
the constructed decision tree are considered interde-
pendent. As ILI is a concise method that consists of
only the decision tree technique, the proposed popu-
lation sizing model for ILI reveals a pure relationship
between the number of training instances and the error
rate of a decision tree. This pure relationship is further
extended to provide a population sizing model for
perturbation based methods. In contrast to the popu-
lation sizing model of D5, our model takes the entropy
metric into account and is capable of accurately
delineating the relationship between the linkage iden-
tification error rate and the population size in a broad
range of problems. In contrast to the general popula-
tion sizing model of EDAs, a complex analysis of
implicit linkage discovery and selection pressure with
the presumption of a building block fitness distribu-
tion, our model considers only the linkage discovery
and provides an alternative population sizing approach

to entropy based linkage discovery methods. In our
point of view, analysing the solely explicit linkage
discovery behaviour may provide some insight into the
implicit linkage discovery algorithm which often mixes
several optimisation factors.

Our model can provide not only a concrete guide to
the population size setting of ILI but also, for its clear
delineation of a pure relationship between the number
of training instances and the error rate of a decision
tree, some insights into the population sizing of other
entropy based mechanisms, varying from EDAs to
data mining approaches. With guidance of our popu-
lation sizing model, applying linkage discovery algo-
rithms to the problems which require finding relevant
decision variables to the outputs (Saridakis and
Dentsoras 2009; Wang 2009; Kim, de Silva, and Park
2010) may further improve the performance obtained
with traditional GAs. Furthermore, the proposed
model may also provide an analysis approach to the
learning curve which is potentially useful to various
data mining applications.

The rest of this article is organised as follows.
Section 2 gives the background of this study. Section 3
briefly introduces ILI. It first gives the definition of
linkage and explains how perturbation methods is
related to linkage discovery, then reviews the ID3
decision tree learning algorithm, and finally describes
the algorithm of ILI. The proposed population sizing
model for ILI is delineated, verified, and discussed in
Sections 4 and 5. In Section 4, the error probability of
the ID3 decision tree algorithm is analysed and applied
to derive a formula that depicts the relationship among
the population size, sub-problem size, number of sub-
problem and linkage identification correct probability,
followed by empirical verification and discussion in
Section 5. Finally, Section 6 concludes this article.

2. Background

Recent methods that deal with the linkage problem can
be classified into two categories: The EDAs which
implicitly discover linkage and the perturbation based
algorithms which explicitly identify linkage. The EDAs
construct probability models on promising solutions
and generate new solutions accordingly. Though early
EDAs assume no interactions between variables (Baluja
1994; Harik, Lobo, and Goldberg 1999), subsequent
studies model pairwise interactions as well as multivar-
iate interactions to provide better performance (Baluja
and Davies 1997; de Bonet, Isbell, and Viola 1997;
Harik 1999;Mühlenbein andMahnig 1999; Pelikan and
Mühlenbein 1999; Pelikan, Goldberg, and Cantú-Paz
1999; Mühlenbein and Höns 2005; Gámez, Mateo,
and Puerta 2007; Jiang, Wang, and Yang 2009;
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Santana, Larrañaga, and Lozano 2010). The modelling

of multivariate interactions captures the distributions of

sets of dependent variables and involves selection

among numerous possible probability models to attain

appropriate ones. Various metrics have been adopted

in model construction. The most common metrics are

Bayesian metrics (Cooper and Herskovits 1992;

Heckerman, Geiger, and Chickering 1995) and mini-

mum description length (MDL)metrics (Rissanen 1978,

1989, 1996). The Bayesian metrics approximate the

likelihood of a probability model given the data, and the

MDLmetrics measure the code length of the model and

the code length of the modelled data. Though distin-

guished, these two types of metrics are strongly

connected. In the view of some researchers, the code

length of the model and the code length of modelled

data in MDL do correspond to the prior probability

and marginal likelihood, respectively, in the Bayesian

framework (MacKay 2003). As the MDL principle is a

formalisation of Occam’s Razor, either adopting

Bayesian metrics or MDL metrics, EDAs embrace the

fundamental concept of information theory.
The term perturbation has been widely adopted in

GAs. Among relevant interesting studies is Solteiro

Pires, Tenreiro Machado, and de Moura Oliveira

(2006)’s work investigating the effect of perturbing
mutation probability on GA dynamics from the view-

point of signal propagation. The perturbation methods

referred to here explicitly identify variable interdepen-

dencies via examining the fitness differences caused by

variable perturbations. These methods basically assume

that non-linearity (Munetomo and Goldberg 1998) or

non-monotonicity (Munetomo and Goldberg 1999)

exists within interdependent variables. Following this

concept, recent studies (Tsuji et al. 2006; Chuang and

Chen 2007; Ting, Zeng, and Lin 2010) have introduced

data mining mechanisms into fitness difference analysis

to efficiently identify variable interdependencies to

replace the simple linearity or monotonicity check.

The dependency detection for distribution derived from

fitness differences (D5) clusters individuals into sub-

populations according to fitness differences and iden-

tifies interdependent variables by finding the set of

variables that can achieve the lowest entropy (Tsuji

et al. 2006). The inductive linkage identification (ILI)

constructs ID3 decision trees according to the fitness

differences to identify interdependencies (Chuang and

Chen 2007). The latest perturbation based method

adopted the Apriori algorithm, a well-known mining

technique, to identify linkage (Ting et al. 2010). These

studies, inspired by data mining methods and adopting

concepts of information theory, provide efficient ways

to identify interdependencies given the entire popula-

tion’s fitness differences.

While the trend of adopting concepts of informa-
tion theory in these algorithms is evident, some generic
theoretical analysis on the evaluation time of decom-
posable problems have been proposed to delineate the
performance limitation inherent in these problems
and formed a basis for performance comparison.
In Streeter’s study, an efficient algorithm was proposed
to illustrate that the upper bound of optimising an
order-k additively separable function defined on
strings of length ‘ is O(2k‘ ln ‘) function evaluations
(Streeter 2004). Choi, Jung, and Moon (2009) further
provided the theoretical lower and upper bounds for
data interdependency discovery. Given a problem of
n variables with m¼O(nk��) sets of dependent vari-
ables with each set limited to k variables, their
deduction validated that discovering all the interde-
pendencies requires �(m log n/logm) function evalua-
tions. They also proved that O(n2 log n) is enough
to bound the evaluation time of bounded problems
with O(n) interdependencies. As these rigorous analysis
on decomposable problems are generic and do not
depend on any specific algorithms, they can well
formulate the generalised bounds and provide a
baseline for performance comparison.

However developing an efficient algorithm capable
of reaching the lower bound of evaluation time
requires delving into the complexity analysis of man-
ifolds of algorithms. In evolutionary computation,
complexity analysis usually comprises estimations of
both function evaluations and population sizes.
Though both of them are fundamental performance
indexes, the analysis on population sizes is more
critical than that on function evaluations because
population sizing is considered critical to the success
and efficiency of GAs. For the aforementioned two
categories of algorithms which adopt the information
theory concept, the size of a population is required to
be sufficient not only to satisfy the need of initial
building block supply but also to guarantee small error
rate for linkage discovery.

In the line of performance analysis on EDAs
Pelikan, Sastry, and Goldberg (2002) estimated that
the number of evaluations of the Bayesian optimisation
algorithm (BOA) until reliable convergence to optimum
grows as O(n1.55) or O(n2), where n is the number of
variables in the problem, depending on the scaling of the
sub-problem in a proper problem decomposition. They
also assured that the population size and the selection
pressure have non-negligible impact on the BOA
performance. A population size between O(n1.05) and
O(n2.1) is required by BOA to build an accurate model.
These bounds are consistent with the empirical results
of other EDAs where the function evaluation and the
population size roughly scale as �(n1.4) (Sastry and
Goldberg 2004). As both metrics for EDAs, MDL
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metrics and Bayesian metrics, can be considered as
entropy-related metrics, Yu et al. (2007) further derived
a general population sizing model for entropy-based
discrete estimation of distribution algorithms. Based on
the distribution of entropy measurement and taking
into account the selection pressure and the variance of
the fitness of sup-problems, the population size must be
�(m logm) to guarantee (1� 1/m) model accuracy,
where m is the number of sets of interdependent
variables and is proportional to the problem size.
In the population sizing of perturbation based methods
Tsuji et al. (2006) estimated the population size for D5

solely based on the statistics of the sub-population
clustered according to fitness differences. They pro-
vided a bound ofO(2k log ‘) forD5 to handle an order-k
additively separable function defined on strings of
length ‘.

The general population sizing model proposed by
Yu et al. (2007) illustrates a complex relationship
among the selection pressure, probability model error
rate, and population size with the presumption of some
certain building block fitness information is given.
On the other hand, though adopting clustering tech-
nique and the entropy metric, the population sizing
model of D5 proposed by Tsuji et al. (2006) was
developed regardless of these matters. As entropy
metric or the like have been a trend in linkage
discovery methods, a clear relationship between the
population size and the linkage error rate of entropy
based methods is in order. In this article, we propose a
population sizing model for inductive linkage identifi-
cation (ILI). As a perturbation-based linkage identifi-
cation algorithm, ILI is a concise, newly developed
algorithm which utilises ID3 decision trees in the
process of linkage identification. The proposed anal-
ysis approach firstly depicts the essential relationship
between the number of training instance and the
accuracy of the corresponding decision tree and then
extends the relationship to provide a population sizing
model for ILI. The proposed population sizing model
can accurately approximate the sufficient population
size for ILI given an error rate requirement. As it is
also a simple approach which can clearly delineate the
pure relationship between the population size and the
error rate in entropy-based methods, the model may
provide some insights into the population sizing of
other entropy-based mechanisms, varying from EDAs
to data mining approaches.

3. Inductive linkage identification

In this section, we first give the definition of linkage
and describe how perturbation methods detect linkage.
Then, we briefly review the ID3 decision tree learning

algorithm and relate it to the linkage identification of
ILI. Finally, we describe ILI in detail.

3.1. Linkage definition and perturbation method

For convenience, in this article, we adopt additively
decomposable functions (ADF) as the problem model
as Chuang and Chen (2007) did in their study.
Let s¼ s1s2 � � � s‘, for ‘ variables, represent a string s
of length ‘. The fitness of string s is defined as

f ðsÞ ¼
Xm
i¼1

fi ðsviÞ,

where m is the number of subfunctions fi, and svi is the
subset variables of s that corresponds to fi. Each
subfunction fi is a nonlinear function and vi here is a
vector of indexes that specifies the corresponding
subset variables svi . For example, if vi¼ (1, 3, 5, 8),
svi ¼ s1s3s5s8. Let Vi be the set that contains all
the elements of vi, and we refer to Vi as a linkage
set. In ILI, binary variables are assumed, and
subfunctions that do not share decision variables, i.e.
non-overlapping subfunctions, are considered. That is,
Vi\Vj¼; if i 6¼ j.

Without lose of generality, we assume that
Vi¼ {1, 2, . . . , k} and a perturbation is applied to s1.
The corresponding fitness difference df1 is expressed as

df1ðsÞ ¼ f ðs1s2 � � � s‘Þ � f ðs1s2 � � � s‘Þ

¼ f1ðs1s2 � � � skÞ þ
Xm
i¼2

fiðsvi Þ

" #

� f1ðs1s2 � � � skÞ þ
Xm
i¼2

fiðsvi Þ

" #

¼ f1ðs1s2 � � � skÞ � f1ðs1s2 � � � skÞ: ð1Þ

As each subfunction is nonlinear, we can find from
the derivation that the fitness difference obtained from
perturbing a variable sj is a function which solely
depends on all the variables in Vi containing sj. In other
words, by means of perturbation, one can turn the
fitness function dependent on all variables into a
fitness difference function dependent on only the
corresponding linkage set.

3.2. ID3 decision tree

Decision tree learning is a widely adopted method in
data mining. Given a set of training instances with
their attribute values and target values, a decision tree
can be constructed to predict the target value of an
instance given its attribute values. A constructed
decision tree has its nodes corresponding to attribute

4 J.-Y. Lin and Y.-p. Chen

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

8:
16

 2
7 

A
pr

il 
20

14
 



variables and its leaves corresponding to target values.

Each node has as many descendants as the number of

the possible values of the attribute variable it repre-

sents. Given a new instance’s attribute values, one can

trace the corresponding attribute values in the tree to

predict the target value.
For the purpose of analysis, we introduce the ID3

decision tree learning algorithm (Quinlan 1993)

adopted by ILI. Given a set of training instance,

categorising them according to different attribute

variables can result in different target value distribu-

tions. As the goal of the decision tree is to construct a

concise tree that can predict well the target value of a

new instance, a statistical property, information gain, is

adopted to assess how well the training instances are

categorised by selecting an attribute variable as a tree

node. After an attribute variable is selected as a node,

the training instances are categorised into groups

according to its value. Each group of training instances

further undergoes the attribute variable selection to

categorise the training instances into subgroups.

This process iterates until all training instances in

their categorised group have the same target value or

have all the attribute values assigned.
Information gain assesses the impurity of instances

reduced by selecting an attribute variable to categorise

them. In information theory, the impurity of an

arbitrary collection of instances is defined as entropy.

Given a collection D, containing instances of c

different target values, the entropy of D relative to

this c-wise classification is defined as

EntropyðDÞ �
Xc
i¼1

�pi log2 pi , ð2Þ

where pi is the proportion of D belonging to class i.

In all the calculations related to entropy, we define

0 log2 0 to be 0. If an attribute A is selected to

categorise the collection D, the resulting entropy of

the categorised collection D is

EntropyðDjAÞ �
X

v2Val ðAÞ

ProbðVal ðAÞ ¼ vÞEntropyðDvÞ,

ð3Þ

where Val(A) is the set of all possible values for

attribute A, Prob(Val(A)¼ v) is the probability of an

instance with its attribute A of value v, and Dv is the

subset of D in which attribute A has value v. As

Prob(Val(A)¼ v) can be approximated by the propor-

tion of Dv to D, we can further have

EntropyðDjAÞ �
X

v2Val ðAÞ

jDvj

jDj
EntropyðDvÞ: ð4Þ

Thus, in terms of entropy, the information gain
of selecting attribute A to categorise the collection D
can be defined as the difference between Entropy(D)
and Entropy(DjA). Then the information gain,
Gain(D,A), of an attribute A relative to a collection
of instances D is

GainðD,AÞ � EntropyðDÞ �
X

v2Val ðAÞ

jDvj

jDj
EntropyðDvÞ:

ð5Þ

All the attribute variables map to the tree nodes are
obviously the variables responsible for the different
values of the target variable. In this perspective, a
constructed tree illustrates a function which maps
relevant attribute variables to the target variable.
Thus, treating the solution string as the list of attribute
values and the fitness difference caused by perturba-
tion as the target values, ILI can identify linkages by
applying the ID3 decision tree learning algorithm.

3.3. ILI algorithm

Integrating the ideas illustrated in previous sections,
ILI performs a perturbation operation to the whole
population and constructs an ID3 decision tree
according to the fitness difference caused by the
perturbation. The resultant decision tree then consists
of a linkage set that corresponds to the perturbation.
This procedure repeats until all variables are divided
into their linkage sets. The pseudo code of the overall
ILI procedure is depicted in Algorithm 1. The first step
of ILI is to initialise a population of strings. Then, ILI
identifies one linkage set at a time using the following
procedure: (1) a variable is randomly selected to be
perturbed; (2) an ID3 decision tree with the perturbed
variable as root is constructed according to the fitness
differences caused by perturbations; (3) by inspecting
the constructed tree, the variables used in the decision
tree are collected and considered as a linkage set.

From Algorithm 1, we can find that the evalua-
tion time of ILI is of O(mn), where m is the number
of linkage sets, and n is the population size.
As the population size must be sufficiently large to
guarantee small linkage identification error rate, an
accurate population sizing model is necessary for
both complexity analysis and an appropriate popula-
tion size setting.

4. Population sizing for inductive linkage

identification

Since ILI adopts the ID3 decision tree to identify
linkage, we first investigate the relationship between

International Journal of Systems Science 5
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the population size, n and the probability of select-
ing a wrong decision variable in the decision tree.
As aforementioned, we assume that the objective
function consists of non-overlapping subfunctions
and the sampling of objective function is noise free.
Consider the following additively decomposable
function:

f ðsÞ ¼ ftrapk ðs1 � � � skÞ þ
Xm
i¼2

fiðsvi Þ:

Algorithm 1: Inductive Linkage Identification

procedure IDENTIFYLINKAGE( f, l )
Initialize a population P with n string of length ‘.
Evaluate the fitness of strings in P using f.
V {1, . . . , ‘}
m 0
while V 6¼ ; do

m mþ 1
Select v in V at random.
Vm {v}
V V� {v}
for each string si ¼ si1s

i
2 � � � s

i
‘ in P do

Perturb siv.
df i fitness difference caused by
perturbation.

end for

Construct an ID3 decision tree using (P, df )
with v as root node.
for each decision variable sj in the tree do

Vm Vm[ { j}
V V� { j}

end for

end while

return the linkage sets: V1,V2, . . . ,Vm

end procedure

The trapk function is a k-bit trap function, a
function of unitation which can be expressed as

ftrapkðs1s2 � � � skÞ ¼
k, if u ¼ k
k� 1� u, otherwise

�
,

where u is the number of ones in the binary string
s1s2 � � � sk. To identify the linkage set, V¼ {1, 2, . . . , k},
s1 is perturbed. In the case of alternating a bit from one
to zero, one is added to the fitness of each individual
except those who originally have ftrapkðs1 � � � skÞ ¼ k.
These exceptions have a new value of zero, and hence
the fitness difference �k. In the case of alternating a bit
from zero to one, this reduces one from the fitness of
each individual except those who originally have
ftrapk ðs1 � � � skÞ ¼ 0. These exceptions have a new value
of k, and hence fitness difference k. Thus, after
perturbation, only those s2s3 � � � sk¼ 11 � � � 1 individuals
have fitness difference �k. Figure 1(a) illustrates the

fitness differences of individuals categorised by

s1s2s3s3þ values. For example, the first row indicates

the fitness difference of any individual with its

s1s2s3s3þ ¼ 0000 is 1. The fo column denotes the

original value of ftrap3 ðs1s2s3Þ, and the fn column

denotes the new value of ftrap3 ðs1s2s3Þ after perturba-

tion. The 0 denotes that the corresponding variable has

been perturbed from 1 to 0, and s3þ denotes a specified

variable other than s1, s2 and s3. From this table, we

can see that only those s2s3¼ 11 individuals have

fitness difference �3.
Since every variable of each individual is generated

at random, the subpopulation size of individuals with a

same substring s1s2 � � � sk¼ a1a2 � � � ak, denoted as nsk , is

a binomial distribution with n¼ population size and

p¼ 2�k. When n is sufficiently large, an excellent

approximation of such a binomial distribution can be

obtained via the normal distribution:

Nðnp, npð1� pÞÞ:

Let si denote that si is perturbed, b-df denote a fitness

difference of b, Pb denote the population of the

individuals with b-df, and Pðsi1 si2 ���sij¼a1a2���aj Þ denote the

population of the individuals with their

si1 ¼ a1, si2 ¼ a2, . . . , sij ¼ aj. Accordingly, the size of

Pðs1s2���sk¼11���1Þ and the size of Pðs1s2���sk¼01���1Þ behave as

the normal distribution described above. Then both Pk

and P�k have nsk individuals while both P1 and P�1
have ð2k�1 � 1Þnsk individuals.

Since ILI introduces the perturbed bit as the root of

decision tree, the decision tree then divides the popu-

lation into two portions, Pðs1¼0Þ and Pðs1¼1Þ. The fitness

difference distributions of these two subpopulations

are similar. For simplicity, we omit the analysis of

Pðs1¼1Þ. As Pðs1¼0Þ consists of only two distinct subpop-

ulations, P�k and P1, the portion of P�k is critical to

the correctness of linkage identification. And with this

least portion of unique fitness difference, a size of nsk ,

the trap function has the largest error probability in

perturbation methods. Note also that the nith function

behaves the same as the trap function after perturba-

tion, and thus has the same error probability as the

trap function in perturbation methods.
In Pðs1¼0Þ, selecting any variable in the linkage set V

as a decision node would separate evenly the population

into two subpopulations, Pðs1si2V¼00Þ and Pðs1si2V¼01Þ.

Pðs1si2V¼00Þ consists of only individuals with 1-df while

Pðs1si2V¼01Þ consists of 1-df individuals and the whole

P�k. One the other hand, selecting a variable skþ outside

the linkage set as a decision node would separate the

population into two equivalent subpopulation, each

with roughly half of P�k. Let Tsi2V and Tskþ denote these

two kinds of tree correspondingly. The fitness difference

distribution symmetry inherent in Tskþ trees grounds a
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higher entropy state than that of the asymmetric Tsi2V

trees. According to the expected fitness difference
distribution and the information gain defined in
Equation (5), taking si2V as a tree node can achieve a
lower entropy state than taking skþ can. Thus, selecting
wrong variables during the decision tree construction
does not often occur. Figure 1(b) illustrates a k¼ 3
example of Tsi2V , on the above, and Ts3þ , on the bottom.

Of course, there are still chances for a decision tree
to take a wrong variable as an internal node. Since P�k
can be decomposed into Pðs1s2���skskþ¼01���10Þ and
Pðs1s2���skskþ¼01���11Þ, once either one of the subpopulation
is absent, the skþ may be taken as a decision node. In
the scenario where Pðs1s2���skskþ¼01���10Þ is absent, Tsi2V and
Tskþ would both have a subpopulation consisting of
only 1-df individuals and the other subpopulation
consisting of both 1-df and �k-df individuals.
Accordingly, Pðs1si2V¼01Þ in Tsi2V and Pðs1skþ¼01Þ in Tsikþ
are the subpopulations that contain �k-df individuals.
As the �k-df individuals are exactly the same in these
two trees, once the size of Pðs1si2V¼01Þ is larger than that
of Pðs1skþ¼01Þ, Tskþ can achieve a lower entropy state
than Tsi2V and thus introduce a wrong variable into the
linkage set. Figure 2 illustrates a k¼ 3 example of this
scenario.

In the scenario when Pðs1s2���skskþ¼01���10Þ is absent,
since there are around half of the population in Pðs1¼0Þ,
the size of Pðs1skþ¼01Þ, nskþ , can be approximated with a
normal distribution as

N
2k�1

2ð2k � 1Þ
n,

2k�1ð2k�1 � 1Þ

2ð2k � 1Þ2
n

� �
:

The size of Pðs1si2V¼01Þ, nsi2V , can also be approximated
with a normal distribution as

N
ð2k�1 � 1Þ

2ð2k � 1Þ
n,

2k�1ð2k�1 � 1Þ

2ð2k � 1Þ2
n

� �
: ð6Þ

when nskþ is less than the largest among nsi2V , it is possible
for skþ to be selected as a decision tree node. Moreover,

when nskþ is less than the smallest among nsi2V , skþwould
definitely be taken as a decision variable. Since the
distribution of each nsi2V is identical, the largest among
nsi2V can be considered as the largest number sampled
from the normal distribution described by Equation (6).
In other words, it is a (k� 1)-th order statistic. The
smallest among nsi2V is a first order statistic. Therefore,
pterr, the error probability of the Pðs1¼0Þ, when
Pðs1s2���skskþ¼01���10Þ is absent, can be estimated as

�
�Xð1:k�1Þ

� �skþ

�skþ

� �
� pterr � �

�Xðk�1:k�1Þ
� �skþ

�skþ

� �
,

ð7Þ

where � denotes the cumulative distribution function
of the standard normal function, �Xð1:k�1Þ

denotes the
mean of the first order statistic in a sample of size k� 1
and �Xðk�1:k�1Þ

denotes the mean of the (k� 1)-th order
statistic. The mean and the standard deviation of nskþ
are denoted as �skþ and �skþ correspondingly. In the
following sections, for verification purpose, we will use
the terms

�
�Xð1:k�1Þ

� �skþ

�skþ

� �
ð8Þ

(a) (b)

Figure 1. Fitness differences and decision tree construction for scenario I.
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and

�
�Xðk�1:k�1Þ

� �skþ

�skþ

� �
, ð9Þ

as the lower bound and the upper bound of pterr to

compute the lower bound and the upper bound of the

population size.
Since the two absent scenarios are symmetric, their

pterr are identical. For each scenario to occur, all the

individuals in Pðs1¼0Þ should not contain the absent

substring. Because Pðs1¼0Þ is about half of the popula-

tion and the probability for an individual to contain

the absent substring is 2�k, we can estimate the

probability of one of the scenarios to occur as

(1� 2�k)n/2. Thus, the total probability for selecting a

wrong decision variable skþ in Pðs1¼0Þ is

2 � ð1� 2�kÞn=2 � pterr:

The probability forPðs1¼0Þ to identify linkage correctly is

1� 2 � ð1� 2�kÞn=2 � pterr:

Since there are two subpopulations from the root,

(‘� k)skþ candidates, the probability for ILI to

correctly identify a linkage set of k variables among ‘
variables is

½1� 2 � ð1� 2�kÞn=2 � pterr�
2ð‘�kÞ:

The probability, p�, for ILI to correctly identify m
linkage sets among ‘ variables is then larger thanYm

i¼1

½1� 2 � ð1� 2�kiÞn=2 � pterrðkiÞ�
2ð‘�kiÞ: ð10Þ

Given the value of p�, one can obtain an approximated
upper bound of the required population size via
solving Equation (10).

5. Empirical verification and discussion

In this section, we empirically verify our population
sizing model and briefly discuss the population size
requirements of EDAs and perturbation based meth-
ods as well as their relationship with the performance
of optimisation.

5.1. Empirical verification

In the empirical verification, we adopted the following
fitness function

f ðsÞ ¼
Xm
i¼1

ftrapkðsk�ði�1Þþ1 � � � sk�ði�1ÞþkÞ:

When the fitness function is of this form, the proba-
bility for ILI to correctly identify all the linkage sets is

p� ¼ ½1� 2 � ð1� 2�kÞn=2 � pterr�
2mð‘�kÞ: ð11Þ

(a) (b)

Figure 2. Fitness differences and decision tree construction for scenario II.
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In order to conduct a thorough verification, we

empirically determine the population sizes required

for k from 3 to 6 with various numbers of subprob-

lems. The overall problem sizes, ‘, are 60, 120,

180, . . . , 600 bits. And m, the number of subproblems,

is calculated by m¼ ‘/k. For each problem instance, we

apply a bisection method to find the minimum

population size required for ILI to correctly identify

all the linkage sets. The judgement criterion applied is

30 consecutive and independent successful runs.

Accordingly, the 95% confidence interval of p� is

0.884 to 1.0 (Zwillinger and Kokoska 2000). Thus, we

select p�¼ 0.942, the middle point of the interval, for

the proposed model described by Equation (11) to

estimate the population sizes. Table 1 lists the means of

normal order statistics for different k’s (Arnold,

Balakrishnan, and Nagaraja 1993). The mean of the

x-th order statistic in a sample of size n from the

normal distribution is denoted as �x:n.
Hence, the mean values of the i-th order statistics

in a sample of size k� 1 from the distribution of nsi2Vi
can be calculated as �Xi:k�1

¼ �si2Vi
þ �i:k�1�si2Vi , where

�si2Vi
and �si2Vi are the mean and standard deviation of

Equation (6), respectively. Applying the aforemen-

tioned setting of p� to Equation (11), the estimated

population sizes and the corresponding empirical

results are illustrated in Figure 3. The circle marks

represent the empirically obtained population sizes,
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Figure 3. Population sizing model: theoretical prediction versus empirical results (a) k¼ 3, (b) k¼ 4, (c) k¼ 5 and (d) k¼ 6.

Table 1. Mean values of the normal order statistics for different k.

�2:2 �3:3 �4:4 �5:5 �1:2 �1:3 �1:4 �1:5

0.564 0.846 1.029 1.163 �0.564 �0.846 �1.029 �1.163
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and the solid lines are predicted population sizes

according to the proposed population sizing model

Equation (11). Figure 4 further illustrates the popula-

tion requirement of ILI for problems of different

subproblem complexity. In Figure 4, the marks repre-

sent the obtained population sizes for problems of

lengths 120, 360 and 600 bits, and the lines are

predicted population sizes. Figures 3 and 4 indicate

that the proposed population sizing model is able to

provide a very good approximation for the population

sizes required by ILI to identify the linkage sets in trap

functions for different overall problem sizes as well as

subproblem sizes.
Figure 5 shows the population sizes required by ILI

on problems composed of different subproblem

types (k¼ 4) and the computed theoretical bounds.

The corresponding fitness difference distributions of
different subproblem types are listed in Table 2. As
trap4 and nith4 have identical fitness difference distri-
bution, their population sizes present consistence in
Figure 5. The test functions valley4 and tmmp4 also
illustrate that test functions with more distinct fitness
values requires smaller population size. All these
empirical results support our statement in Section 4:
the population sizing model based on the trap function
provides an approximated population size upper
bound for all test functions.

5.2. Discussion

Since the proposed population sizing model has been
validated by the empirical results in the previous
section, it may be a representative model for entropy-
based perturbation linkage identification methods.
Observing closely to the population size required by
ILI, we can find that the population size is bounded by
O(log m) which leads to the requirement of O(m logm)
evaluation time. Comparing the population size to
other methods’s, O(m logm) with (1� 1/m) accuracy
for EDAs and O(logm) for D5, the perturbation based
method requires much less population size than EDAs
do. This implies that the perturbation operations,
transforming the all-variable relevant fitness function
into a fitness difference function that depends on only
fewer variables, do help to reduce the population size
required for linkage discovery by O(m). Comparing the
numerical results, it can be observed that the accuracy
of linkage discovery does not seem to guarantee
efficient optimisation. To the best of our limited
knowledge, the relationship between optimisation effi-
ciency and the accuracy of linkage discovery is still
elusive and requires further investigations.
Nevertheless, linkage discovery is indeed helpful to
optimisation. The question is how accurate is enough
for efficient optimisation and how large the population
size is required for the demanded linkage discovery
accuracy.

6. Conclusions

In this article, we proposed a population sizing model
for ILI. This model, assessing the information gain of
selecting a variable as dependent via the statistics of
sub-population sizes that are categorised by the can-
didate variables, is simple and can accurately approx-
imate the population size which is sufficiently large for
ILI to meet a given linkage error rate. The kernel of
our population sizing model is the relationship between
the number of training instances and the decision tree
error rate. This kernel may potentially help analysing
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Figure 4. Population sizing model: theoretical prediction
versus empirical results for different k’s.
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Figure 5. Population sizing model: theoretical prediction
versus empirical results for different types of subproblems.
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other entropy based linkage discovery methods as well
and thus help linkage discovery algorithms to improve
the performance obtained with traditional GAs in
problems which require finding interdependent deci-
sion variables to the desired outputs.

Furthermore, the population sizing analysis
approach proposed in this study may also be applied
to approximate the learning curve of a decision tree,
given the maximum possible number of relevant
attribute variables, the number of total attribute
variables, and the number of possible values of the
target variable. Predicting a learning algorithm’s learn-
ing curve, which illustrates the relationship between the
accuracy of the learned model and the number of
training instances, has been one of the critical issues in
machine learning. Currently, most studies approximate
the learning curve of an algorithm with mathematical
models (Gu, Hu, and Liu 2001; Morgan, Daugherty,
Hilchie, and Carey 2003) such as power law model,
logarithmmodel, and the like, or empirically predict the
learning curve (Leite and Brazdil 2007). For this facet
of research in machine learning, the proposed approach
may provide some insights into the prediction of an
learning algorithm’s learning curve. It may be helpful in
the analysis of data mining aided algorithms and thus
improves the algorithmic performance in applications.
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