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Abstract--This paper presents a new method for estimating linearized dynamic characteristics of 
bearings using a priori information about the rotor. The rotor-bearing systems considered here are 
composed of a flexible shaft, which may be changed stepwise along the axial direction, and multiple 
rigid disks supported on anisotropic bearings. The main feature of this estimation technique is that it 
eliminates the need to measure the external input force. Since the system considered here is driven by 
an unbalance force, the steady state of the rotor will contain only a synchronous frequency 
component. By applying a Fourier transform to the measured displacement, we can obtain the 
coefficients of the sine and cosine terms with respect to the synchronous frequency. Finally, we 
formulate the normal equation by using the relations between these coefficients and the known 
system, parameters; the characteristics of the bearings are then estimated by the least-squares 
method. The theoretical development of the method is presented together with simulation and 
experimental results. 
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mass 
mass per unit length 
diametric and polar mass moments of inertias 
flexural rigidity 
length of shaft and shaft element 
spin speed 
the position coordinate along the shaft 
etc. damping and stiffness coefficients of bearings 
damping and stiffness matrices of ith bearing 
degree of freedom vectors of shaft element, disk, bearing and global system 
interpolation functions of x and y directions 
translation mass, rotation mass, gyroscopic and stiffness matrices of ith element 
mass, gyroscopic and stiffness matrices of ith disk 
forcing vector acting on ith node including external and disk unbalance force 
global mass, damping and stiffness matrices 
distributed forcing functions in the x and y directions 
forces acting on ith node in x and y directions 
bending moments acting on ith node in x and y directions 

submatrix and composed of first two rows of matrix (.) 
submatrix and composed of first four rows of matrix (-) 
transpose matrix of matrix (.) 
superscripts for bearing, disk, and shaft element 

1. I N T R O D U C T I O N  

During the past decade, many experimenters have devoted attention to identifying the 
dynamic coefficients of bearings experimentally. Burrow and Stanway [1] used PRBSs 
(Pseudo-random-binary sequences) as inputs and obtained the eight linearized coefficients 
of journal bearings using multiple regression analysis. The same approach was applied to 
estimate the two velocity coefficients of a squeeze-film bearing by sampled observations 
from laboratory experiments [2], where the motion of the journal in the vertical and 
horizontal directions were assumed to be uncoupled. Burrows and Sahinkaya [3] de- 
veloped a frequency-domain algorithm to yield estimates of the eight oil-film coefficients by 
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using a Schroeder-phased harmonic excitation, and showed that the technique was more 
efficient than the time-domain algorithm described in earlier work. Stanway [4] used 
a nonlinear filter to estimate the four damping coefficients associated with a squeeze-film 
isolator from time-series records of the displacement responses to synchronous excitation. 
In more recent work, Shahinkaya and Burrows [5] developed a time-domain scheme for 
estimating the coefficients of an oil-film bearing from the out-of-unbalance responses. They 
showed that only four coefficients could be estimated if the signals contained the same 
frequency. Lee and Hong [6] proposed an identification scheme for estimating the coeffi- 
cients of a bearing from the out-of-unbalance responses and showed the eight coefficients 
could be fully identified by using four sensors at two locations for two different unbalance 
conditions. The system considered in these studies [1-6] comprised a rigid rotor supported 
by two short journal bearings. Through the use of a priori information about the inertial 
properties of the rigid rotor, the coefficients of the bearings can be estimated by measuring 
the input force and responses. In reality, however, the bearings are anisotropic in character 
and their stiffness and damping coefficients are functions of the speed of rotation. For 
a flexible shaft in a real case, the results obtained by these approaches may be acceptable for 
a rotor running at a speed under the first flexible mode, but at higher flexible modes there 
may be a significant error in the estimates produced by these methods. In addition to the 
above limitation, most of these approaches [1-5] stipulate that the system be supported 
symmetrically by two identical bearings, and in general this restriction is not compatible 
with real situations. Kim and Kwak [7] proposed a method based on the Timoshenko 
beam theorem for identifying the stiffness and damping coefficients of isotropic bearings by 
using the transfer matrix method. But this method can only be applied to static situations 
(nonrotating condition); that is, the changeable characteristics of the bearings at different 
speeds of rotation are not addressed. 

The rotor-bearing systems considered here are composed of a flexible shaft that may be 
changed stepwise along the axial direction and multiple rigid disks supported on anisot- 
ropic bearings. Each bearing can be represented by eight linearized parameters, i.e. four 
stiffness and four damping coefficients. The equations of motion can be obtained by using 
the extended Hamilton's principle to yield partial differential equations. Through the finite 
element method, the partial differential equations are discretized in space so that they have 
finite dimensions. This paper presents a coherent strategy for estimating linearized charac- 
teristics of bearings based on a priori information about the rotor. The main feature of this 
identification technique is that it eliminates the need to measure the external input force. 
Since the system considered here is driven by an unbalance force, the steady state of the 
rotor will contain only a synchronous frequency component. By applying a Fourier 
transform to the measured displacement, we can obtain the coefficients of the sine and 
cosine terms. Finally, we formulate the normal equation by using the relations between 
these coefficients and the known system parameters; the characteristics of the bearings are 
then estimated by the least-squares method. 

2. EQUATIONS OF MOTION 

Consider a flexible rotor system consisting of D disks and B bearings, as shown in Fig. 1. 
For simplicity, assume that discontinuity in stiffness, damping caused by the bearing, and 
inertia caused by the disks are well represented by a train of delta functions along the shaft 
axis. The equations of motion, including the effects of gyroscopic and rotary inertia in the 
inertial coordinates, can be obtained as follows [8]: 

I ~-~ J + ~z2LEI(z)~z2J 

+ kL(z)x + k  (z)y + cL(z); + =L(z, t) 

pA(z) ~f¢ + az [J(z) azatj + Uz 2 

+ k~x(Z)X + kby(z)y + c~(z)2 + e~r(z)~9 =fy(z, t) (1) 
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Fig. 1. A general rotor-bearing system. 

where 0 < z < L and 

pA(z )  = 

I(z)  = 

k ~ ( z )  = 

k~x(z) = 

B 
cL(z) = Y, 

i=1 
B 

4x(z) = Z 
i=1 
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functions of the spatial 
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peAe(z) + ~ rn~a(z -- z~) 

i=1 
D D 

i f ( z )  + ~, I~ 6(z - z~) J(z)  = J¢(z) + Z J~(6(z  - z d) 
i=1 i=l  

B B 
kx.,b 6(z -- z~) k~r(z) = Z k~,, 6(z  - z~?) 

i=1 i=1 
B B 

Z krL, 6(z - z~) k~,(z) = ~ k,~, 6(z  - z~) 
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b ~(~ _ z~) c~,(~) = X eL, ~(z - z, ~) Cxxi 

i=1 
B 

i=1 

of the rotor-bearing system shown in Eqn (1) may be complicated 
variables for a system configuration, so an exact parameter 

identification may not be feasible. This implies that the direct use of Eqn (1) for identifica- 
tion purposes is not practical. Since in practice the diameter of a shaft often changes 
stepwise along the axial direction, we propose an identification approach based on the finite 
element method. 

Let q~ be the nodal displacement vector of the ith element with eight degrees of freedom, 
four degrees of freedom of displacement in the x and y directions and four of rotation about 
the x and y coordinates (see Fig. 2). The term nodal derives from the fact that in finite 

X ~ Z  ®d 

y ~ ~ lOr~ 

I 
Fig. 2. Nodal coordinates of the shaft element. 



200 Juhn-Horng Chen and An-Chert Lee 

element terminology the boundary points are called nodal. Let tkx and Cr be the interpola- 
tion functions of the x and y coordinates, which are the lowest degree admissible poly- 
nomials, i.e. the cubic spline. In particular, we have 

q~ = [x~ Yi lOri loci xi+i Yi+i lOt(i+1) lOx(i+i)] t (2) 

Cx = [q~x~ 0 q~2~ 0 ~b3x 0 ¢ , ~  0]'  (3) 

¢~ = [o 4 ~  o - ~  o ~ o - ¢ , ~ ] '  (4) 

x = ¢ t  q~ y = ¢ ~  q~ 

[;]=r< L,~H q~ = ~btq~ ~b = [¢x, q~y]s×2 (5) 

where 

])ix --~" ely 

¢ 3 x  = ~b3y 

in which 4 denotes the 
(Z -- Zi)/l. 

= 243 - 3¢ 2 + 1; ¢2~ = ¢2r = 43 - 242 + ¢ 

= - -  243 -t- 3¢2; ~b4x = ~4y ~--- ¢3 _ 42 0 ~ 4 ~ 1 (6) 

non-dimensional natural coordinate for the ith element and equals 

where 

M ¢  Zl ~. ~ "~ d + G, qj =fj (8) 

i 0] [0 
M~ = m~ If~ 12 G~ = f ~  

0 I~/l 2 0 

q') = [xj ,  yj,  lOrj , lOxj] t 

0 0] 
0 - J ~ / l  2 

- J ~ / l  z 0 

By using Galerkin's formulation of the weighted residual method [9], we obtain the 
element mass, damping and stiffness matrices for the shaft: 

= Pi A i ¢  (z) dz  M7 ¢(z) "°  ° '  
i -  1)/ 

= IpeA[. f~ (4pxCt + ¢r¢ t r )de  = m7 Ls (translation mass matrix) 

M I  = ,-,¢(z)'{oTA~ ¢ ' (z )  - [ I~¢ t ' ( z ) ] ' }  dz  

I~/12I: , t ,  t t ,  r (~bxCx + ~brq~r)d4 = mi Lr (rotatory mass matrix) 
d o  

y, [ - 1  u - (J iC,  (z)) dz G ~ =  4,(z).f~ o , , 
, -  iv  J ,  Cx(z)]  J 

~-]Ji/12 I )  , t, , t, c = (qSrCx de  - = c~ CxCr) d4 L° (gyroscopic matrix) 
d o  

K~ = d~(z)'{[ETIT~2"(z)]"} dz  
i - l I /  

E, iT/l 3 ;~  (,~,,,~., ~,,tht,,'~rl2 e = , . ~ . ~  + .~r.~y , -~  = ki LR (stiffness matrix) (7) 

where m7 = lp "Ai ,  ~ mir = lifte 2, tie = QJ~/I 2, and k~ = EiI~/l 3 are scalar and depend on the 
properties of the rotor. Since interpolation functions ¢r and ¢~ are given, the following 

= ,6' q~t,) d4, Lc 8 x 8 known local matrices L~ = ~ (~b~bt~ + ¢y¢t)d4, Lr ~o ~ (¢,¢t, + ~-r r 
1 t t t  n t n  = (¢~b~ can =~o($y~bx d4 - ~b~¢r)d4,t' and Lk ~ ,, t,, + ¢rqSr )de be obtained as shown in 

Appendix A. 
The ith thin rigid disk at the flh node has an equation of the following form: 
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The ith linearized bearing at the j th node is represented in the direct stiffness and 
damping [10] approach as 

F ~ ,  ~,,l ¢ + I -k~' e,, l  ~ ~ ~ b b b q i  = Ci qj + K~ qi  = 0 (9) l_c';~i c . d  J L ky.~ kyri A 

where qb.j = IX j, y j] and we assume that no external force is acting on the bearing. 
The global mass, damping, and stiffness matrices, M, C and K respectively, are obtained 

by carrying out the so-called assembling process [9], which represents the transition from 
the individual finite elements to the whole structure. As shown in [9], the equations of 
motion have the form 

M/~ + Ctj + Kq = F (10) 

3. DERIVATION OF IDENTIFICATION FORMULA FOR CASE A: 
ROTOR PARAMETERS ARE ALL KNOWN 

For ease of presentation, assume that the rotor is supported by two bearings at each end 
of the shaft, divided by n elements, and driven by an unbalance force with spin speed fL 
Then, Eqn (10) takes the following form: 

~+ 

+ 
[EGiJG 1 

. , °  

[[Io  ] 
,~+ q 

+ [ [c~ o] [[X~ O] 
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M~ 
[0] 

c~ 
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G~ 

: Mal~ "t- cat~ "t- Kaq --I- cbl~ + Kbq = F(t) (11) 
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Here it is assumed that there is no external force acting on the bearings and no bending 
moment on the system. Consider the case when the rotor parameters, including shaft and 
disks, are all known. M”, c”, and K” are (4n + 4) x (4n + 4) known matrices, and Cz, KF 
(i = 1, 2), 2 x 2 unknown submatrices to be estimated. The responses about the deflection 
angle for this case can be replaced by deflections as will be shown in the following. 

We arrange 4 in the form [z’, O’]‘, F in [f’, T’]’ in Eqn (ll), where z = [x1, x2, . . ..&+I. 
Y~,Y~,...,Y~+~I~, 0 = ~le,,,le,,,...,le,,,+,,,le,,,ze,,,...,le,,,+~,lt,f=fx~,fx~,...,fx(~+~), 
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fr l ,  fy2 . . . . .  fy(~+l~] t, and T = [Txl ,  T~2, ... ,  T~(~+,), Trl,  Ty2,..., Tr(~+I~] t =  0. Equation 
(11) can then be rewritten as 

moz mool I_Co= cool Lkoz kool 

(12) 

where Cz b and kz~, the damping and stiffness matrices of the bearings, have the following 

b 
Czz 

form: 

- b b " "  0 Cxx 1 " "  0 Cxy 1 

0 b b "'" Cxx 2 0 "'" Cxy 2 

Cbxl 0 b . . .  0 • • • C y y  1 

b b 
0 "'" Cyx2 0 "'" Cyy 2 

(2n + 2)x (2n + 2) 

kbz = 

- b . . .  b . . .  
k x x  I 0 k xy  I 0 " 

0 b b kxx 2 0 . . . . . .  kxr2 

k br x l ... 0 krbyl -.. 0 

0 b "'" k r x  2 0 "'" kyb2 

(2n + 2) x (2n + 2) (13) 

From Eqn (12), the following equations can be obtained: 

b • b mzz~ + Czz~ + kz~z + mzoO + C~oO + kzoO + C=zZ + kz~z = f (14) 

moz~ + Coz~ + kozz + mooO + cooO + kooO = 0 (15) 

Applying a Fourier transform to the vectors z and 0, one obtains 

z(t) = zccos fh  + zs sinflt  (16) 

O(t) = 0c cos fh  + 0~ cos f~t (17) 

where zc, zs, 0c, and 0s are (2n + 2)x 1 constant vectors. 
By substituting Eqns (16-17) into Eqn (15), the following relationship can be obtained: 

0~ = Ez~ + Fzs (18) 

0~ = Gz~ + Hzs (19) 

We can substitute Eqns (16-19) into Eqn (14), extract the first and (n + 2)'th rows of Eqn 
(14), and take the transpose on both sides to obtain the following equation: 

w~ cos f~t + wt~ sin f2t), ×, P ,  × 2 = ( f t  cos fit  + f t  sin flt)l × 2 (20) 

where pt = [C b Kb], W(t) = [21(0, 3)1(0, X,(t), yl(t)]  t = (WcCOSflt + w~ sin f~t), and w~, w~, 
f~o, andfa~ are constant matrices and functions ofz¢ and z~. The matrices E, F, G, H, w~, w~, 
fao, and fa, are derived as shown in Appendix B. 

Since the estimates of the parameter matrix P, denoted by ~, will be inexact because of 
random disturbance and measurement errors, an error vector function e(t) can be defined as 
follows: 

et(t) _ t t t sinf~t] ~ (21) -f~o cos f2t + f~s sin fi t  - [wt¢ cos f~t + w~ 
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We can now define a cost function, C, as the integral over a cycle 0 to 2 ~ / f  of the error 
squared, i.e. 

j , 21t/L'l f ~/L'l 2 C = et(t) e(t) d t  = ~ e2(t) a t  (22) 
0 i = i  

Now we will choose ~ in such a way that the cost function C is minimized. Differentiate 
C with respect to P and equate the result to zero'to determine the condition that minimizes 
C. Thus 

f ~tlQ ~C/~3P = -- 2 [wtscosft + wts sin f t ]  t [ f t ~ c o s f t ]  + f t ~ s i n f t ]  

+ 2{wtcos f t  + wt s i n f t ]  t [ wtccos f t  + wt~sinft]~dt = 0 (23) 
This yields 

AP = B (24) 
where 

A = [we cos f t  + ws sin f t ]  [wt~ cos f t  + w~ sin f t ]  dt 

B = [wccos f t  + wss in f t ]  [ft, o c o s f t  +ftssinf~t]dt (25) 

and A and B are 4 x 4 and 4 x 2 matrices. Equation (25) involves the integration of a product 
of two sinusoidally varying signals. To solve for matrices A and B the following relation- 
ships were used: 

i02~1~ ;~n/~l 
sin e f i t  dt = cos 2 f t  dt = rc/f (26) 

f n/fl sin f t  cos f t  dt = 0 (27) 

Then A and B can be obtained as 

A = ~ / f  (wc w~ + w~w~) (28) 

B = rc/f (w~ft,¢ + wsft~) (29) 

and they are independent of time. From Eqns (24), (28) and (29), P can be solved as 

= A-  1B (30) 

This result is called the least-squares estimator (LSE) of P. Equation (24) is referred to as the 
normal equation and C is called the residual in the statistics literature. 

Equation (30) will yield the required coefficient estimates only if A is non-singular, and it 
is necessary to establish the conditions under which this is satisfied. It can be shown that if 
two independent sinusoidal signals exist at the same frequency f ,  then any other signal can 
be expressed as a linear combination of them. Hence if the number of variables, n, in vector 
w is greater than 2, then (n - 2) linear relationships exist between the n variables. This 
entails that the rank of A is 2; A is thus singular and no unique solution for P is possible. To 
overcome this problem, we use two different spin speeds to estimate the eight bearing 
coefficients. From engineering considerations, although different spin speeds result in 
different coefficients of the bearings, the coefficients of the bearings can be assumed to vary 
smoothly and only slightly when the spin speed changes slightly. Thus, the bearing 
characteristics can be assumed to be equal at two close spin speeds. Equation (24) can be 
rewritten as 

A,P, = B, (i = 1, 2) (31) 

where the index i denotes that the system was driven at spin speed f i -  
Since the difference between P1 and ~2 is small, they can be set to be ~ and the following 

equation can be derived. 

(A1 + A2) f~ = (B1 + B2) (32) 
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The solution of Eqn (32) can be obtained by the least-squares method. 

P = (A: + A2)-1 (B1 + ]]2) (33) 

A block diagram of the estimation process proposed in this section is shown in Fig. 3. The 
(n + 1)th and (2n + 2)th rows of Eqn (14) can be extracted by a similar procedure to 
estimate the parameters of the second bearing. 

4. DERIVATION OF IDENTIFICATION FORMULA FOR CASE B: 
ROTOR PARAMETERS IN THE VICINITY OF THE SUPPORTS KNOWN 

In this case the characteristics of the bearing are to be estimated when the rotor 
parameters in the vicinity of the supports are known. For example, the characteristics of 
bearing 1 are to be estimated when (M])*, (M~)*, (C])* and (K])* are known. We extract 
the first two rows of Eqn (11) and reorganize them in the following form: 

Cb 371 + K b  Yl = [ ( M ] ) * + ( M ] ) * ] g t ] ( t ) - ( C ] ) * g l ] ( t ) - ( K ] ) * q ] ( t ) = - f .  (34) 

From Eqn (34), f .  can be regarded as an artificial force vector, and it Can be measured 
since the characteristics of the first segments (M])*, (M])*, (C])*, and (K])* are specified. 
Introduce the 2 x 4 matrix 

and the 4 x 1 vector 

e t = I f  b I~ b'] (35) 

w(t) = [21 (t), ~1 (t), x l  (t), Yl (t)] t (36) 

In terms of this notation, Eqn (34) can be rewritten in the form 

ptw(t) = f.(t) (37) 

The transposition of each side of Eqn (37) yields 

wt(t)P = ft(t) (38) 

Since the response of the rotor contains only a synchronous frequency component, by 
a process similar to that in Case A, Eqn (38) can be written as 

(w t cos fit  + w t, sint)t) a 6 = (fta¢ cos ~ t  + f~, sin ~zt)  (39) 

where 

and 

w(t) = (w, cos ~ t  + w, sin fit) 

f,(t) =fac COS t)t + f , ,  sin Ozt 

The error vector e(t) becomes 

et(t) =(ftac COS ~ t  + f~ ,  sin flzt) -- (w~ cos £~t + w t, sin ~t)-fi 

k n o w n  s y s t e m  
p a r a m e t e r s  

! 

System Model Z( t )~_Zo ,Z . lLeas t - squares  

( w h e r e  Z ( t ) = [ x l ,  xz . . . . .  xn+l, Yl, )12 . . . . .  Yn+l ] t )  

Fig. 3. Block diagram of the estimation process (Case A). 

(40) 
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and the cost function has the form 

f~ / t )  £ 2 ~/l'~ 2 
C = e t (t) e(t) dt = Jo ,~l e2 (t) dt (41) 

Differentiating C with respect to P and equating the result to zero, one obtains 

AP = B (42) 

here A = n/t) (w~w t + wswts), B = rc/f~(wcft¢ + w~ft~), and A and B are 4 x 4  and 4 x 2  
matrices. 

If a single spin speed is used, the rank of A is 2 and singular. By the same assumption as in 
Case A, we can use two spin speeds to estimate the value of the coefficients of the bearings. 
A block diagram of the estimation process is shown in Fig. 4. 

5. D E R I V A T I O N  OF I D E N T I F I C A T I O N  F O R M U L A  F O R  CASE C: 
R O T O R  P A R A M E T E R S  ARE U N K N O W N  EXCEPT F O R  THE 

MASS OF E L E M E N T S  IN THE V I C I N I T Y  OF THE S U P P O R T S  

When the rotor parameters are unknown except for the mass of elements in the vicinity of 
the supports (m~), the characteristics of bearing 1 are to be estimated. Referring to Eqn (7), 
we can rewrite Eqn (34) as 

[ Cb' O 2 x 6 1 2 x 8  4~ "~ [ Kb, O2x6"]2x 8 q] + m~ L*/~] 

re T* .~ t.~ , *  . . . .  ~ I *  Z~ (43) 

From Eqn (43), we can set 

e i  = b b b Cxxl, P2 P3 ~-- = Cyx Cxyl, 1~ 

P5 kbxxl, P6 b b = = k x , 1 ,  P T = k r × l ,  

P9 = mrl, PlO = c], P l l  = k] 

Then Eqn (43) can be written in the following form 

D (P) W(t) = f ,  (t) 

where 

b 
P4 = Crrl 

P8 = krbrl 

D(P) = [D1, D2, ... ,Ds]  

D1 = [C b, O2x612x8 D 2 = [K'~, O2xt]2x  8 

D3 = m~. L* D, ,  = c]  L* 

Ds = k~_ L* 

W(t )  --  [ (d ] )  t, (qei)t , ('[1~)', ( ~ ) t ,  ( ~ ) t ] t  

f~(t) = -- m~ Ls* ql"e 

P = [P1,  P2,  . - . ,  Pll  ]t 

System Model 
(Equation 11) 

operates at two! 
close spin speeds 

(where q;(t) = 

known system 
p a r a m e t e r s  
m~, ra~, e~, k~' 

,V 

q~(t) ~ - ~ q ~ ' , q ; ~  L e a s t - s q u a r e s ~ _ ~  

xl, Yl, l®yt, l@xt, x2, y2, 10y2, lSxe] t) 

Fig. 4. Block diagram of the estimation process (Case B). 

(44) 
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The matrix D can be written as 

11 
D(P) = ~ (OD/OPn)P. (45) 

n = l  

and Eqn (44) can be expressed explicitly in the form of parameters as follows: 

11 
[(3D/OP.) W(t)] P, =f , ( t )  (46) 

.=1 

The main feature of Eqn (46) is that the system parameters are extracted from the 
matrices, which makes the identification feasible. 

Let a, = (0D/OP.)W(t) be a 2 x 1 vector obtained by multiplying displacement, velocity, 
and acceleration by the corresponding matrices. The details of a. are shown in Appendix C. 
Rearrange Eqn (46) and introduce the equation 

a(t)P = f i t )  (47) 

where 

a(t) = [al,  a2, . . . ,a11] 

a is a 2 × 11 known matrix, f~ is a 2 x 1 known vector, and P is a 11 x 1 unknown vector to 
be estimated if the mass of the first element (i.e. m] ) is known. There are two equations and 
11 unknowns to be solved. The steady state of the rotor will contain only a synchronous 
frequency component, hence by applying a Fourier transform to the measured displacement 
q] (t), one obtains: 

q] (t) = q] ~ cos ~t  + q]s sin f~t (48) 

where the constant vectors q]~ and q]s are generated by the Fourier transform. Thus: 

q] = f~(q]s cos ~ t  -- q]~ sin f~t) (49) 

q] = -- L')2(q]e CO&~'~t + q]s sin f~t) (50) 

Substituting Eqn (48-50) into Eqn (47) and rearranging the sine and cosine terms, one can 
obtain: 

[a~cos f~t + assin f~t)P =f~ccos~t  +f~ssinf~t (51) 

where a~ and as are 2 x 11 constant matrices and f~o and f~s 2 x 1 constant vectors. Similar to 
Case A, we can obtain the normal equation as follows: 

AP = S 

where 

A = ~/~ (at~ac + atsas) 

B =  /f (a' fao + a'sfas) 

(52) 

(53) 

(54) 

known system 
parameter 

m~ 

System Model] ) ' J ~ '  q~' q~L Least - s q u a r e s l ' ~  / 
(Equation 11) / q~(t Estimator f ~ , k ~  

operates at two I 
close spin speeds 

(where q~(t)= [xv Y,, l®y,, t~l ,  x2, Y2, L®y2, t®x2 ]~) 

Fig. 5. Block diagram of the estimation process (Case C). 

MS 37:2-H 
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and they are independent of time. The rank of 11 x 11 matrix A is 4 when a single spin speed 
is used. Although the rank A can be increased to 8 by using two different spin speeds, it is 
still singular. The dimension of ai must be increased and, therefore, the first four rows of Eqn 
(11) must be extracted. To increase the dimension ofa~, we replace the 2 x 8 matrices L*, L*, 
L*, and L* by 4 x 8 matrices Lff, L~,  Lff, and Lk ~ . Then a i is modified as shown in 
Appendix D, and Eqn (52) can be rewritten as 

AiPi = Bi (i = 1, 2) 

where the index i denotes that the system was driven at spin speed f~. Assume the difference 
between ~1 and P2 is small and set them to be ~. The parameter vector P can be estimated 
by 

P = (A1 + A 2 ) - I  (B1 + B2) 

6. DIGITAL SIMULATION AND DISCUSSION 

A flexible rotor-bearing system with two bearings mounted at the ends of the shaft is used 
here as a numerical example. The system is modelled by the finite-element method with ten 
elements (see Fig. 6). The Young's modulus E and density p of the shaft are 2 x 1011 Nm-2 
and 7750 kg m-  a. The diametric and polar mass moment inertia of the two disks are 0.292 
and 0.584 kg- m 2. The shaft and disks are symmetric and the unbalance mass for disk 1 is at 
a distance of 2 cm from the geometric center. In the following three cases, the measurement 
responses are taken at spin speeds of 95 and 105 rad s- l, respectively. Here we assume that 
the characteristics of the bearings are the same at these two close spin speeds. The responses 
are contaminated with additive noise of different levels drawn from independent sequences 
of normally distributed random numbers to examine the noise rejection properties of the 
proposed methods. The Noise to signal ratio (NSR) is defined as 

NSR = S T D [ n ( t ) ] / S T D [ s ( t ) ]  (55) 

where n(t) is noise, s(t) is signal, and the operator STD [. ] is standard deviation. Simulation 
results for three cases using different parameter estimators are shown in Tables 1-3. 

In Case A, we assume that the characteristics of the shaft and disks are known. Using the 
method described in Section 3, we can estimate the parameters of bearing 1 (and bearing 2) 
by taking the deflection responses of all nodes (xi, y~; i = 1, 2 . . . .  ,11). The results are shown 
in Table 1. When the characteristics of segment 1 (i.e. rn~, m~, c~, and k~) are known a priori 
for Case B, the method in Section 4 is adopted to estimate the parameters of bearing 1 by 
taking the measurement responses (including deflections and deflection angles) of nodes 
1 and 2 (i.e. x l ,  Yl,  Oyl, Ox:t, X2, Y2, 0r2, 0x2). The results are shown in Table 2. In Case C, 
only the information about the mass of segment 1 (m]) is given. Using the method described 
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Fig. 6. A simulated rotor-bearing system. 
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Table 1. Estimation results from simulation data for Case A 
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k~x(106Nm -1) kby(105Nm -a) k~x(105Nm -~) kbr(106Nm-I i 

True value 2.000 1.000 1.000 2.000 

NSR 0% 1.999 1.000 1.000 1.999 
1.0% 1.999 1.000 0.922 1.999 
5.0% 1.999 1.002 0.995 1.999 

20.0% 2.000 1.010 0.982 1.997 
40.0% 2.000 1.020 0.964 1.994 

(average of 25 signals) 
NSR 1.0% 1.999 1.000 1.000 1.999 

5.0% 2.000 1.002 0.999 1.999 
20.0% 2.000 1.007 0.998 1.999 
40.0% 2.001 1.014 0.993 1.997 

C~x(102 Nsm- 1) c~r(102 Nsm- 1) C~x(102 Nsm- 1) cry(102 Nm-  1) 

True value 6.000 4.000 4.000 6.000 

NSR 0% 6.000 3.989 4.007 5.996 
1.0% 5.994 3.977 4.005 5.990 
5.0% 5.960 3.929 3.995 5.696 

20.0% 5.836 3.752 3.977 5.889 
40.0% 5.677 3.524 3.949 5.783 

(average of 25 signals) 
NSR 0.1% 6.003 3.989 4.007 5.996 

1.0% 6.005 3.992 4.006 5.998 
5.0% 6.017 4.002 4.006 6.006 

20.0% 6.061 4.041 4.004 6.037 
40.0% 6.119 4.095 4.002 6.078 

Table 2. Estimation results from simulation data for Case B 

k~x(106 Nm -1) k~r(105Nm -1) k~x(105Nm -1) k~y(106Nm -1) 

True value 2.000 1.000 1.000 2.000 

NSR 0% 2.000 1.000 1.000 2.000 
0.1% 2.000 0.999 0.910 2.007 
1.0% 2.002 0.999 0.098 2.079 
5.0% 2.000 0.995 - 35.2 2.396 

(average of 25 signals) 
NSR 0.1% 2.000 0.999 0.931 2.000 

1.0% 2.000 0.999 0.981 2.000 
5.0% 2.000 0.997 - 24.4 2.020 

c~x(102 Nsm- 1) ¢by(102 Nsm- 1) c~(102 Nsm- 1) e~y(102 Nsm- 1) 

True value 6.000 4.000 4.000 6.000 

NSR 0% 6.000 4.000 4.000 6.000 
0.1% 5.999 3.999 4.799 6.834 
1.0% 5.931 3.998 11.99 14.34 
5.0% 5.956 3.991 43.81 47.81 

(average of 25 signals) 
NSR 0.1% 6.000 3.999 4.115 6.177 

1.0% 6.002 3.999 5.157 7.767 
5.0% 6.010 3.990 9.820 14.85 



210 Juhn-Horng Chen and An-Chen Lee 

in Section 5, we can estimate the parameters of bearing 1 by measuring the responses of 
nodes 1 and 2 (i.e. xl ,  yl ,  0rl, Oxl, x2, Y2, 0r2, 0~2) as in Case B; the results are shown in 
Table 3. 

The results in Table 1 show that the estimation in this case is less sensitive than those in 
Tables 2 and 3. A high noise to signal ratio (NSR) has little effect on the coefficient estimates 
even when signal averaging is not used. In Table 2, the estimates are refined effectively when 
signal averaging is used. From Table 3, we find that the sensitivity to noise is high even 
when signal averaging is used. 

In our estimates for all cases, the artificial force terms fa, shown in Eqns (20), (34) and (44), 
are the combinations of measurements. This means that the NSRs of the artificial forces are 
no longer equal to the NSRs of the measurements. To further investigate this phenomenon, 
let us derive the NSR of f ,  as a function of the NSR of the measurements for Case B. Neglect 
the velocity term in Eqn (34), which is small in order of magnitude compared with the other 
terms (see Appendix E), and define measurement vector q~ as 

q~ = q~o + q~n = q~c cos ~ t  + q~s sin fit  + q~n 

where q~o is the true value of measurements and qS, is the measurement noise. Then f,(t) can 
be written as 

Vf~ (t)~ = _ [(M~)* + (M~)* ]/~ - (K~)* q~ 
f.(t) = [ fz(t)J 

= {f~2[(M~)* + (M~)*] -(K~)*} q~ 

= C(q~¢cosFtt + q ~ s i n ~ t  + q~) 

o r  

where 

8 

fi(t) = ~ Cii[(q~)jcosDt + (qx~)jsin f~t + (ql.)j] 
j = l  

=fio(t) +fi,(t) i = 1,2 (56) 

C = f~Z((M~)* + (M[)*I - (K~)* 

8 

fio(t) = ~ Cij[(q~)jcosf~t + (q~)jsinf~t] 
j = l  

8 

fi.(t) = ~ Co(q~,) ~ 
j = l  

Table 3. Estimation results from simulation data for Case C 

k~x(106Nm -~) k~r(10SNm -1) k~x(105Nm -~) k~y(106Nm -~) 

True value 2.000 1.000 1.000 2.000 

NSR 0% 2.002 1.001 1.001 2.001 
0.1% - 0.453 0.842 0.369 - 0.52 

(average of 25 signals) 
NSR 0.1% - 0.039 0.086 0.057 - 0.04 

cxbx(102Nsm -1) Cbr(102Nsm -1) c~:,(102Nsm -1) c~r(102Nsm -1) 

True value 6.000 4.000 4.000 6.000 

NSR 0% 6.005 3.995 4.015 6.007 
0.1% 1.413 7.815 - 8.831 - 0.756 

(average of 25 signals) 
NSR 0.1% 1.409 7.710 - 8.66 - 0.697 
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C is a 2 x 8 coefficient matrix, f`o(t) andf`,(t) are the true value and measurement noise of 
artificial force, Cij is the (i,j)th entry of matrix C, and (q]c)j, (q(s)j, and (q],)j are the jth entry 
of vector q]c, q]s, and q],, respectively. Assume each measurement has the same noise to 
signal ratio, i.e. 

NSRi = STD [q],)i]/STD [(q]c)~] 

= SQRT[2(V~Z)/((qrc) z + (qls)~))] = r i = 1, 2, . . . ,8 

where V~ is the variance of (q],)2 and the operator SQRT [ . ]  represents square root. The 
NSR of the artificial force f` becomes 

NSR off,  = STD[f , , ] /STD[f ,o]  

= STD Cij(q],)j STD Cij((q~c)j cos f~t + (q]s)j sin fit) 
j = t  j 

= SQRT C?.,j V, 2J C,, (q] ¢ ) ; . .  + C~j (q]~); 
j j = l  

= SQRT C .z.,J V 2.., C2,3 ((q].)~ + (q]s)~ z) 
J 

+ 2 F~ (Gj(qL)j Gk(qLIk) + (Gj(qLb Cik(qL)~) (57) 
j ,k= l  

j-~ k 

where we assume that the noise terms (q],)~, i = 1, 2, ..., 8, are independent of each other. 
From Eqn (57) we find that, unless the last summation term in the denominator 

8 

2 ~ (Ci j (qe le) j  C,k(q?c)k) + (Cij(qels) j  Cik(q]s)k) 
j ,k= l 
j # t¢ 

vanishes, the NSR off,, i = 1, 2 never equals r. When this term is negative, the NSR off, is 
larger than any individual measurement; otherwise, the NSR off` is smaller. 

The NSR of f ,  for Case C can be derived by a similar procedure. But for Case A,f~ is 
function of the deflections at all nodes (x~, y~). It is difficult to represent the NSR off~ in 
terms of the NSR of each measurement in a compact form. However, in most cases the NSR 
of fi is not equal to that of each measurement in our estimators. 

For Cases A and B, the first column of the parameter matrix P is determined by f l  and 
the other column is determined by f2 [see Eqns (20) and (38)]. For Case A, we find that the 
NSRs of f l  and f2 are both smaller than those of the measurements, which makes the 
estimates almost totally insensitive to noise when the estimator is used. But for Case B, the 
NSR of f2 is larger than the NSR of f l  and this makes the estimation of kyx, k , ,  cr~ and cry 
more sensitive to noise than that of k~,  k~ r, Cx~ and c~ r, as shown in Table 2. To estimate 
more accurate parameters in this situation, we must reduce the effect of the measurement 
noise, which can be achieved by using a filtering technique and signal averaging with more 
measured series. 

In all cases, the inverse of the coefficient matrix A of the normal equation AP = B must be 
computed to obtain the parameter matrix P. For Cases A and B, the dimension of A is 4 × 4 
and the numerical accuracy is warrantable. But for Case C, the number of unknowns is 11 
and an 11 x 11 matrix inverse must be computed in the estimation procedure. The 
parameters of the rotor (m], c], k]) are estimated together with those of the .bearing. 
However, in this simulation example, the values of m] and e](m] = 6.1 × 10 - 4  Kg and 
c] = 1.1 x 10-1 Nsm-1) are very small compared with the other terms and this may result 
in an extremely ill-conditioned matrix when noise is added. This situation explains why the 
estimated parameter in Table 3 are sensitive to noise even when signal averaging is used. 
Although this is not shown by the results presented here, we found that the larger the values 
of m] and c] are, the more accurate the parameter estimates are. 

Since it is'difficult to measure the defection angles in practice, Case A corresponds more 
closely to a practical implementation. An experimental test was carried out to illustrate the 
capability of the estimator for Case A. 
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7. EXPERIMENTAL SET-UP AND RESULTS 

The test rotor-bearing system is shown schematically in Fig. 7. It consisted of a uniform 
shaft with a disk supported by two standard deep groove ball beatings. The shaft was made 
of 4140 steel and the disk was made of stainless steel. The support force provided by the ball 
bearing was purely elastic; that is, the force was produced by elastic contact deformation of 
the balls, the race, and the local bearing housing structure. An extension was built at the 
inner ring of each ball bearing, which contained two setscrews to avoid sliding between the 
contact surfaces of the inner ring and the shaft. By using this design, we could move the 
bearings along the shaft easily and install the bearings flexibly and conveniently. The 
bearing pedestals and sensor supports were made of aluminum-alloy and bolted to a steel 
plate. Each bearing pedestal and sensor support contained two threaded holes in the 
horizontal and vertical directions to install the proximity probes to detect the displacements 
of journal motion in the x and y directions. The sensor supports were placed in positions 
corresponding to the nodes of the finite element model (see Fig. 7). Since a precise value of 
Young's modulus for 1440 steel was not found in handbooks, a tensile test was performed 
on the INSTRON 8501. From the readings of the indicators of the strain gage and 
INSTRON, we obtained the Young's modulus by the equation E = P/(eA), where P and 
e were increments of load and strain and A was the cross-sectional area of the tensile 
specimen. The shaft was connected through a flexible coupling to a d-c motor, which can be 
controlled to maintain a selected speed within _ 1 rpm. The spin speed can be read from the 
indicator of the dc motor. The disk was fixed by two setscrews and contained a series of 
axial threaded holes all located at the same distance from its center. These holes could 
receive balancing/unbalancing masses. The residual unbalance caused by the manufactur- 
ing process was not measured, since it was not used in our estimator. The main parameters 
of the test structure are listed in Table 4. 
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Fig. 7. The experimental rotor-bearing system. 
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Table 4, Main  parameters of the test structure 

material: 
diameter: 
length L: 
Young's  modulus  E: 
density pC: 

material: 
mass  m d" 
diametric mass  moment  of inertia id: 
polar mass  moment  of inertia jd: 

4140 steel 
9.55 m m  
330 m m  
2.3 x 1011 N m  -2 

7466 kg m -  a 

stainless steel 
840 g 
3.515 x 10 -4  k g . m  z 
6.086 x 10 -4  k g . m  2 
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The x, y displacements of the journal motion were detected by the displacement probes. 
The displacement transducer system used was composed of eight sets of eddy current type 
noncontacting probes and amplifiers (proximetors). The nominal sensitivity of the 
proximetor system was 200 and 270 mV/mil for 4140 and stainless steel, respectively. To 
obtain accurate measurements, we calibrated the sensitivity of each proximetor between 
measured intervals (8-12 V). An IBM PC, which contained an IEEE-488 interface board for 
connecting the MICROLINK interface (made by Biodata Ltd.), was chosen for data 
acquisition. The MICROLINK interface allows flexible interchange of data between 
transducers and a microcomputer that has the ability to act as controller of the IEEE-488 
bus. In the MICROLINK system, the full-scale input range of the analog-to-digital 
converter modulus was set to 0-10.24 V. The resolution of the A/D converter was 12-bit, i.e. 
the quantum was 2.5 mV (10.24/4096). Since the maximum value of acceptable signals of the 
MICROLINK was 10 V, an electrical circuit board was used to reduce the voltage of 
signals from the proximetor to the MICROLINK (8 V in the experiment). A schematic of 
the experimental instrumentation is shown in Fig. 8. 

Since the finite element technique can provide an accurate simulation of the rotor- 
bearing system [11], the underlying system was analyzed by three elements and four nodes, 
of which two bearings were located at nodes 1 and 4 and the disk at node 3, as shown in 
Fig. 7. In our finite element model, the disk was assumed to be rigid and treated as a node. 
The diametric and polar mass moments of inertia were computed by J = mr2~2 and 
I = mr2/4 + md2/12, where m, r, and d were the mass, radius, and width of the disk, 
respectively. As the purpose of the test program was to verify the capability of the proposed 
estimator, the characteristics of the bearing were estimated by two close spin speeds and 
compared by two different unbalance conditions. Potential errors were introduced by the 
clearances of the bearings, the misalignment of the shaft, and the circularities of the 
measured surfaces of the shaft and the disk. To reduce the NSR and enlarge the strength of 
the signals, the response measurements were taken at spin speeds as close as possible to the 
first critical speed frequency (4440 rpm) to estimate the bearing characteristics. The samp- 
ling frequency was 2 kHz, which was more than ten times the first natural frequency (74 Hz) 
to avoid the effect of aliasing. 

The displacements in the x and y directions from nodes 1 to 4 (xi, Yi, i = 1, 2, 3, 4) were 
measured by eight proximity sensors at 4045 and 4076 rpm, respectively. Figure 9 shows the 
typical measurements (x3) at 4045 rpm when the unbalance mass was not added to the disk; 
the amplitude of the signal was about 0.1 mm. This amplitude was large enough compared 
with the maximum static discrepancy (0.01 mm), which was measured by slowly rotating the 
shaft in one revolution. Applying a Fourier transform to the eight records of each sin speed 
[xi(k), yi(k), i = 1, 2, 3, 4, k = 1024], we can obtain the coefficients xic, xis, Yic, and Yis. By 
using Eqns (28-29), we can compute matrices A1, A2, B1, and B2 in Eqn (24) to estimate the 
parameter martrix P. A number of tests were performed on the laboratory set-up. In 
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Fig. 8. Schematic of experimental instrumentation. 
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Fig. 9. Typical experimental responses. 

particular, regarding the model response to unbalance, two configurations were considered: 
the first one had no setscrews used as unbalance masses in the disk mass; the second had 
setscrews (total mass: 1.9 x 10-3 Kg) placed in a sector of the disk mass. The characteristics 
of the two ball bearings were then obtained, as shown in Table 5. Since the unbalance mass 
added was small compared with the mass of the disk, the disk mass and gyroscopic matrices 
(M a and G a) in Eqn (8) can be assumed to be unchanged. The main effect was the 
synchronous unbalance forces with magnitude md f~2 (m is the mass of the unbalance, d the 
distance of the unbalance mass from the center, and f~ the spin speed). From Table 5 we find 
that the estimated parameters were consistent for these two unbalance conditions. 

Because there is no standard, reliable method for determining the exact parameters, it is 
difficult to judge how to verify the accuracy of the results identified by the proposed method. 
However, the bearing stiffness and damping can be verified indirectly by employing the 
estimated coefficients in the finite-element model, which predicts the frequency response 
characteristics of the rotor-bearing system. This prediction can then be compared with 
frequency responses measured on the actual system. The impact excitation test was adopted 
here to obtain the frequency response function (FRF) of the machine to verify the accuracy 
of the estimates. The impulse force was generated by an ICP impulse-force hammer, which 
was made by PCB Piezotronics, Inc. The hammer impacted the rotor through a piezo- 
electric force transducer and a relative soft and curve cap, the selected cap material being 
a compromise between the required frequency response span and the ability to withstand 

Table 5. Estimation results from experimental data 

kxb~(10 a N m -  ~) kbr(10 2 N m -  ~) k~x(10 2 N m -  ~) kby(10 a N m -  ~) 

Unbalance masses not added 
br. I 1.67 1.15 1.65 1.54 
br. II 1.46 1.07 1.26 1.31 

Some unbalance masses added 
br. I 1.69 1.13 1.61 1.55 
br.. II 1.44 1.10 1.23 1.27 

c~x(102Nsm -~) c~y(101Nsm -1) %bx(101Nsm-1) c~y(102Nsm -1) 

Unbalance masses not added 
br. I 3.34 8.91 5.71 4.66 
br. II 3.14 7.89 5.01 4.44 

Some unbalance masses added 
br. I 3.31 8.87 5.76 4.67 
br.. II 3.18 7.93 5.04 4.41 
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the sliding speeds of the rotor without being worn flat too quickly. The nominal sensitivity 
of the hammer was 2.12 mV/N. The displacements were detected by the displacement probe 
as before. We then obtained the FRF of the machine by analyzing the impact force and 
response signals by a multichannel spectrum analyzer (FFT), made by Schlumberger 
Technologies. The schematic of the impact excitation test is shown in Fig. 10. 

The frequency response functions, generally speaking, were speed dependent because of 
two not easily separated causes: the variable stiffness and damping of the rolling element 
bearings, and the influence of gyroscopic moments. When the unbalance mass was not 
added to the disk, the frequency response function at 4045 spin speed obtained by impacting 
the disk in the horizontal direction and measuring the displacement in the same direction 
was as shown in Fig. 11. From Fig. 11 we find that the first natural frequency was about 
74 Hz and there was no apparent split frequency. Although the rotor was balanced as well 
as possible, there was a strong component at 67 Hz, which was caused by the existing 
unbalance in the rotor. The other small peaks were caused by the bearing pedestals, the 
sensor supports and the local foundation plate resonances. Another potential error was 
introduced by the friction between the impact head and the rotating shaft (and the 
"smearing-out" of the impact force). 

By using the estimated stiffness and damping coefficients of bearings in the finite-element 
model, we found that the first critical speed was split into two values, i.e. 70.925 and 
72.015 Hz at 4045 rpm spin speed, which were obtained by computing the eigenvalues of the 
characteristic matrix of the model. For 4076 rpm spin speed, we obtained 70.921 and 
72.019 Hz, which were close to the values obtained at 4045 rpm. The split effects were due to 
the gyroscopic effect caused by the mass moment inertia of the shaft and the disk. The 
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estimated first natural frequencies were close to that of the machine obtained from the 
experimental force vibration (74 Hz). Employing the estimated bearing parameters in the 
model represented by Eqn (10), we can obtain the estimated FRF, which is represented by 
the dashed line in Fig. 11. No split peaks are apparent since the two frequencies were too 
close. Comparing the FRFs obtained from the estimated model and the machine, we find 
they were close to each other and the estimated bearing characteristics can be regarded as 
accurate. 

8. C O N C L U S I O N  

The present paper proposes a new method of identifying linearized bearing character- 
istics based on a finite element formulation. Unlike previous methods, the present method 
treats the rotor as flexible and thus better reflects most practical situations. The present 
method also eliminates the need to obtain all of the characteristics of the rotor or measure 
synchronous forces. From Cases A to C we find that the constant matrices A and B in the 
normal equation Af' = B are functions of the coefficients which are determined by applying 
a Fourier transform to displacements. Thus the effects of measurement noise and random 
system disturbances are automatically filtered out except for the noise component at the 
rotational frequency. Noise reduction can be further enhanced by signal averaging. Com- 
paring the results in Tables 1, 2 and 3, we see that the greater the amount of information 
available on the rotor-bearing system, the less sensitive to noise the estimate becomes. Since 
it is difficult to measure the deflection angle in practice, the method in Case A is more 
applicable to practical implementations. The main conclusions of this paper can be 
summarized as follows: 

(1) When all the characteristics of the shaft and disks are known (Case A), the responses 
about the deflection angle can be replaced by deflection, but the responses of deflections 
(xl, y~) at all nodes must be measured to estimate the bearing parameters. 

(2) When the characteristics of segments located in the vicinity of the bearing to be 
estimated are known, e.g. the characteristics of segment 1 are known when bearing 1 is to be 
estimated (Case B), the method described in Section 4 can be used. In this case, the 
measurements are the responses of nodes 1 and 2 (xl, yl ,  0r~, 0xt, x2, Y2, Or2, 0~2). 

(3) When the characteristics of the rotor are unknown except for the mass of a segment 
located in the vicinity of the bearings to be estimated, e.g. when bearing 1 is to be estimated 
and the mass of segment 1, m~, is known (Case C), the responses of nodes 1 and 2 (xl, Yl, 
0yl, Oxl, X2, Y2, Or2, Ox2) can be used to estimate the parameters of the bearing by the 
method described in Section 5. Since the parameters of the rotor (m~, c~, k~) are estimated 
together with those of the bearing, the dimension of the coefficient matrix A in the normal 
equation is (11 x 11), and the sensitivity to noise is high compared with Cases A and B. 

Acknowledgements--This study was supported by the National Science Council, Republic of China, under contract 
number NC 81-0401-E-009-08. 

R E F E R E N C E S  

1. C. R. Burrows and R. Stanway, Identification of Journal Bearing Characteristics. ASME J. Dyn. Syst. Meas. 
Control 99, 167 (1977). 

2. R. Stanway, C. R. Burrows and R. Homes, Discrete Time Modeling of Squeeze Film Bearing. J. Mech. Engng. 
Sci. 21(6), 419 (1979). 

3. C. R. Burrows and M. N. Sahinkaya, Frequency Domain Estimation of Linearized Oil-Film Coefficients. 
ASME J. Lubric. Tech. 104, 210 (1982). 

4. R. Stanway, Identification of Linearized Squeeze-Film Dynamics Using Synchronous Excitation. Proc. lnstn. 
Mech. Engrs 197C, 199 (1983). 

5. M. N. Sahinkaya and C. R. Burrows, Estimation of Linearized Oil Film Parameters from the Out of Balance 
Response. Proc. Instn. Mech. Engrs 198(C8), 107 (1984). 

6. C.W. Lee and S. W. Hong, Identification of Bearing Dynamic Coefficients by Unbalance Response Measure- 
ments. Proc. lnstn. Engrs 203, 93 (1989). 

7. S. I Kim and B. M. Kwak, Identification of Bearing Coefficients by Incomplete Mode Shapes. Mechanical 
System and Signal Processing 4(5), 425 (1990). 



Linearized dynamic characteristics of bearings 217 

8. C. W. Lee and Y. G. Jei, Modal Analysis of Continuous Rotor-Bearing System. J. Sound Vibr. 126(2), 345 

(1988). 
9. L. Meirovitch, Computational Methods in Structural Dynamics, Sijthoff and Noordhoff, The Netherlands 

(1980). 
10. H.D.  Nelson and J. M. Mcvaugh, The Dynamics of Rotor-Bearing Systems Using Finite Elements. ASME J. 

Engng. Industry 98, 593 (1976). 
11. Y. Kang, Y. P. Shih and A. C. Lee, Investigation of the Steady-state Responses of Asymmetric Rotors ASME J. 

of Vibr. Acoust. 114, 194 (1992). 

L~ = (¢.¢~ + Cy¢~)d~ 

A P P E N D I X  A: L O C A L  M A T R I C E S  

.37143 0 .05238 0 .12857 0 - .03095 0 

0 .37143 0 - .05238 0 .12857 0 .03095 

.05238 0 .00952 0 .03095 0 --.00714 0 

0 .05328 0 .00952 0 -03095  0 - .00714 

.12857 0 .03095 0 .37143 0 - .05238 0 

0 .12857 0 .03095 0 .37143 0 .05238 

- .03095 0 - .00714 0 --.05238 0 00952 0 

0 "03095 0 --.00714 0 .05238 0 -00952 

Lr=fo 
1.2000 0 .10000 0 - 1.2000 0 .10000 0 

0 1.2000 0 - . I 0 0 0 0  0 - 1.2000 0 - .10000 

.100000 0 .13333 0 - .10000 0 - .03333 0 

0 - .10000 0 .13333 0 .10000 0 - .03333 

- 1.2000 0 - .10000 0 1.2000 0 - .10000 0 

0 - 1.2000 0 .10000 0 1.2000 0 .10000 

.10000 0 - .03333 0 - .10000 0 .13333 0 

0 O. 10000 0 -- .03333 0 .10000 0 .13333 

L¢ = (0~¢~ - ~,~b~')d~ 

0 - 1.2000 0 .10000 0 1.2000 0 .10000 

1.2000 0 .10000 0 - 1.2000 0 .10000 0 

0 -- .10000 0 .13333 0 .100(30 0 - .03333 

- .10000 0 - 13333 0 .10000 0 ,03333 0 

0 1.2000 0 - .10000 O - 1.2000 0 --.10000 

- 1.2000 0 - .10000 0 1.2000 0 --.10000 0 

0 - .10000 0 - .03333 0 .10000 0 .13333 

- .10000 03095 .33333 .10000 0 - .13333 0 
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O 
= | (q~x~b~ + q~rq~, )d~ Lk ,, t,, . t,, 

do 

12 

0 

6 

0 

- 12 

0 

6 

0 

0 6 0 - 12 0 6 0 

12 0 - 6  0 - 1 2  0 - 6  

0 4 0 - 6  0 2 0 

- 6  0 4 0 6 0 2 

0 - 6  0 12 0 - 6  0 

- 12 0 6 0 12 0 6 

0 2 0 - 6  0 4 0 

- 6  0 2 0 6 0 4 

A P P E N D I X  B: D E R I V A T I O N  O F  T H E  M A T R I C E S  E,  F.  G ,  H.  we, ws, f . c ,  fas I N  

S E C T I O N  3 

Substituting Eqns (16-17) into Eqn (15), one obtains 

_ f 2  moz(ZcCOS f t  + z s sin f~t) - f~2 moo(O¢ cos f~t + 0s sin fit) 

+ fcoz(ZsCOSf~t + zcs in f t )  + f~Coo(Oscosf t  - 0~sin f t )  

+ koz(zc cos f~t + zs sin f t )  + koo(Oc cos fi t  + 0ssin~It) = 0 (B1) 

Reorganizing Eqn (B1) by sine and cosine terms and setting them equal to zero individually, we obtain the 
following equations: 

( --  ~2moz q- ko.)z¢ + fCozZ~ + ( - f 2moo  -t- koo)O. + fcooO,  = 0 (B2) 

( - f2mo~ + koz)Z~ - f~co~zo + ( - pz2moo + koo)O, + f~cooO~ = 0 (B3) 

Solving Eqns (B2) and (B3), we obtained 0~ and 0~ as follows: 

0¢ = Ez~ + Fzs  (B4) 

0s = Gzc + Hzs (B5) 
where 

E = [c~o 1 (koo - f 2 m o o ) / f  + f~(koo - ~2moo)-1  Coo]-1. [c~ol(ko~ _ f 2 m o z ) / f  + t)(koo - ~2moo)- lCoz]  

F = [c~01(koo - a 2 m o o ) / f  + f ( koo  - I )2moo) - l coo] -1 .  [c~01 co. - (koo - f l2moo)-l(ko~ - f~2mo.)] 

G --- I-¢~ 1 (koo - f~2 moo)/f~ + f~(koo - f~2 moo)- t Coo] - 1. [ _ c~oX co~ --  (koo - f~2 moo)- t (ko~ - f~2mo,)] 

H = [c~ x (koo - f 2  moo)I f  + l)(koo - f12 moo)- 1 cool -  x. [ c ~ l  (ko~ - f12 mo,)/f~ + fl(koo - f~2 moo)- a co~] 

Substituting Eqns (B4-B5) into Eqn (17), one obtains: 

O(t) = (Ez~ + Fz~)cos f t  + (Gz~ + Hz,)s in f t  (B6) 

Then, substituting Eqns (B6) and (16) into Eqn (14), we can obtain the following equation: 

[ c ~ k ~ ] ( [  - z ~ ] c ° s ~ t  + k z d  / 

- {[( - f2mz~ + k ~ )  + ( - ~2m~ 0 + k~o)E + f c ~ o G ] z o  

+ [f~G~ + ( - f 2 m . o  + k~o)F + f c ~ o H ] z ~ }  cos f t t  

- {[( - fl2m~z + k , , )  + ( --  f~2m,o + k~o)H + ~ c , o F ] z ~  

+ [ - f~c,~ + ( - £)2m~ o + k~o)G + f l c , o E ] z ¢ }  sin fi t  (B7) 

Extract the first and (n + 2)'th rows of Eqn (B7) and take the transpose of both sides. Equation (20) can be obtained 
as follows: 

(wt, cos f i t  + wt~ sin f t ) P  = ff,~ cos f i t  + ~ sin ~ t  

where 
w(t) = I-£1 (t), g~(t), x~(t), yx(t)]' = (wocos~t  + w~sinflt) 

p, = [C~Xlcrxlb C~Y,C.xb krbx,k~*l k,yk~'l]b x d = [C~ K~] 
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and fa~, f~, are 2 x 1 vectors which contain the first and (n + 2)'th rows of coefficient matrices of the cosine and sine 
terms, respectively, for the right-hand side of Eqn (B7). 

A P P E N D I X  C: D E T A I L S  of  ai 

al  = (~D/ t3cb~ i )W( t )  = [21 O] t a2 = ( t3D/Ocby l )W( t )  = [J~l O] t 

a3 = (3D/Ocbr~l)W(t)  = [0 211 t a ,  = (aD/Ocby,1)W(t)  = [0 t , ]  t 

a5 = ( O D / 3 k b ~ i ) W ( t )  = [xl 0] t a6 = ( t g D / 3 k b r l ) W ( t )  = [Yl 0] t 

a7 = ( t 3 D / d k ~ x l ) W ( t )  = [0 x l ]  t as = ( t3D/Okb ,1)W( t )  = [0 y l ]  t 

a9 = ( O D / 3 m D W ( t )  = L*r(l~ a l o  = ( O D / O c $ ) W ( t )  = L ' i l l  

a l l  = ( O D / d k ~ ) W ( t )  = L [ q ~  

A P P E N D I X  D: D E T A I L S  O F  M O D I F I E D  ai 

a l  = ( ~ D / ~ C b x l ) W ( t )  = [ ) c l  0 0 0 ]  t 

a 3 = ( a D / d c b x i ) W ( t )  = [0 -~l 0 0] t 

a5 = ( O D / O k b x l ) W ( t )  = [ x i  0 0 0 ]  t 

a7  = ( ~ D / 3 k b r x l ) W ( t ) =  [0 x l  0 0] t 

a9  = ( a D / O m ~ ) W ( t )  = L ,  ~ (1~ 

a t o  = ( O D / t 3 k ~ ) W ( t )  = L ,~  il~ 

a2 = ( 3 D / O c ~ r l ) W ( t ) = [ 3 ? l  0 0 03' 

a ,  = ( O D / O c ~ r l ) W ( t )  = [0 371 0 0] t 

a 6 = ( ~ D / ~ k ~ y l ) W ( t )  = [Yl 0 0 O] t 

a s  = ( ~ D / d k ~ r ~ ) W ( t ) =  [0 yj. 0 0 ]  t 

a l  o = ( a D  / ~ c ~ )  W ( t )  = L ~  (t~ 

A P P E N D I X  E:  C O N T R I B U T I O N  O F  T H E  V E L O C I T Y  T E R M  

I N  E Q U A T I O N  ( 3 4 )  

From Appendix A, the local matrices L*, Lr*, L*, and L* have the same order of magnitude; let us set them to 
be L. Since the rotor-bearing system is in the steady state, with spin speed 0,  the magnitude of the acceleration is 
O2w and that of the velocity is Ow (where w denotes general deflection). Then, each term on the right-hand side of 
Eqn (34) can be approximated as 

I(m~ + m~)L*#l = 0 2 ( l p e A  e + p e l e f l ) L w  (El) 

I c~ L *  ~v I ~- (02J~/12) Lw (E2) 

Ik~L*wl - ( E Z l e / l a ) L w  (E3) 

Taking the ratio of Eqns (El), (E2) and (E3), we have 

[ 0 2 ( I p e A  ~ + p e P / l ) ] :  (02 j~ /12) : (EI~/13)  

f l2p¢Ie(161/d  2 + lfl): 
1 : [ E / ( 2 0 2 1 ) ]  

( 2 0 2  p~1/12) 

= [8( l /d )  2 + 0.53 : 1 : [ E / ( 2 0 2 / ) 3  (E4) 

where l is the length of the segment and d the diameter of the shaft. In general, Young's modulus is very large, so if 
l > d, the contribution of the velocity term can be neglected compared with the other terms on the right-hand side 
of Eqn (34). 


