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Timing ECO Optimization Via Bézier Curve
Smoothing and Fixability Identification
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Abstract—Due to the rapidly increasing design complexity in
modern integrated circuit design, more and more timing failures
are detected at late stages. Without deferring time-to-market,
metal-only engineering change order (ECO) is an economical
technique to correct these late-found failures. Typically, a design
might need to undergo many ECO runs in design houses;
consequently, the usage of spare cells for ECO is of significant
importance. In this paper, we aim at timing ECO by using as few
spare cells as possible. We observe that a path with good timing
is desired to be geometrically smooth. Unlike negative slack and
gate delay used in most prior work, we propose a new metric
of timing criticality, fixability, by considering the smoothness of
timing violating paths. To measure the smoothness of a path, we
use the Bézier curve as the golden path. Furthermore, in order
to concurrently fix timing violations, we derive a propagation
property to divide violating paths into independent segments.
Based on Bézier curve smoothing, fixability identification, and
the propagation property, we develop an efficient algorithm to
fix timing violations. Experimental results show that we can
effectively resolve all timing violations with significant speedups
over the state-of-the-art works.

Index Terms—Engineering change order, logic synthesis, phys-
ical design, spare cell, timing optimization.

I. Introduction

THE FAST-GROWING design complexity in modern inte-
grated circuit (IC) design has caused some hard-to-detect

design failures to be found at late design stages, e.g., the
post-layout stage, or even the post-silicon stage. Instead of
backtracking to earlier stages, metal-only engineering change
order (ECO) is widely adopted in IC design houses to rectify
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late-found failures. As revealed by [3] and [4], the transistor-
layer masks typically cost much more than metal-layer masks.
Hence, metal-only ECO, keeping the transistor-layer masks
intact and changing only metal-layer masks, is an economical
way to save the mask cost and meet the strict production
deadline. To facilitate metal-only ECO, spare cells (redundant
cells) are inserted by a placement tool [14]. Once a design
failure is detected, adequate spare cells are selected and
rewired to correct it. A design typically undergoes many ECO
runs in design houses; as a result, it is of particular importance
to economically utilize spare cells to complete ECO.

A. Prior Work

ECO can be classified into functional ECO and timing ECO.
Functional ECO is used to correct functional errors and/or
revise specification. Kuo et al. introduced constant insertion
to enhance the functional capabilities of spare cells [15]. Modi
and Marek-Sadowska rely on simulated annealing to refine the
Boolean cover and wirelength in [17]. Jiang et al. presented
a stable matching-based ECO engine to minimize wirelength
in [13]. Huang et al. adopted cut-based Boolean matching and
then reduced wirelength by greedy heuristics in [12]. These
works focus on functional ECO alone, and timing is not their
main concern.

On the other hand, timing ECO is used to remedy signal
imperfection and fix timing violations by gate sizing and/or
buffer insertion. Chen et al. observed the shielding effect and
loading dominance, defined a bounding polygon to reduce the
solution space for spare cell selection, and presented a sequen-
tial approach based on dynamic programming in [8]. Fang et
al. concurrently sized gates and inserted buffers along timing
violating paths. They also reused redundant wires to increase
routability. They reduced this problem to a multicommodity
network flow and solved it by integer linear programming
in [9]. Lu et al. deliberately inserted buffers into a routing tree
to improve signal transition and delay in [16]. Ho et al. used
cut-based Boolean matching to iteratively remap subcircuits
from the gate with the worst negative slack (WNS) in [11].
Very recently, Chang et al. viewed gate sizing and buffer inser-
tion as special cases of functional ECO and further proposed
a simultaneous functional and timing ECO engine in [6].

B. Our Contributions

Timing safety is an essential requirement not only for timing
ECO but also for functional ECO. Consequently, we shall fo-
cus on timing ECO optimization in this paper. Conventionally,
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Fig. 1. Slack, delay, and timing criticality. (a) Example with a timing
analysis result, where all gates along the most critical path, g5, g3, and g2,
have the same slack value, −1. (b) If g5, the gate with the worst slack and the
largest delay, is replaced with spare cell s6, the timing improvement might be
insufficient. However, gate g3 is the most critical gate from the geometrical
standpoint. If we fix gate g3 using spare cell s7 instead, the timing can be fixed.

the slack or delay of a gate is used to measure its timing
criticality. However, we observe that neither slack nor delay
can capture timing criticality well. Fig. 1 gives an example
where each gate is associated with a delay (D), an arrival
time (A), a required time (R), and a slack (S).1 The critical
path goes through gates g5, g3, and g2, and each has the
same slack value −1. The criticality among them cannot be
differentiated based only on the slack value. If we select gate
g5 (since it has the WNS and largest delay) and then fix it
by spare cell s6, timing can be slightly improved. The timing
improvement might be insufficient, and we need more spare
cells to fix the timing violations. However, we observe that a
path with good timing is desired to be geometrically smooth.
From the geometrical standpoint, gate g3 is the most critical
cell (although it has the smallest delay). If we replace gate g3

with spare cell s7 instead, the timing can be optimized.
Based on the above observations, it is desirable to develop

a new metric that can identify timing criticality more pre-
cisely. Timing criticality is related not only to slack or delay
but also to geometrical information. With effective criticality
identification, we could identify the truly critical gate(s) on a
timing violating path, which can lead to fewer spare cells for
timing fixing and thus preserve more resources for later ECO
runs. Consequently, we address in this paper the cost-effective
timing ECO problem: given a design with a set of preplaced
spare cells, perform metal-only ECO timing optimization by
gate sizing and buffer insertion such that all timing violations
are resolved and the number of spare cells used is minimized.

For the addressed problem, we propose a new metric,
fixability, to enhance the modeling of timing criticality
based on the four criteria: flexibility, path sharing, spare-cell

1The arrival time (A) and required time (R) of a gate are defined with
respect to its output pin. The slack (S) of a gate is defined as its required
time minus its arrival time (S = R − A).

availability, and smoothness. Flexibility means the room for
timing improvement. For each gate on a timing violating
path, flexibility is determined not only by the impact of wire
loading on its delay but also by the slack difference between
the most and the second most critical paths through its fan-out.
Path sharing indicates how many violating paths pass through
a gate. Spare-cell availability considers the distribution of
available spare cells. Smoothness models the closeness of
gates to an ideally smooth path, captured by a Bézier curve
that has the following properties: 1) the curve is completely
contained in the convex hull2 of its control points (i.e., gates
on a timing violating path); 2) the curve does not wiggle any
more than the control polyline formed by the control points
and their corresponding lines; and 3) the curve is predictable.
The more the timing violating path approaches to its Bézier
curve, the better the resulting timing could be optimized. A
special case with optimal timing is when all gates are aligned
with a straight line connecting the beginning and ending
points of a path. In this special case, the corresponding Bézier
curve is a straight line. As shown in Fig. 1(b), gate g3 is
the most critical one, and it can be detected by the Bézier
curve. Moreover, replacing gate g5 with spare cell s6 makes
the timing violating path deviate from the Bézier curve, thus
increasing the variation along the path. In contrast, if we
repeatedly adjust a timing violating path to its corresponding
Bézier curve, its variation along this path would be reduced.

In order to fix multiple timing violations concurrently, we
explore the essence of timing slacks and the independency
of timing violating paths. It can be shown that each timing
violating path can be decomposed into segments, each having
the same timing slack value. Moreover, we observe the prop-
agation property: if we improve the delay of a gate, then the
slack of any other gate on the same violating path segment
is also improved by the same amount. With the propagation
property, we can simultaneously optimize the timing for all
violating path segments.

Based on Bézier curve smoothing, fixability identification,
and the propagation property, we develop a timing ECO engine
as follows. First of all, we decompose all timing violating
paths into segments. Second, we extract the most critical gates
for each segment. Third, we use minimum weight perfect
matching to select adequate spare cells for these critical
gates [10]. We repeat the process until all violations are
resolved.

We summarize the features of our proposed approach as
follows.

1) A new metric of timing criticality, fixability, is devel-
oped. Different from slack and/or delay, we incorpo-
rate the criteria of flexibility, path sharing, spare-cell
availability, and path smoothness into the metric. Hence,
we can further differentiate the criticalities along timing
violating paths.

2) We adopt Bézier curves to measure the smoothness of
timing violating paths and guide spare cell selection. As
a result, the timing violating paths gradually converge to

2The convex hull for a given set of points is the smallest convex polygon
containing all points.
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their corresponding Bézier curves, thus optimizing their
timing.

3) Our approach is efficient. With the propagation property,
we could fix the timing for all violating path segments
concurrently. Furthermore, our minimum weight perfect
matching method is very efficient, compared with [9],
which is based on the NP-hard multicommodity flow
method.

4) Our approach is cost effective. We fix timing violations
from the most critical gates, and the cost setting in the
bipartite graph favors the spare cells within the convex
hull [18] of the corresponding path and the one that
just meets the required amount of timing improvement.
In particular, our results also lead to smaller spare cell
consumption.

Compared with the state-of-the-art timing ECO engines [8],
[9], our approach can fix all timing violations with significant
speedups.

The remainder of this paper is organized as follows. Sec-
tion II formulates the cost-effective timing ECO problem and
briefly describes the timing model. Section III derives our
slack properties that are the foundation of our algorithm.
Section IV gives the formula of fixability and details our
timing ECO engine. Section V shows the experimental results.
Finally, Section VI concludes this paper.

II. Preliminaries and Problem Formulation

In this section, we introduce the timing model used in this
paper and give the problem formulation.

A. Timing Library and Timing Model

A timing path is a circuit path that begins with a primary
input or the data output pin of a flip-flop and ends with a
primary output or the data input pin of a flip-flop. Timing
constraints describe the clock period, the input or output delay,
and timing exceptions.3 Considering rise or fall delays, timing
analysis reports the timing violating paths with respect to the
timing constraints [19].

The cell timing and wire delay models used in this paper are
the same as [8], [9], and [11]. In Synopsys’ Liberty library [2],
the calibrated values of rise or fall propagation delay and
output transition of each library cell are stored in tables (four
tables); all values in these tables are indexed by its input
transition and output loading. For a sequential element, four
additional tables are used to describe setup or hold time values.

Chen et al. [8] pointed out two observations. The shielding
effect implies that sizing a gate or inserting a buffer influences
only the delays of its fan-in and fan-out gates. Loading dom-
inance means that the impact of changing the output loading
on the gate delay is much larger than that of changing the
input transition. The wire delay is lumped into the propagation
delay of the gate driving this wire. The output loading of a
gate contains wire loading, the input capacitance of fan-out

3The input (output, respectively) delay means the delay consumed by the
external environment for each primary input (output). Timing exceptions
describe false paths and multicycle paths.

TABLE I

Notations

Notation Description
gi gate (node) gi

e(i, j) wire (edge) between gi and gj

D(i) gate delay of gi

A(i) arrival time of gi

R(i) required time of gi

R(i, j) edge required time of e(i, j)
S(i) node slack of gi

S(i, j) edge slack of e(i, j)
P timing violating path
P(i, j) violating path segment from gi to gj

Tx(i) timing fixability of gi

Tf (i) flexibility of gi

Ts(i) smoothness of gi

Th(i) path sharing of gi

Ta(i) spare-cell availability of gi

Tl(i) wire loading impact of gi

Td (i) slack difference of gi

D0(i) gate delay with zero wire loading
DB(i) gate delay with deviation from Bézier curve
w(gci

, gsj ) cost of matching gate gci
with spare gsj

S(ci|sj) updated slack of matching gci
with gsj

α user specified parameter used for Ta(i)
ns(i) number of spare cells inside gi’s bounding box

gates, and its output pin capacitance. The wire loading of a
gate is proportional to the summation of pairwise wirelength
between this gate and each of its fan-out gates. The simplified
wire delay model is used here for fair comparison with prior
works, but a more sophisticated one can also be used.

B. Problem Formulation

Since a design typically undergoes multiple ECO runs in
design houses, it is of particular importance to economically
use spare cells to complete ECO. Hence, we shall aim at
timing ECO using the least number of spare cells. The problem
formulation is thus described as follows.

Cost-Effective Timing ECO Problem: Given a placed
design with a set of preplaced spare cells and timing violating
paths, perform metal-only timing ECO using gate sizing and
buffer insertion such that all timing violations are fixed and
the number of spare cells used is minimized.

III. Slack Properties

In this section, we derive slack properties that are the
foundation to our algorithm. Our derivation is based on
manipulating the slack of an edge. We first summarize the
notations used in this paper in Table I.

A circuit graph H = (G, E) is used to represent a design,
where each node gi ∈ G represents a gate that is associated
with its delay D(i), and each edge e(i, j) ∈ E represents the
wire between two gates gi, gj ∈ G. D(i) can be the rise or fall
delay of gi. A primary input or output can be viewed as a gate
whose delay is equal to its associated input or output delay.
Similarly, the data output (input, respectively) pin of flip-flop
is defined as a pseudo primary input (output). A (pseudo)
primary output is the ending point of a circuit path.
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Definition 1: In [19], the arrival time A(i) of the output
signal of node gi ∈ G is computed as

A(i) = max
j

{A(j)|e(j, i) ∈ E} + D(i) (1)

while the required time R(i) of node gi ∈ G is computed as

R(i) = min
k

{R(i, k)|R(i, k) = R(k) − D(k),

e(i, k) ∈ E} (2)

where R(i, k) is the edge required time of e(i, k). If gi is a
(pseudo) primary output, R(i) is given according to the input
design.

Definition 2: In [19], the edge slack S(i, j) is the slack of
edge e(i, j) that is contributed from node gj back to node gi

S(i, j) = R(i, j) − A(i). (3)

The node slack S(i) of node gi is the slack of node gi

S(i) = min
j

{S(i, j)|e(i, j) ∈ E}. (4)

The path slack is the node slack of its ending point.
Alternatively, the node slack can be computed as S(i) =

R(i) − A(i), which is equivalent to that in Definition 2. For
example, as shown in Fig. 1(a), S(3, 1) = 4 − 4 = 0, S(3, 2) =
3 − 4 = −1, and S(3) = −1.

Definition 3: A timing violating path P is a simple path
with S(i, j) < 0, ∀e(i, j) ∈ P .

For example, the path through gates g5, g3, and g2 in
Fig. 1(a) is a timing violating path. Based on the above
definitions, we derive our slack definitions and properties as
follows.

Lemma 1: There exists a most timing violating path on
which every node slack and edge slack are identical.

Proof: To prove Lemma 1, it is equivalent to prove that
we can find a path on which each gate gji

has a fan-in gate gji−1

(i.e., e(ji−1, ji) ∈ E) such that S(ji−1) = S(ji−1, ji) = S(ji).
Lemma 1 can be proved by mathematical induction. Let P

be the most timing violating path ending at gjn
, as shown in

Fig. 2. We shall find such a timing violating path as follows.
By Definitions 2 and 3, P has the WNS S(jn). The ending
point gjn

has a unique fan-in gate, namely, gjn−1

S(jn) = R(jn) − A(jn) = R(jn) − A(jn−1) − D(jn)

= R(jn−1, jn) − A(jn−1)

= S(jn−1, jn)

= min
i,j

{S(i, j)|e(i, j) ∈ E}
= S(jn−1).

Hence, we can find such a gate gjn−1 for gjn
. Assume that

we can successfully find such fan-in gates backtracking from
gjn

to gji

S(ji) = S(ji, ji+1) = S(jn−1, jn) = S(jn).

We shall find gji−1 as follows:

S(ji) = S(ji, ji+1) = R(ji, ji+1) − A(ji)

= R(ji, ji+1) − (max
k

{A(k)|e(k, ji) ∈ E} + D(ji))

= R(ji) − D(ji) − max
k

{A(k)|e(k, ji) ∈ E}.

Fig. 2. Most timing violating path.

Fig. 3. Propagation property.

Let gji−1 = arg maxk{A(k)|e(k, ji) ∈ E}.
S(ji) = R(ji−1, ji) − A(ji−1)

= S(ji−1, ji)

= S(ji−1).

Hence, we can find such a path backtracking from the ending
point to some starting point.

As shown in Fig. 1(a), the node slack and the edge slack
along the timing violating path (through gates g5, g3, and g2)
are identical, i.e., −1.

Definition 4: A violating path segment P(i, j) is a maximal
subset of a timing violating path P , where every edge slack
associated with this segment has the same value, and these
edges are consecutive.

As a result, all timing violating paths can be decomposed
into edge-disjoint violating path segments. By Lemma 1,
the most timing violating path has only one violating path
segment.

Definition 5: The slack difference Td(i) of node gi is the
difference between the worst and the second worst edge slacks
of node gi’s critical fan-out

Td(i) = min
k

{S(k, j) − S(i)|S(i) = S(i, j),

e(k, j) ∈ E}. (5)

The following theorem provides the feasibility of concur-
rently optimizing violating path segments.

Theorem 1: Propagation Property: If the delay of a node
on a violating path segment P(i, j) is improved (decreased)
by t, t ≤ min{Td(w)|gw ∈ P(i, j)}, then each edge slack on
the segment will also be improved (increased) by t.

Proof: Consider a violating path segment P(i, j) as shown
in Fig. 3, where nodes gu, gk, and gv are consecutive, and
S(u) = S(k) = S(v). If the delay of node gk on P(i, j) is
improved by t (t can be positive or negative), then we have
the new delay, arrival time, and slack as follows:

D′(k) = D(k) − t,

A′(k) = A(u) + D(k) − t = A(k) − t

S′(k) = R(k) − A′(k) = S(k) + t.

Due to the choice of t, node gk is still the most critical fan-out
of gu and the most critical fan-in of gv. For gu and gv, the
new slacks are

S′(u) = S′(u, k) = S(k) + t

S′(v) = R(v) − A′(v) = S(k) + t.
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Fig. 4. Our timing ECO framework.

Similarly, we can claim that the slack of any node in between
nodes gi and gu or in between nodes gv and gj is also improved
by t. This property thus follows.

Because of the shielding effect and the propagation property,
we can choose one or more nodes from each segment and
concurrently optimize all segments. We will show in Sec-
tion IV-D that if a node gk is passed by multiple timing
violating paths, all violating path segments passing through
gk should be improved by the amount of its negative slack to
remove timing violations.

IV. Our Algorithm

In this section, we first present the new metric, named
fixability, to model timing criticality, and then detail our
algorithm based on the slack properties derived in Section III.

A. Overview

Fig. 4 depicts the flow for our timing ECO framework.
Initially, the timing analysis engine reports all timing violating
paths. Then, a six-step process is performed: 1) each timing
violating path is decomposed into violating path segments (see
Definition 4 in Section III); 2) for each segment, one or more
timing critical nodes (in terms of fixability) are then extracted;
3) an appropriate spare cell is then selected for each extracted
critical node based on minimum weight perfect matching [10];
4) the refined violating path segments are combined, and re-
dundantly selected spare cells are released; 5) timing violating
paths are then re-extracted according to incremental timing
analysis; and 6) finally, spare-cell rewiring is applied. This
process is repeated until all violations are resolved.

B. Fixability Computation

As mentioned in Section I, neither slack nor delay can
capture timing criticality well. In this section, therefore, we
introduce a new metric of timing criticality, fixability, to
identify the most critical gate on a violating path segment. The
most critical gate means a gate that can induce the most delay
improvement for this segment. Fixability (denoted by Tx(i)
for gate gi) contains four terms: flexibility (Tf (i)), smoothness
(Ts(i)), path sharing (Th(i)), and spare-cell availability (Ta(i)).
Flexibility and smoothness are modeled as delay penalties,

Fig. 5. Bézier curve. (a) Convex hull: the Bézier curve is completely con-
tained inside the convex hull of given control points. (b) Variation diminishing
property: the Bézier curve does not wiggle any more than the control polyline.
(c) High predictability: if one control point is moved toward the Bézier curve,
the updated curve moves accordingly. (d) Timing violating path with five
gates, where the reference point of each gate is obtained by setting t by (9)
as 0.0, 0.25, 0.5, 0.75, and 1.0.

while path sharing is a weighting function for the timing crit-
icality, and spare-cell availability is a scale factor to represent
the impact of available spare cells

Tx(i) = (Tf (i) + Ts(i))Th(i)Ta(i), ∀gi ∈ G. (6)

1) Flexibility: Flexibility captures the room for timing
improvement, and considers two factors: one is the impact
of wire loading (denoted by Tl(i)), and the the other is the
slack difference between the most and the second most critical
paths through this gate’s fan-out (Td(i)). Tl(i) for a gate is the
difference of its current gate delay D(i) and that without the
wire loading D0(i)

Tl(i) = D(i) − D0(i), ∀gi ∈ G. (7)

This factor implies that the maximum improvement can be
obtained by wire loading reduction. As defined in Section III,
Td(i) gives the upper bound of the impact on slack when the
delay of this gate is improved. We have

Tf (i) = min(Tl(i), Td(i)). (8)

2) Smoothness: Conceptually, a path with good timing is
desired to be geometrically smooth. We need an ideally smooth
path as the baseline to measure the smoothness of path. In this
paper, we use Bézier curve as the ideal path. Bézier curves are
widely used in computer graphics to model smooth curves.

Definition 6: From [5], given a set of n + 1 control points
c0, c1, . . . , cn, the corresponding Bézier curve is given by the
weighted sum of control points

C(t) =
n∑

i=0

ciBin(t) (9)

where Bin(t) is a Bernstein polynomial and t ∈ [0, 1].
Bézier curves have the following nice properties.
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Fig. 6. Spare-cell availability. The spare cells inside the bounding box are
typically better than those outside the box.

1) Convex hull: A Bézier curve must be completely con-
tained inside the convex hull [18] of the control points.
The convex hull is the smallest convex polygon contain-
ing these points [see Fig. 5(a)].

2) Variation diminishing: As shown in Fig. 5(b), the num-
ber of intersection points of any straight line with a
Bézier curve (dots) is at most the number of intersection
points of the same straight line with the control polyline
formed by the control points and their corresponding
lines (boxes).

3) High predictability: The Bézier curve follows the cor-
responding control points. As shown in Fig. 5(c),
therefore, adjusting the position of some control point
changes the shape of the Bézier curve in a predictable
manner.

Because of the three properties, Bézier curves are suitable
to model geometrically smooth paths. Moreover, if we move
control points toward a Bézier curve, the curve gradually
converges to a straight line [see Fig. 5(c)]. Here, we set the
nodes on a timing violating path as the control points of a
Bézier curve. These control points are expected to be evenly
distributed along the path for timing optimization. Hence, we
evenly sample the curve to find the reference point for each
control point. For example, as shown in Fig. 5(d), we have
a timing violating path with five gates. We then obtain the
reference point for each gate by setting t by (9) as 0.0, 0.25,
0.5, 0.75, and 1.0.

The wirelength between a gate and its reference point is
considered as a wirelength penalty [see Fig. 5(d))]. The gate
delay with zero wire loading is considered as the baseline.
Smoothness is defined as the added wire delay of the wire-
length penalty with respect to zero wire loading

Ts(i) = DB(i) − D0(i), ∀gi ∈ G (10)

where DB(i) is the delay of gate gi whose wire loading is
the wirelength between gi and its reference point. It should
be noted that Bézier curves are used not only to compute
smoothness but also to guide spare cell selection in our
algorithm.

3) Path Sharing: The more timing violating paths pass
through a gate, the more timing critical the gate is. Hence,
Th(i) is defined as the number of timing violating paths passing
through gate gi. Th(i) can be obtained by parsing the timing
report.

4) Spare-Cell Availability: ECO timing fixing cannot be
done without spare cells. Ta(i) is a scale factor corresponding
to the impact of available spare cells. As shown in Fig. 6, we

Fig. 7. Spare cell selection by minimum weight perfect matching. w(gci, gsj)
is the cost of selecting spare cell gsj for fixable gate gci.

consider the number of spare cells inside the bounding box of
the fixable gate and its fan-out or fan-in gates. The guidance
is based on two motivations: one is for fast computation,
and the other is that the spare cells inside the bounding box
are typically better than those outside from the geometrical
standpoint. Hence, Ta(i) is defined as follows:

Ta(i) =

{
1, ns(i) > 0
α, ns(i) = 0

(11)

where α is a user-specified parameter ∈ (0, 1], and ns(i) is the
number of spare cells inside the bounding box. If ns(i) = 0, α

is used to reduce the fixability accordingly.

C. Spare Cell Selection

Based on the new metric of timing criticality given by
(6), we extract one or more gates with the highest fixability
from each violating path segment. By the shielding effect and
the propagation property, we can fix timing by concurrently
selecting an appropriate spare cell for each extracted fixable
gate. For easier understanding, we explain the case of extract-
ing one gate per segment first, and then extend to the case
with multiple gates per segment later. Similar to [6], we also
perform buffer insertion, and thus the buffers and inverter pairs
on timing violating paths are initially removed before spare
cell selection.

We reduce spare cell selection to minimum weight per-
fect matching [10]. The bipartite graph B = (GC, GS, EB)
contains a set GC of fixable gates, a set GS of spare cell
candidates, and a set EB of edges connecting fixable gates
and spare cell candidates. Let node gci

∈ GC denote the most
fixable gate on the ith violating path segment and spare cell
gsj

∈ GS denote a spare cell candidate. A spare cell candidate
may be used for gate sizing or buffer insertion. An edge
e(ci, sj) ∈ EB is constructed if gsj

is gci
’s spare cell candidate;

the weight w(gci
, gsj

) expresses the slack if gci
is matched to

gsj
. Fig. 7 shows a bipartite graph constructed for minimum

weight perfect matching.
For cost-effective timing ECO, we prefer the spare cell that

can just clean the violation (i.e., zero weight). w(gci
, gsj

) is
within the range [0, 2]

S′(ci|sj) = R(gci) − A(gsj).
w(gci, gsj) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, S′(ci|sj) = 0
S′(ci|sj)

maxk{S′(ci|sk)|S′(ci|sk) > 0} , S′(ci|sj) > 0

1 +
S′(ci|sj)

mink{S′(ci|sk)|S′(ci|sk) < 0} , S′(ci|sj) < 0.

(12)
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Fig. 8. Example of multiple fixable gate extraction. Two gates are extracted
from this violating path segment.

Fig. 9. Violating path segment composition.

To reduce the search space of spare cell candidates, for each
extracted fixable gate, we first consider spare cells located
within the convex hull of its fan-out gates (based on the
loading dominance mentioned in Section II) and the gates
on its corresponding timing violating path. If there exist
no available spare cells that can improve timing inside the
convex hull, we then enlarge the search region to the bounding
polygon proposed by [8]. In addition, we omit the spare cells
that cause more timing violations. If it fails to find any spare
cell candidates, we switch to the second highest fixable gate.
Based on the requirement of perfect matching on a bipartite
graph, if fixable gates and included spare cells are of unequal
cardinality, dummy gates or cells are added, and each related
weight is set to a large constant value.

Once the selected fixable gates on two violating path seg-
ments are directly connected, the gate with higher fixability is
handled first because of the shielding effect. Since we identify
the highest fixable gate on each violating path segment, we can
fix timing more cost effectively. Note that the selected spare
cells are applied after violating path segment composition.

To further effectively utilize the higher fixability gates, we
extend the extraction process from one gate per segment to
multiple gates per segment. We try to estimate the number of
extracted gates for each segment as follows. First of all, we
sort and extract the gates for each segment in the nonincreasing
order of fixabilities. Then, the number of gates to be extracted
for each segment is determined as follows. Assume that some

Algorithm 1 Cost Effective Timing ECO

1: while there exist timing violating paths do
2: Remove buffers and inverter pairs with large delay
3: foreach timing violating path P do
4: Decompose P into violating path segments
5: Generate Bezier curve C for P

6: Generate convex hull for P

7: foreach P(i, j) in P do
8: foreach gate g on P(i, j) do
9: Compute fixability

10: foreach P(i, j) do
11: Extract critical gates and their related spare cells
12: Apply minimum weight perfect matching
13: Compose violating path segments
14: Update violating paths
15: Rewire design

violating path segment has slack Si < 0 and gates gc1 , gc2 , . . .

in the nonincreasing order of fixabilities. We have

Si ≥ −
n∑

j=1

max
k

{S′(cj|sk) − Si} (13)

where n is the number of extracted gates from this segment
and maxk{S′(cj|sk)−Si} is the upper bound of improvement on
gcj

’s slack. n is the minimum number of extracted gates to fix
the timing violation of a segment. For example, as shown in
Fig. 8, we have one violating path segment with slack −3. The
fixability for each gate and its maxk{S′(cj|sk) − Si} value are
indicated beside each node. We extract gates from the highest
fixability gate g3 until the segment’s slack is larger than or
equal to the sum of estimated fixable slacks. In this example,
we extract gates g3 and g1 (−3 ≥ −(2 + 1)) as highly fixable
gates for this segment. Similar to the extraction process in one
gate per segment, once the selected fixable gates are directly
connected, the gate with lower fixability will be ignored at
this iteration.

D. Violating Path Segment Composition

After spare cell selection, all violating path segments are
combined for timing check and/or the next iteration.

Without loss of generality, we consider two violating path
segments that join or fork at some node gk. Assume the
original edge slack of P(i, j) (P(l, k), respectively) is S1 (S2).
Their highest fixable gates are ga and gb, improved by t1 and
t2. As shown in Fig. 9, there are four cases for merging these
two violating path segments as follows.

Case 1) See Fig. 9(a). There are still two segments: P(i, j)
is of edge slack S1 + t1, and P(l, k) is of edge slack
S2 + t1 + t2.

Case 2) See Fig. 9(b). There are three segments: P(i, k) is of
edge slack S1 + t1, P(l, k) is of edge slack S2 + t2,
and P(k, j) is of edge slack S1 + max{A(u) + D(k) −
t1, A(w) + D(k) − t2}.

Case 3) See Fig. 9(c). There are still two segments: P(i, j)
is of edge slack S1 + t1, and P(k, l) is of edge slack
S2 + t1 + t2.
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Fig. 10. Layout of Industry3. (a) At iteration 1, on the timing violating path from S to E, the corresponding Bézier curve and five selected fixable gates are
highlighted. (b) Result after iteration 1. (c) At iteration 2, two fixable gates are selected in the re-extracted timing violating path. (d) Result after iteration 2.

Fig. 11. Comparison between our basic framework and the final one. Here,
we show one of the timing violating paths in Industry4. (a) and (b) From our
final framework. (c)–(f) From our basic framework. (a) At iteration 1, three
fixable gates are extracted from segment 1. (b) Result after iteration 1. (c) and
(d) Iterations 1 and 2 for the basic framework. (e) At iteration 3, two fixable
gates are extracted from segments 1 and 2. (f) Result after iteration 3.

TABLE II

Statistics of the Benchmark Circuits

Circuit Gate #Spare Cycle #Violating Max #Gate WNS TNS
Name Count Cells (ns) Paths #Gate Passed (ns) (ns)
Industry1 28 927 860 38 16 164 2604 1.1 9.8
Industry2 200 504 860 40 80 178 13 627 10.8 312.0
Industry3 91 107 860 37 27 173 4059 19.3 319.0
Industry4 18 932 860 18 22 85 1278 6.8 70.0
Industry5 38 011 8600 18 137 72 9160 2.8 161.0

Case 4) See Fig. 9(d). There are three segments: P(i, k) is of
edge slack S1+min{R(v)−D(v)+t1, R(w)−D(w)+t2},
P(k, l) is of edge slack S2 + t2, and P(k, j) is of edge
slack S1 + t1.

To be cost effective, we can define redundant fixable gates
based on the above classifications.

Definition 7: A fixable gate is redundant if its correspond-
ing violating path segment is completely fixed by another
fixable gate.

For example, in Fig. 9(a), if S2 + t1 ≥ 0, the fixable gate gb

is redundant. Hence, we apply only the selected spare cells of
irredundant gates.

E. Complexity Analysis

Our overall procedure is summarized in Algorithm 1. The
timing ECO is performed when there exist timing violating
paths reported by the STA engine. Line 2 removes the buffers
and inverter pairs with large delay. Then, in lines 3–6, for each
timing violating path, we decompose it into path segments
and generate the corresponding Bézier curve and convex hull.
For each violating path segment, lines 7–9 compute fixability
for each gate along the segment. Next, lines 10 and 11
extract critical gates and their related spare cells for each
path segment. After that we apply minimum weight perfect
matching in line 12 to select appropriate spare cells, compose
violating path segments in line 13, and update violating paths
in line 14. Finally, spare cells are rewired in line 15.

Assume there are n timing violating paths and k spare cells;
each path has m gates. (nm << |G| and k << |G|.) Bézier
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TABLE III

Comparison Between [8], [9], and Our Method

Circuit Initial DCP [8] ILP [9] Ours
Name TNS #Violating #Spare TNS Runtime TNS Runtime TNS Runtime #Resulting #Used #Released #Ite. Max #Path #Path

(ns) Paths Cells (ns) (s) (ns) (s) (ns) (s) Spares Buffers Buf./Inv. Shared Segments
Industry1 9.8 16 860 0.00 6.12 0.00 42.42 0.00 0.28 880 0 8/12 1 16 19
Industry2 312.0 80 860 0.00 25.71 0.00 109.48 0.00 3.90 893 0 7/26 2 30 138
Industry3 319.0 27 860 14.93 12.33 0.00 26.29 0.00 0.99 949 0 19/70 2 27 73
Industry4 70.0 22 860 6.27 24.31 0.00 55.41 0.00 0.05 898 0 32/6 1 9 22
Industry5 161.0 137 8600 0.00 1761.16 0.00 3182.87 0.00 9.69 8600 0 0/0 31 5 137
Ratio 1.00 122.71 229.14 1.00 1.01

TABLE IV

Comparison Between Our Basic Framework, Resource-Aware Fixability, and Our Final Framework

Circuit Ours Final (+Multiple Extracted Gates Per Seg.) +Resource-Aware Fixability Basic [7]
Name Runtime #Resulting #Used #Released #Ite. Runtime #Resulting #Used #Released #Ite. Runtime #Resulting #Used #Released #Ite.

(s) Spares Buffers Buf./Inv. (s) Spares Buffers Buf./Inv. (s) Spares Buffers Buf./Inv.
Industry1 0.28 880 0 8/12 1 0.39 879 1 8/12 1 0.38 879 1 8/12 1
Industry2 3.90 893 0 7/26 2 6.13 895 0 7/28 3 6.14 895 0 7/28 3
Industry3 0.99 949 0 19/70 2 1.14 944 1 17/68 2 1.11 944 1 17/68 2
Industry4 0.05 898 0 32/6 1 0.31 898 0 32/6 3 0.29 898 0 32/6 3
Industry5 9.69 8600 0 0/0 31 41.56 8553 47 0/0 74 53.01 8553 67 0/0 73
Ratio 1.00 0.00 1.00 1.00 3.32 0.71 1.00 2.24 4.09 1.00 1.00 2.22

curve generation for one timing violating path can be done
in O(m2) time. The running time for generating the convex
hull for one timing violating path is O(m2) in the worst case.
Extracting critical gates and their related spare cells can be
done in O(nmk) time. The general approach of minimum
weight perfect matching takes O(X2Y ) running time, where
X = nm+k and Y = nmk. All other steps could be performed in
O(nm) time. Hence, the overall running time of our framework
for one iteration is O(nm + nm2 + nmk + X2Y ) = O(X2Y ) =
O(n3m3k + nmk3 + n2m2k2).

V. Experimental Results

Our algorithm was implemented in the C++ programming
language with a LEDA package [1] on a Linux workstation
with a 2.33 GHz Intel Xeon CPU and 12 GB memory.

The experiments were conducted with five industrial bench-
mark circuits adopted in [8] and [9]. The statistics of these
circuits are summarized in Table II, including the benchmark
name (Circuit Name), the number of gates in each design (Gate
Count), the number of available spare cells (#Spare Cells), the
clock period (Cycle), the number of timing violating paths
(#Violating Paths), the maximum number of gates on one
timing violating path (#Max Gate), the total number of gates
passed by the timing violating paths (#Gate Passed), the WNS,
and the total negative slack (TNS). Same as the prior works in
[8] and [9], the slack of a timing violating path is defined by
the node slack of its ending point. Hence, WNS is the amount
of the negative slack of the most violating path, while TNS is
the sum of the negative slacks of all reported violating paths.
For fair comparison, the cell timing and wire delay models
used in our experiments are the same as [8] and [9].

Table III gives the comparison of dynamic cost program-
ming (DCP) method in [8], integer linear programming (ILP)
method in [9], and our algorithm on TNS and runtime. We also

list the number of resulting spare cells (#Resulting Spares)
and the number of released buffers or inverters (#Released
Buf./Inv.). Generally, the number of released spare cells is
significantly larger than that of used. Hence, our algorithm
is very cost effective. In addition, our algorithm can improve
smoothness by the guidance of Bézier curves. Interestingly, it
can be seen that our algorithm does not need any buffers to
complete the timing ECO in these five cases.

We fixed all timing violations in the shortest runtimes and
achieve 122.71X and 229.14X speedups over [8] and [9],
respectively. Compared to the number of gates passed by all
timing violating paths (#Gate Passed), the number of path
segments (#Path Segments) is very small. Consequently, the
problem size is significantly reduced. The maximum number
of timing violating paths shared (Max #Path Shared) reveals
that some gates are shared by multiple paths; once the timing
violating paths are fixed, timing can be effectively improved.
In particular, the number of iterations (#Ite.) is small, implying
that our algorithm converges very fast. Fig. 10 shows the
layout of Industry3, where timing violating paths are well fixed
by the guidance of Bézier curves after only two iterations.

We have also performed two additional experiments to
examine the effectiveness of our two key ideas. One is the
resource-aware fixability, spare-cell availability consideration
in the fixability, and the other is the multiple gate extraction
scheme. Table IV summarizes the comparison of these two
key ideas. “Basic” means our basic framework that does not
consider spare-cell availability and extracts only one highest
fixable gate at a time [7]. “+Resource-Aware Fixability” means
our basic framework with spare-cell availability consideration.
“Ours Final” means our final framework presented in this
paper with resource-aware fixability and multiple gate extrac-
tion. If some fixable gates have no spare cells inside their
bounding boxes, we should reduce their fixabilities, and α

was set to 0.5 in these experiments accordingly. It can be
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seen that the resource-aware fixability can guide fixability
more accurately, and consume fewer buffers. Furthermore,
the multiple gate extraction scheme reduces the number of
iterations and buffer usage (even to zero). Compared with our
basic framework, the running time for the final framework
can be further reduced by 4.09X due to the two key ideas.
Fig. 11 shows the effectiveness of our final framework. It can
be seen that we can fix Industry4 in one iteration, while the
basic framework takes three iterations and needs one more
sized gate to fix all timing violations.

VI. Conclusion

Different from negative slack and gate delay, we presented
a new metric of timing criticality. Based on the metric, we
developed an efficient and cost-effective timing ECO engine.
The engine adopted Bézier curves to smooth the timing vio-
lating paths, applied the propagation property to concurrently
fix timing violations with all violating path segments, and
used minimum weight perfect matching to select better spare
cells. The experimental results showed the effectiveness and
efficiency of our algorithm.
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