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a b s t r a c t

In response to fast-growing and rapidly-changing markets, launching new products faster than compet-
itors cannot only assist firms in acquiring larger market share but also reducing development lead time,
significantly. However, owing to its intrinsically uncertain properties of managing NPD (new product
development), manufacturing companies often struggle with the dilemma of increasing product variety
or controlling manufacturing complexity. In this study, a fuzzy MCDM (multi-criteria decision making)
based QFD (quality function deployment) which integrates fuzzy Delphi, fuzzy DEMATEL (decision mak-
ing trial and evaluation laboratory), with LIP (linear integer programming) is proposed to assist an enter-
prise in fulfilling collaborative product design and optimal selection of module mix when aiming at
multi-segments. In particular, Fuzzy Delphi is adopted to gather marketing information from invited cus-
tomers and their assessments of marketing requirements are pooled to reach a consensus; fuzzy DEMA-
TEL is utilized to derive the priorities of technical attributes in a market-oriented manner; and LIP is used
to maximize product capability with consideration of supplier’s budget constraints of manufacturing
resources. Furthermore, a real case study on developing various types of sport and water digital cameras
is demonstrated to validate the proposed approach.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In an era of customer-oriented global economy, dominating the
majority market with a single product line becomes very challeng-
ing and almost infeasible for most companies (Hsiao & Liu, 2005).
Traditionally, to satisfy market majorities, companies considered
providing products with high quality, low cost, fast delivery and
courteous after-sales service at most. Nowadays, owing to fiercely
competitive environments and rapidly changing demand, the capa-
bility and the speed of developing niche products and launching
them into the niche segments gradually dominate the competition
paradigm, particularly when a transition has been shifting from
‘‘supply push’’ to ‘‘demand pull’’ (Jiao, Ma, & Tseng, 2003). To put
it another way, ‘‘mass customization’’ embarks a new paradigm
for modern manufacturing industries since it treats each customer
as an individual and attempts to provide ‘‘tailor-made’’ featured
products that was only offered in the pre-industrial ‘‘craft’’ era.

Over the past two decades, numerous publications originated
from different disciplines have witnessed in the field of customer
requirement management (Jiao & Chen, 2006). For example, various
ll rights reserved.
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fields such as marketing research, consumer behavior, collaborative
design, and concurrent engineering, attempt to contribute to
different stages for new product development (NPD). Among them,
marketing research and consumer behavior emphasize the front
issues relevant to collecting the information of customer preference
via specific channels. In contrast, collaborative design and concur-
rent engineering focus on utilizing a systematic and parallel
approach for integrating a wide spectrum of product design and re-
lated manufacturing processes (Lin, Wang, Chen, & Chang, 2008).
Although high product variety does stimulate product sales, compa-
nies still inevitably face the trade-offs between the diversity of cus-
tomer needs and numerous adverse effects, such as larger inventory
cost, longer cycle time and expensive research investment.

As a result, it is very imperative for companies to keep high flex-
ibility while incurring limited manufacturing cost, concurrently. In
practice, two common techniques have been proposed to tackle the
above-mentioned issue, including product family architecture (Jiao
& Tseng, 1999; Moon, Simpson, & Kumara, 2010) and modular
product or product family design (Hsiao & Liu, 2005; Kreng &
Lee, 2004). Modular product design offers a feasible way by devel-
oping a product architecture, in which physical relationships
across modules are limited while functional relationships among
components within a module are coherent. Furthermore, product
family design based on a standard platform usually provides a
cost-effective way to develop highly related but differentiated
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Fig. 1. A general framework for the conventional HoQ (house of quality).
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products. By sharing/reusing physical manufacturing resources
and intangible human capitals, companies can efficiently balance
the benefit and cost for NPD.

Based on previous studies, most of them are deficient in con-
structing a systematic approach to assist companies in achieving
mass customization while keeping reasonable manufacturing cost.
In this study, a fuzzy MCDM based QFD (quality function deploy-
ment) is proposed to fulfill collaborative product design and opti-
mal selection of module mixes when aiming at multi-segments.
Moreover, this paper contributes to this domain by presenting
the following merits:

� QFD provides a communication platform to gather different
opinions between industrial experts and even among customer
individuals.
� QFD is capable to transform intangible marketing requirements

(MRs) into measurable technical attributes (TAs) and to accom-
modate the dependences between MRs and TAs and the corre-
lations among themselves.
� In additional to deriving the weights of MRs and TAs, the pro-

posed fuzzy MCDM based QFD could further identify the opti-
mal module mix (product variety) for a specific market
segment.

The remaining of this paper is organized as follows. Section 2
overviews the related works and Section 3 introduces the proposed
framework which integrates fuzzy Delphi, fuzzy DEMATEL with LIP
(linear integer programming). A real example regarding collabora-
tive design for various sport & water digital cameras is illustrated
in Section 4. Conclusions are drawn in Section 5.
Table 1
An overall comparison among AHP, ANP, DEMATEL and proposed method.

AHP ANP DEMATEL Proposed

Handling an independent
hierarchy structure

Yes Yes Yes Yes

Handling an interdependent
network structure

No Yes Yes Yes

Conducting pairwise
comparisons among criteria

Limited Tedious Not
necessary

Not
necessary

Deriving the importance
weights of criteria

Yes Yes No Yes

Handling numerous criteria
within the same decision
level

Limited Limited Yes Yes

Identifying causal relationships
among criteria

No No Strong Strong
2. Related works

Quality function deployment (Akao, 1990) originated in Japan in
the 1970s has been widely applied to various industries for prod-
uct development, concept evaluation, service design, and compet-
itor benchmarking. Basically, customers’ desires on a specific
product or service can be represented by a set of intangible mar-
keting requirements (MRs). Thereafter, a series of technical attri-
butes (TAs) that impact on MRs need to be determined and
realized for product development or service design. Typically, the
conventional QFD consists of the following four phases (Chan,
Kao, Ng, & Wu, 1999; Lin, Cheng, Tseng, & Tsai, 2010): phase one
translates marketing requirements into technical attributes; phase
two translates technical attributes into part characteristics; phase
three translates part characteristics into manufacturing operation,
and phase four translates manufacturing operations into produc-
tion requirements. Specifically, at phase one of QFD, the so-called
HoQ (house of quality) provides a communication platform to fuse
diverse opinions among cross-functional team members (see
Fig. 1).

To fast understand the research trend regarding QFD, represen-
tative publications are reviewed and listed below. First, to deter-
mine the importance degrees of MRs, AHP (analytical hierarchy
process)/fuzzy AHP (Kwong & Bai, 2002, 2003), fuzzy Delphi (Chen
& Ko, 2008; Karsak, 2004), and fuzzy group decision (Büyüközkan,
Feyzioğlu, & Ruan, 2007; Sein, Ho, Lai, & Chang, 1999) have been
suggested, respectively. Second, to improve the weakness of AHP/
fuzzy AHP, numerous papers adopt ANP (analytical network pro-
cess)/fuzzy ANP to consider the dependences between MRs and
TAs and the correlations among themselves, such as Karsak, Sozer,
and Alptekin (2002), Büyüközkan, Ertay, Kahraman, and Ruan
(2004), Kahraman, Ertay, and Büyüközkan (2006), Lin et al.
(2010), and Lee, Kang, Yang, and Lin (2010). Recently, various opti-
mization schemes with consideration of budget cost or resource
constraints have been incorporated into the QFD. For example,
zero-one goal programming or fuzzy goal programming is formu-
lated to determine the level or a mix of design requirements (Chen
& Weng, 2006; Karsak, 2004; Karsak et al., 2002). A two-phase QFD
which combines ANP/fuzzy ANP with goal programming is utilized
to determine the optimal varieties of product attributes for distinct
market segments (Lee et al., 2010; Liu & Hsiao, 2006; Park, Shin, In-
sun, & Hyemi, 2008).

After reviewing the above-mentioned studies, several critical
shortcomings are found and listed below:

� A systematic approach to efficiently identify the causal impacts
of MRs on TAs and the correlations among themselves is imper-
ative, yet, rarely addressed and incorporated into the entire
decision-making process.
� AHP/fuzzy AHP (Saaty, 1980) are capable to determine the

weights of ‘‘independent’’ criteria, but they are limited to han-
dle a scenario in which the interdependences exist among crite-
ria or the number of criteria is over a reasonable threshold.
� ANP/fuzzy ANP (Saaty, 1996) are commonly adopted to accom-

modate the complicated interdependences among criteria, but
they might be infeasible in processing a scenario in which
numerous criteria appear on a hierarchy.

Suppose that there are n mutually interdependent criteria
(associated with an n-order matrix), to completely describe their
interrelationships among all criteria, we might need to conduct
up to n2ðn� 1Þ=2ðn� Cn

2Þ times of pair-comparisons for obtaining
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the importance weights of all elements. Obviously, when n be-
comes larger than a reasonable threshold, its running time of
ANP might be quite tedious and result in a serious problem of effi-
ciency or consistence for an evaluator. To overcome the difficulties
incurred by the ANP, fuzzy Delphi is combined with fuzzy DEMA-
TEL to construct a fuzzy MCDM based QFD. For convenience, an
overall comparison among the aforementioned techniques is de-
scribed in Table 1.

3. The proposed techniques

As indicated by Fig. 2, a hybrid research framework consisting
of fuzzy Delphi, fuzzy DEMATEL, and LIP (linear integer program-
ming) is presented to realize two critical issues: collaborative
product design and optimal selection of module mixes. In particu-
lar, the concept of fuzzy set theory is incorporated into the conven-
tional QFD to accommodate linguistic properties of human
judgment (see Table 2). For clarity, their details are simply outlined
as follows:

� Fuzzy Delphi is used to gather customers’ assessments of initial
weights of MRs and to fuse experts’ opinions on the initial val-
ues of dependences and correlations.
� Fuzzy DEMATEL is utilized to incorporate the dependences

between MRs and TAs and the correlations among themselves
and the priorities of TAs could be further derived.
� With consideration of cost constraints for multi-segments, LIP is

employed to determine the optimal combinations of module
mix for the purpose of target marketing.

Based on previous studies (Chen & Weng, 2003; Delice &
Güngör, 2009; Wasserman, 1993), the final weights of MRs and
TAs are derived as follows:

WtMRi ¼Wt0
MRi þ

1
m� 1

Xm

i–k

kik �Wt0
MRk; ð1Þ
LIP 

Fuzzy  

DEMATEL

Identification of marketing requirements (MRs) 

and technical attributes (TAs)

Generating the initial weights of MRs and their 

interdependences and correlations

Deriving the final weights of MRs and TAs 

Optimizing product varieties with respect to 

distinct market segments

Fuzzy  

Delphi

Fig. 2. The proposed research framework.

Table 2
Linguistic rating scale used in fuzzy MCDM methods.

Triangular fuzzy number Delphi/DEMATEL

~1 (1, 1, 3) VL (very low)
~3 (1, 3, 5) L (low)
~5 (3, 5, 7) M (medium)
~7 (5, 7, 9) H (high)
~9 (7, 9, 9) VH (very high)
R0ij ¼
Pn

k¼1Rik � ckjPn
j¼1

Pn
k¼1Rik � ckj

; ð2Þ

WtTAj ¼
Xm

i¼1

WtMRi � R0ij; ð3Þ

where WtMRi/WtTAj represent the weight of MRi and TAj, respec-
tively. Meanwhile, we assume that m marketing requirements and
n technical attributes exist in the QFD, R0ij is the normalized depen-
dences between MRi and TAj, and kik=ckj denote the correlations
among MRs/TAs, respectively. In view of Eqs. (1)–(3), the depen-
dences between MRs and TAs and the correlations among them-
selves have been appropriately incorporated to generate their
importance degrees.

3.1. Use of fuzzy Delphi method to determine the initial weights of MRs

Delphi method has been widely applied to various industries as
a group-decision based forecasting technique. It normally requires
a group of partially or completely anonymous experts responding
their opinions via the preset questionnaires and involves several
rounds of iterations to reach a consensus. In the first round, all ex-
perts respond to the questionnaire and the results are evaluated
and returned to experts through a feedback process. In reality, Del-
phi method often suffers from low convergence among experts,
high execution cost and tedious operating process. Besides, be-
cause linguistic human judgments are usually imprecise, evalua-
tion terms expressed in fuzzy sense might be more feasible in
practice. Instead of using crisp values in the conventional Delphi,
Murry, Pipino, and Gigch (1985) proposed a hybrid scheme which
intends to incorporate the concept of fuzzy set into the conven-
tional Delphi to overcome the above-mentioned flaws. Cheng and
Lin (2002) present fuzzy Delphi method to achieve a consensus
of experts’ opinions which are denoted by fuzzy numbers. Fol-
lowed by Karsak (2004), fuzzy Delphi method is slightly modified
to generate the weights of MRs. The whole process is operated as
follows:

� The invited evaluators, who act as domain experts, are respon-
sible to rate the importance degrees of marketing requirements.
In particular, the rating scale is measured in terms of a triangu-
lar fuzzy number as:
~wij ¼ ðwija;wijb;wijcÞ; 1 6 i 6 m;1 6 j 6 p; ð4Þ
where m denotes the number of MRs, p represents the number of
invited evaluators, and ~wij is the importance rating of MRi assigned
by evaluator j.
� Aggregate the importance rating to attain its mean value of MRi:
~wim ¼
1
p

Xp

j¼1

wija;
Xp

j¼1

wijb;
Xp

j¼1

wijc

 !
¼ ðwima;wimb;wimcÞ; ð5Þ
Then, the differences between ~wij and ~wim are calculated and sent
back to the evaluators for reconsideration.
� For later rounds, all evaluators are required to revise their fuzzy

rating and the process is repeated in a similar way until the gaps
between successive mean values are reasonably converged. To
calculate the distance between two fuzzy numbers, the follow-
ing is adopted (Geng, Chu, Xue, & Zhang, 2010):
dð ~wt
im; ~wtþ1

im Þ

¼ 1ffiffiffi
3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðwt

ima�wtþ1
imaÞ

2þðwt
imb�wtþ1

imbÞ
2þðwt

imc�wtþ1
imc Þ

2
q� �

; ð6Þ
where ~wt
im= ~wtþ1

im represent fuzzy mean value at iteration t/t + 1.
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� Based on ‘‘the center of area’’ approach (Yager, 1978), the pro-
cess of defuzzification can be applied to the fuzzy rating of each
marketing requirement and its defuzzified crisp value is repre-
sented as:
M

M

T

T

wim ¼
wima þwimb þwimc

3
; ð7Þ
� Generating the initial weight for each marketing requirement
via the normalization process:
Wt0
MRi ¼

wimPm
i¼1wim

; ð8Þ
Characterizing a sport & water digital 

camera by using various modules 
where Wt0
MRi denotes the initial weight of MRi.

3.2. Use of fuzzy DEMATEL to derive the final weights of MRs and TAs

DEMATEL (decision making trial and evaluation laboratory),
developed by the science and human affairs program of the Battelle
Memorial Institute of Geneva Research Centre (Fontela & Garbus,
1976), is able to visualize the complex interdependent relationship
among all evaluation criteria through converting the causal rela-
tionship into a visible structure of the whole system. Suppose that
p experts are invited to assess m marketing requirements (MRs)
and n technical attributes (TAs). Followed by Lin and Wu (2008),
fuzzy DEMATEL is applied to our problem and its details are de-
scribed as follows:

� Assigning a fuzzy rating scale to measure the direct-relation
matrix:

As seen in Fig. 3, a (m + n) � (m + n) fuzzy matrix eX with an ele-

ment of ~xk
ij ¼ ðl

k
ij;m

k
ij;u

k
ijÞ is evaluated by expert k, which represents

the impact of MRi on TAj and all the diagonal elements of matrix eX
will be set as zero ð~xk

ii ¼ ð0; 0;0ÞÞ. By averaging all experts’ scores,

the direct-relation matrix eA can be characterized with an element
of ~aij:

~aij ¼
1
S

XS

k¼1

~xk
ij ¼ ðalij; amij; auijÞ; ð9Þ

� Normalizing the direct-relation matrix:
The normalized matrix eB can be obtained by normalizing the

matrix eA:

~bij ¼
1
X

~aij ¼ ðblij; bmij; buijÞ; where ð10Þ

X ¼ Max max
16i6n

Xn

j¼1

uij;max
16j6n

Xn

i¼1

uij

 !
; ð11Þ

� Deriving the total-relation matrix:
Once the normalized matrix eB has been obtained, the total-rela-

tion matrix eT can be derived based on Eqs. (12)–(15):
MR1           . . . .           MRm TA1          . . . .             TAn

R1 

.

Rm 

mm ×  correlation matrix nm ×  dependence matrix  

A1

.

An

mn ×  zero matrix nn ×  correlation matrix 

Fig. 3. Input of the direct-relation matrix for fuzzy DEMATEL.
eT ¼ eB þ eB2 þ eB3 þ � � � ¼ eBðI � eBÞ�1
; ð12Þ

where ~tij ¼ ðtlij; tmij; tuijÞ and the amount of three matrix elements
are list below:

matrix½tlij� ¼ BlðI � BlÞ�1
; ð13Þ

matrix½tmij� ¼ BmðI � BmÞ�1
; ð14Þ

matrix½tuij� ¼ BuðI � BuÞ�1
; ð15Þ

where I denotes an identity matrix and Bl/Bm/Bu represents the crisp
matrix composed of lower/medium/upper values of the normalized
matrix, respectively.
� Defuzzifying the total-relation matrix eT (Yager, 1978) and com-

puting a causal diagram through the dispatcher group D and the
receiver group R, where D is the sum of rows in crisp matrix T
and R is the sum of columns:

Tij ¼
tlij þ tmij þ tuij

3
; ð16Þ

Di ¼
Xn

j¼1

Tij; ð17Þ

Rj ¼
Xn

i¼1

Tij: ð18Þ

After a crisp matrix T is obtained via Eq. (16), the dependences be-
tween MRs and TAs ðR0ijÞ and the correlations among themselves
ðkik=ckjÞ will be automatically extracted from the matrix T for deriv-
ing the weights of TAs (see Eqs. (1)–(3)). A causal diagram can be
visualized by displaying (D + R, D � R): the horizontal axis ‘‘D + R’’
named ‘‘prominence’’ reveals how much important the criterion is
and the vertical axis ‘‘D � R’’ named ‘‘influence’’ categorizes the cri-
terion into either the cause group or the effect group.

3.3. Use of linear integer programming for optimal selection of module
mixes

As indicated by Fig. 4, based on different affordable prices, the
entire market is partitioned into three segments, like the low-
end, middle-end, and high-end. Here, the company attempts to
configure various types of digital cameras for multi-segments
through considering the optimal product varieties and the
constraints of manufacturing cost (relevant to pricing policies),
simultaneously. Hence, the primary goal of a company is to maxi-
mize its product capability, or state this equivalently, to maximize
its customer satisfaction because the latter is proportional to the
former, positively. For convenience, we describe the objective,
decision variables, and constraints as follows (see Eqs. (19)–(22)).
Lens 

A3, A4, A5 

Panel  

 A13, A14 

CCD

A1, A2 

Low-end 

Segment 

High-end 

Segment 

Chip  

A6, A7, A8, A9 

Meddle-end 

Segment 

Frame 

 A10, A11, A12

Fig. 4. Product configuration and module decomposition for three market
segments.



Table 6
Derived weights (priorities) of MRs and TAs.

MRs Weights Rank TAs Weights Rank

R1 0.348 1 A1 0.090 4
R2 0.165 3 A2 0.093 3
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Max
X

i

X
j

PijXij

s:t:
X

j

Xij ¼ 1; for 8i;X
i

X
j

CijXij 6 Bs; for 8s;

Xij 2 f0;1g;

ð19Þ

Pij ¼
X

k

WtTAðkÞ � ~yijðkÞ; ð20Þ

~yijðkÞ ¼
yijðkÞ �minjyijðkÞ

maxjyijðkÞ �minjyijðkÞ
; ð21Þ

~yijðkÞ ¼
maxjyijðkÞ � yijðkÞ

maxjyijðkÞ �minjyijðkÞ
; ð22Þ

where i is the module index of the product, j is the alternative index
for the module, Xij denoted by a zero–one integer means the selec-
tion of alternative j for module i, yij(k) represents the kth attribute of
alternative j for module i, Pij and Cij denote its functional perfor-
mance and manufacturing cost, respectively. For simplification,
we assume that the product is characterized by various functional
modules and each module which is composed of specific attributes
has limited alternatives. Meanwhile, the whole market is divided
into several segments and each segment has a cost constraint of
Bs for pricing the target product. In particular, functional
Table 3
A sample denoting the correlations among MRs.

MRs R1 R2 R3 R4 R5

R1 Photo quality L
R2 Video capability L
R3 Electronic function H
R4 Robust function H L
R5 User interface L

Table 4
A sample denoting the correlations among TAs.

TAs A1 A2 A3 A4 A5 A6

A1 CCD mega pixels H
A2 CCD sensor area (inch) H VH
A3 Optical zoom H H
A4 Wide angle (mm) H
A5 Max aperture H M
A6 Dynamic video resolution
A7 High-speed shutter (Y/N) H
A8 GPS receiver (Y/N)
A9 Wireless LAN (Y/N)
A10 Water proof (m)
A11 Shock proof (m)
A12 Freeze proof (�C)
A13 LCD size (inch)
A14 Screen resolution

Table 5
A sample denoting the dependences between MRs and TAs.

A1 A2 A3 A4 A5 A6 A7

R1 H M VH M H
R2 H VH
R3
R4
R5
performance Pij (see Eq. (20)) is modeled by a weighted sum of var-
ious TAs. They are normalized by one of the following types: either
the-larger-the-better (see Eq. (21) for the benefit set) or the-smal-
ler-the-better (see Eq. (22) for the cost set).
4. A real case study

The market growth of digital camera has become much more
saturated than before and Kodak’s bankruptcy in 2011 has strongly
impacted on the entire industry since several Taiwanese OEM/
ODM camera manufacturers are now incurring huge loss of ‘‘ac-
counts receivable’’. To take advantage of its great cost-controlling
capability and large manufacturing capacity, a Taiwanese elec-
tronic company is planning to gradually change herself from an
OEM/ODM firm into a brand company. To avoid fierce price compe-
tition, this company is now thinking the way to differentiate them-
selves from the other suppliers.

For fast acquiring market share, this company also focuses its
core resources on aiming at recently emerging regions like East
Europe, Middle-South America, and South-East Asia. In view of
A7 A8 A9 A10 A11 A12 A13 A14

H

L
L

H M
H M
M M

M
M

A8 A9 A10 A11 A12 A13 A14

H H
VH H H

M H

R3 0.104 4 A3 0.117 2
R4 0.288 2 A4 0.076 7
R5 0.095 5 A5 0.118 1

A6 0.049 12
A7 0.054 11
A8 0.038 13
A9 0.037 14
A10 0.079 6
A11 0.066 8
A12 0.080 5
A13 0.052 9
A14 0.052 9



Table 7
Various types of scoring for visualizing a causal diagram of the QFD.

Active score Passive score Prominence score Influence score
D R D + R D � R

R1 1.516 0.052 1.567 1.464
R2 0.691 0.052 0.743 0.640
R3 0.917 0.271 1.187 0.646
R4 1.349 0.314 1.662 1.035
R5 0.529 0.065 0.594 0.465
A1 0.342 0.610 0.953 �0.268
A2 0.663 0.913 1.576 �0.250
A3 0.598 0.880 1.478 �0.281
A4 0.329 0.542 0.871 �0.213
A5 0.577 1.072 1.650 �0.495
A6 0.259 0.541 0.800 �0.281
A7 0.259 0.575 0.834 �0.316
A8 0.052 0.327 0.378 �0.275
A9 0.052 0.327 0.378 �0.275
A10 0.414 0.322 0.736 0.092
A11 0.414 0.271 0.684 0.143
A12 0.345 0.679 1.024 �0.334
A13 0.172 0.953 1.126 �0.781
A14 0.172 0.888 1.060 �0.715

The dependences between MRs and TAs
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Fig. 5. A structural diagram to visual causal impacts inherent in the QFD.
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Fig. 4 again, five basic modules that characterize a digital camera
include CCD (charge couple device), lens, chip, frame, and panel
and each module is composed of specific components and limited
alternatives. Without loss of generality, the whole market is
assumed to be divided into three segments that are based on
customers’ affordable price (relevant to supplier’s manufacturing
cost).
le 8
mbinations of module mixes for configuring the sport & water digital camera.

Module 1: CCD Module 2: Lens Module 3: Chip

M11 M12 M13 M21 M22 M23 M31 M

A1 1200 1400 1000
A2 1/2.3 1/2.3 1/1.8
A3 3 4 5
A4 28 28 25
A5 3.9 3.5 3.1
A6 640 � 480 72
A7 0 0
A8 0 1
A9 0 0
A10
A11
A12
A13
A14
Cost ($TWD) 1050 1400 2100 1400 2000 2800 2100 30
4.1. Marketing planning to derive the priorities of MRs and TAs

In the beginning, a common technique named ‘‘majority-vot-
ing’’ is employed to assist invited experts in determining represen-
tative MRs and TAs. Thereafter, fuzzy Delphi method is used to
generate the initial weights of MRs (see Eq. (8)), the correlations
among MRs/TAs (see Tables 3 and 4), and the dependences be-
tween MRs and TAs (see Table 5). Here, both the ‘‘majority-voting’’
scheme and fuzzy Delphi method are adopted to help evaluators
efficiently reach a consensus during a group decision process.

Secondly, we input initial values of dependences and correla-
tions into the direct-relation matrix eX . After processed by fuzzy
DEMATEL, final values of dependences (Rij) and correlations
ðkik=ckjÞ could be extracted through the direct-relation matrix eT .
Based on Eq. (1), the weights of MRs can be obtained and their pri-
orities are presented as R1 � R4 � R2 � R3 � R5, as indicated by Ta-
ble 6. Obviously, photo quality (R1), robust function (R4), and video
capability (R2) are listed as the top three priorities for the sport &
water digital camera.

Based on Eqs. (2), (3), the weights of TAs are derived and the top
six priorities demonstrate an order of A5 � A3 � A2 � A1 �
A12 � A10 (see Table 6 again). Apparently, significant TAs result
from their strong dependences on dominant MRs. For example,
‘‘max aperture’’ (A5), ‘‘optical zoom’’ (A3), ‘‘CCD sensor area’’ (A2),
and ‘‘CCD pixels’’ (A1) are closely related to ‘‘photo quality’’ (R1).
Similarly, ‘‘freeze proof’’ (A12) and ‘‘water proof’’ (A10) are mainly
affected by ‘‘robust function’’ (R4).

4.2. Visualization of their causal interrelationships between MRs and
TAs

To identify the complicated relationships among all relevant
factors inherent in the QFD, Table 7 depicts various types of scoring
through using Eqs. (16)–(18). In brief, the active score ‘‘D’’ denotes
the ‘‘dispatched’’ impact of the corresponding factor on the others
while the passive ‘‘R’’ score represents the sum of ‘‘received’’ influ-
ence of the corresponding factor from the others. Moreover, the
prominence score ‘‘D + R’’ defined by ‘‘adding the active score to
the passive score’’ is regarded as its general degree of ‘‘impor-
tance’’. By contrast, the influence score ‘‘D � R’’ defined by ‘‘sub-
tracting the active score from the passive score’’ indicates the
intensity of ‘‘causality’’.

Based on Table 7, their relative influence (referred to the
vertical axis) and absolute prominence (referred to the horizontal
axis) are displayed in Fig. 5. Owing to ‘‘positive’’ influence, MRs
(denoted by the symbol of ‘‘square’’) are classified into the ‘‘cause’’
Module 4: Frame Module 5: Panel
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0 � 480 1080 � 720
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00 4200 1750 2500 3500 700 1000 1400



Table 9
Results of selected module mix for three market segments (asterisk symbols correspond to selected modules).

Segment (cost budget) Module 1: CCD Module 2: Lens Module 3: Chip Module 4: Frame Module 5: Panel

M11 M12 M13 M21 M22 M23 M31 M32 M33 M41 M42 M43 M51 M52 M53

Low-end ($7000) � � � � �
Middle-end ($10,000) � � � � �
High-end ($15,000) � � � � �
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(dispatcher) group. Conversely, TAs (denoted by the symbol of
‘‘diamond’’) are categorized into the ‘‘effect’’ (receiver) group due
to ‘‘negative’’ influence. As a result, by virtue of fuzzy DEMATEL,
product planners or project managers are capable to generate the
priorities of TAs in a market-oriented manner and to visualize their
complex interrelationships, concurrently.

4.3. Optimizing module mixes for distinct market segments

Theoretically, the principle of target marketing assumes that di-
verse customers should have different requirements for product
capability and affordable price. Normally, higher purchasing price
(manufacturing cost) will sustain better product specifications.
According to its marketing survey, the marketing department of
the consulted company offers an industrial dataset, as shown in Ta-
ble 8. In this study, a sport and water digital camera is character-
ized by five functional modules and each module is composed of
specific attributes which work collaboratively. Besides, each mod-
ule has three alternatives that are associated with different manu-
facturing costs.

By virtue of linear integer programming (see Eqs. (19)–(22)), the
optimal selection of various module mixes for multi-segments are
described in Table 9. Here, an asterisk denotes the ‘‘selected’’ mod-
ule for the corresponding segment. For instance, five specific mod-
ules are suggested (i.e. M11 for CCD, M23 for lens, M32 for chip, M41
for frame, M53 for panel) to be fabricated together when acquiring
the middle-end segment. Similar explanations could be applied to
the low-end and the high-end segments, respectively. Rather than
using the roof of the QFD to indicate positive/negative correlations
among TAs, specific alternatives of various functional modules are
used to accommodate their complex correlations, including the ex-
tremely exclusive constraints among TAs.

5. Conclusions

In the era of global customization, to survive in a wide range of
market segments, companies need to balance the trade-offs be-
tween enhancing product varieties and controlling manufacturing
complexity. Consequently, numerous paradigms have received
much attention, including product family architecture, platform-
based development, and modular product design. In this paper, a
fuzzy MCDM based QFD which integrates fuzzy Delphi, fuzzy DEM-
ATEL, with LIP is presented to accomplish two fundamental tasks of
NPD: collaborative product design and optimal selection of module
mix with respect to distinct multi-segments. More importantly,
this paper demonstrates the following merits:

� To reduce the gap between customer needs and product devel-
opment, this study is capable to gather opinions between indi-
vidual customers and industrial experts and then fuse their
assessments to reach a consensus.
� To understand the causal impacts of marketing requirements on

technical attributes, this study could visualize their complicated
interrelationships and derive the priorities of technical attri-
butes in a market-oriented manner.
� To assist an enterprise in optimizing product varieties with
respect to multi-segments, this study utilizes linear integer pro-
gramming to maximize product capability with consideration of
budget constraints on manufacturing costs, concurrently.

For simplification, this study assumes that the entire market is
partitioned into three segments which are based on the pricing
policy of an enterprise. Future study might extend our current
framework to a more general scenario in which market segmenta-
tion is based on customer preference. In addition, other classical
techniques like conjoint analysis (Luce & Tukey, 1964) or Kano
model (1984) might be further incorporated into the proposed
framework to fulfill sufficient customer involvement.
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