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Abstract In recent years, due to the surge in popularity of social-networking web sites,
considerable interest has arisen regarding influence maximization in social networks. Given
a social network structure, the problem of influence maximization is to determine a mini-
mum set of nodes that could maximize the spread of influences. With a large-scale social
network, the efficiency and practicability of such algorithms are critical. Although many
recent studies have focused on the problem of influence maximization, these works in gen-
eral are time-consuming when a social network is large-scale. In this paper, we propose two
novel algorithms, CDH-Kcut and Community and Degree Heuristic on Kcut/SHRINK, to
solve the influence maximization problem based on a realistic model. The algorithms utilize
the community structure, which significantly decreases the number of candidates of influen-
tial nodes, to avoid information overlap. The experimental results on both synthetic and real
datasets indicate that our algorithms not only significantly outperform the state-of-the-art
algorithms in efficiency but also possess graceful scalability.

Keywords Community discovery - Diffusion models - Influence maximization -
Social network
1 Introduction

In the last decade, social network analysis has drawn much attention due to its widespread
applicability. A social network is a social structure made up of individuals who are tied by one
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or more specific types of relationship or interdependency, such as friendship, co-authorship,
common interest, or financial exchange, to name a few. Nowadays, many worldwide social-
networking web sites, such as Facebook and Twitter, are very popular since users can share
their thoughts and comments with their friends and also bring small and disconnected social
networks together. In 2011, Facebook and Twitter already had more than 600 million and
about 90 million active users, respectively. Hence, marketing on online social networks shows
great potential to be much more successful than traditional marketing techniques. In many
enterprises, the budget of advertisement spending on worldwide social-networking sites is
almost the same or even in excess of that spent in traditional ways.

For example, a company develops a software “cooler” and wants to market it to a social
network. The company has a limited budget so it can only give the free “cooler” to a small
number of initial users. The company hopes that the initial users could influence their friends
to use the product, and their friends could influence their friends’ friends. Through the word-
of-mouth effect, the company makes a large number of users adopt the “cooler.” The influence
maximization problem [7] aims to select initial users (referred to as seeds) so that the number
of users that adopt the product or innovation is maximized. That is, the problem is how to
find the influential individuals in a social network.

Formally speaking, a social network is generally modeled as an undirected graph G (V, E),
where V. = {vy, v2,...,v,} is the vertex set and E = {(v;, v;)| there is an edge from v;
to v;} is the set of edges. A node represents an individual, and an edge between two nodes
represents some kind of relationship (friendship or co-authorship, etc.). A node is marked as
active if it has adopted an idea or an innovation, or as inactive if it has not. Thus, the problem
of the influence maximization is given below:

(Influence Maximization Problem) Given a social network G = (V, E), the output
is to determine a set of seeds (i.e., nodes) such that these seeds could spread their
influence to other nodes with the purpose of maximizing the number of nodes affected
by the seeds.

Since many social networks become large-scale, developing efficient algorithms for the
influence maximization is more and more critical. Kempe et al. [14] proved that the influence
maximization problem is NP-hard. If it takes a week for companies to decide which set
of individuals should be given free samples to promote their products, they may lose their
superiority because of non-timeliness. Moreover, the selected set of individuals will not be
useful since the network may change significantly during this week. As such, timeliness
is an important issue for the influence maximization problem. Some efficient approximate
algorithms have been proposed [4, 10]; however, although efficient, they are only appropriate
for some diffusion models that are not realistic for modeling influences in social networks.
Different social networks may have different types of influences. For example, sometimes we
want to know which set of individuals could trigger more adoptions of products after 3 days,
7 days, or a month. How to model the influences in social networks is very important. Hence,
the diffusion model of influence is another issue for the influence maximization problem.
A realistic diffusion model is essential for making correct predictions of the future behavior
of the network.

In this paper, we propose a Community and Degree Heuristic approach (CDH) concept
to tackle the issues of time efficiency and realistic modeling of the influence maximization
problem. According to the CDH concept, two novel algorithms, CDH-Kcut and Community
and Degree Heuristic on Kcut/SHRINK (CDH-SHRINK), are developed based on a realistic
model. From observation, a common property of social networks is that nodes tend to cluster
together. CDH detects the community in social networks to avoid overlap of influence spread
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and then selects influential individuals, taking into account the community information by
modified degree centrality. To the best of our knowledge, CDH is the first algorithm that
combines the technique of community characteristics and modification of degree centrality.
Furthermore, experimental studies on both synthetic and real datasets indicate that the pro-
posed CDH is not only efficient but also has good influence spread, that is, the number of
influenced nodes.

The rest of this paper is organized as follows. Section 2 introduces the related works on
the influence maximization problem. Section 3 details the framework of CDH and the two
proposed algorithms, CDH-Kcut and CDH-SHRINK. Section 4 presents the experiments on
several synthetic and real datasets. Finally, we conclude and describe the future works in
Sect. 5.

2 Related works
2.1 Diffusion models

Rogers [20] theorizes that diffusion is the process by which an innovation is communicated
through certain channels over time among the members of a social system. Diffusion is a type
of communication concerned with the spread of messages that are perceived as new ideas.
Besides, innovations spread through a society as the early adopters select the technology
first, followed by the majority, until a technology or innovation becomes popular. Recently,
some studies [10,12,17,23,29] have investigated the diffusion models in social networks.

One naive diffusion model is the linear threshold model (LTM). For an undirected graph
G(V,E), N(v) = {u|(u, v) € E}isdefined as the neighbor set of node v, and b, is defined
as the influence of active node u on its inactive neighbor v. We define A(v) as the set of
active nodes in N(v), (A(v) € N(v)). Given an activation threshold 6, for a node v, if
YucAw)buv = 0, node v becomes active. The intuitive meaning is that for an inactive node
v, if the total influence exerted by all its active neighbors exceeds a pre-defined activation
threshold 6, node v becomes active. In turn, the newly active node v will exert influence on
its inactive neighbors and may make some inactive neighbors become active. This process
will continue until no node can be activated.

Another fundamental diffusion model is the independent cascading model (ICM) [12].
If a node u is activated at step ¢, it will try to activate its inactive neighbor v with success
probability p. If it is successful, then v will be active in step ¢ + 1, else u is failed and will
no longer have a chance to activate v. In addition, each active node has only one chance to
activate its neighbor v.

The heat diffusion model (HDM) [17] is a realistic model to simulate social behavior.
Heat diffusion is a physical phenomenon. Heat always flows from a position with higher
temperature to a position with lower temperature. The phenomenon is similar to the process
of people influencing others. The innovators and early adopters of a product or innovation
act as heat sources and process a very high amount of heat. These people start to influence
others and diffuse their influence to the early majority, then the late majority. In the HDM,
the value f; () describes the heat at node v; at time ¢, beginning from an initial distribution
of heat given at time zero. Suppose at time ¢, each node v; receives an amount of heat from
its neighbor v; during a period At. The heat should be proportional to the time period At
and the heat difference f;(t) — f;(z). As a result, the heat difference at node v; between
time ¢ and ¢t + At will be equal to the sum of the heat that it receives from all its neighbors.
This is formulated as W = aXj.wjviee(fj(t) — fi(t) = aHf(t) where H is
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a matrix and « is the heat diffusion coefficient. The HDM can easily simulate time effects
on information and different types of information flow since non-activated nodes can still
spread information. If the amount of heat of node v exceeds the activation threshold 6, we
think node v will purchase a product or adopt an innovation.

In reality, different social networks have different information flows. Information on
popular web sites transfers faster than on other types of social networks. The time aspect needs
to be considered when modeling social network marketing since different marketing strate-
gies are required for information of different durations. It is not reasonable that only activated
nodes could spread information. ICM and LTM are built at a very coarse level, typically with
only a few global parameters, and are not useful for making correct predictions of the future
behavior of the network [6,8]. HDM provides more parameters to simulate the conditions of
the real world, such as time and thermal conductivity. Some other models [10,23,29] have
been proposed, but all of them are variations of the two core models, LTM and ICM.

Note that a person’s decision to buy a product is often strongly influenced by his/her
friends and acquaintances. Clearly, the influence maximization problem is how we select the
most influential early adopters. Better early adopters could affect more people to adopt the
product. Online social networks provide good opportunities to address this problem, since
we can easily share information with our friends. Influence maximization problems under
LTM, ICM, and HDM are all NP-problems, as already proved in [14,17].

2.2 Influence maximization algorithms

Since the influence maximization problem is an NP-problem, many works have been proposed
to achieve approximate solutions. In social networks, we often consider the person who has
the most friends as the most influential person, since s/he can possibly influence the most
people. Therefore, the intuitive strategy, in general, is to select seeds based on their degree,
called degree centrality. Nevertheless, the members of large communities often have a larger
degree than other members of smaller communities. Consequently, degree centrality can
easily select seeds in the same large community. The influence spreads (i.e., the number of
influenced nodes) of each seed in the same community tend to overlap. As a result, degree
centrality does not have good performance in terms of influence spread. Distance centrality
is another commonly used method for the influence maximization problem. It selects seeds in
the order of increasing average distance to other nodes. However, nodes in larger communities
usually have a smaller average distance. As a result, most seeds may also be clustered. Simply
stated, degree centrality and distance centrality result in the phenomenon of seed clustering,
which leads to a sharp deterioration in influence spread.

The set cover greedy algorithm [10] was developed based on the ICM model. It keeps
selecting the node with the highest “uncover degrees.” Once a node is selected, all its neigh-
bors as well as itself are labeled as “covered.” This procedure continues until k seeds are
selected. This algorithm is computationally fast under simpler models, such as ICM. How-
ever, it has good influence spread only with high success probability. The climbing-up greedy
algorithm [14] was proposed based on the ICM and LTM models with approximation guaran-
tees for influence spread. It selects the most “influential” node on the condition of considering
all the seeds selected before. For selecting the most influential node, we have to compute
each node’s influence until the required k seeds are selected. Due to the heavy computing
load, the climbing-up greedy algorithm is not appropriate for large social networks.

Borrowing the idea from [14], the enhanced greedy algorithm [17] was proposed based
on the HDM. As with the climbing-up greedy algorithm, we cannot solve the influence max-
imization problem under the HDM in acceptable time. The potential-based node selection
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method [25] was proposed to select some inactive nodes that might not be optimal in the
starting phase but that could trigger more nodes in a later stage of diffusion. It can save half
the time of the climbing-up greedy algorithm and cause more adoptions than that the method
in [14]. However, in practice, it is still not efficient enough in on-line social networks. Based
on the variation of ICM, Saito et al. [22] constructed a layered graph approach and applied
bond percolation with two control strategies, pruning and burnout, to solve the influence
maximization problem. The pruning method is effective when searching for a single influen-
tial node, and the burnout method is powerful in searching for multiple nodes that together
are influential.

The extremely efficient algorithm, the degree discount heuristic, was presented in [4,25].
It obtains the approximate solutions in large datasets in only a few seconds. However, both
[4,25] are only under LTM or ICM, which are not very realistic diffusion models. In addition,
the degree discount heuristic is only for very low successful probability, that is, it is extremely
hard for people to be influenced with very low success probability.

2.3 Community structure

A community is characterized as a subset of individuals who interact with each other more
frequently than other individuals outside the community [26]. Community discovery is similar
but not equivalent to the conventional graph partitioning problem. Both community discovery
and the conventional graph partitioning problem aim to cluster vertices into groups. A key
challenge for the former, however, is that the algorithm has to decide what is “the best” or,
in other words, the “most natural” partition of a network. The “most natural” partitioning
method means that we need not give any heuristic information. Furthermore, if there is no
good community structure, then there is no need to partition the network. That is why we use
the community detection algorithm rather than the conventional graph partitioning algorithm.

A quantitative measure, called modularity (Q), has been proposed [24] to assess the qual-
ity of community structures, and community discovery was formulated as an optimization
problem. Since optimizing Q is an NP-problem, several heuristic methods have been pro-
posed, as surveyed in [5]. Assume M is the number of edges and N is the number of nodes.
The time complexity of most community detection algorithms [3,5,9,11,13,15,18,19,21,24,
27,28] is between O(N log N') and O(N?3). In this paper, the efficiency of the algorithms is our
greatest concern, so we select Kcut [21] and SHRINK [13], which have low time complexity
O(M log N) and good modularity, as our community detection algorithms. The SHRINK
algorithm can also detect hubs that are very useful for the influence maximization problem.

3 Algorithm CDH

In this section, we first present the design of the CDH. Then, based on the community
detection algorithms used (i.e., Kcut and SHRINK), we propose two algorithms, CDH-Kcut
and CDH-SHRINK.

3.1 Concept overview

Given a social network G with N individuals and a quota number k, based on the HDM,
CDH utilizes the community characteristics and modifies the degree centrality for efficiently
selecting the initial £ “influential” individuals in order to maximize the number of cascade
adoptions by which these individuals will influence others.
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Fig. 2 a The distribution of heat where node 1 is the seed. b The distribution of heat where node 1 and node
2 are the seeds

Initially, we select k individuals as seeds, denoted by the set S = {s1, s2, ..., S}, and the
k seeds are given a certain amount of heat /¢, and then we find the influence spreads, that
is, the number of influenced nodes, based on the HDM with G and S. At time zero of the
heat diffusion process, we set f;(fp) = ho for v; € S. As time elapses, the heat will diffuse
throughout the whole social network. If the amount of heat of individual vi at time ¢ is greater
than or equal to an activation threshold 6, this individual v; will be considered as having been
successfully influenced or activated by others. We define the set of influenced nodes of S,
denoted as I (), to be the expected number of individuals who will adopt the product at time 7.
Now, the Influence Maximization Problem could be interpreted as: finding the most influential
k-size set S to maximize the size of set I;(¢) at time 7, where I(t) = {i| fi(t) > 0,i < N}.
This problem is NP-hard, as already proven in [17]. We select the HDM to be our diffusion
model since it can realistically simulate a real-world social network.

The proposed CDH is composed of two phases, the partition phase and the selection phase.
The partition phase detects the communities of the social network, where a community is
a subset of individuals who interact with each other more frequently than other individuals
outside the community. Based on the communities discovered, in the selection phase, we
propose mechanisms to select seed nodes. Explicitly, in real life, one’s information often
spreads around one’s circle of friends. In other words, most of one’s influence clearly spreads
within one’s own community. We can also find the same phenomenon in the HDM. Figure 1
illustrates the framework of the CDH. For example, in Fig. 2, the color of each node signifies
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(a) (b)

Fig. 3 Two examples of fundamental nodes. a Node 3 is a fundamental node. b Node 11 is a fundamental
node

the amount of heat, that is, more dark blue means a larger amount of heat. Nodes in the same
community are captured by the dotted circle. As in Fig. 2a, if we choose node 1 as the seed,
we can see that most gains of heat are the nodes in node 1’s community. However, if we
choose node 1 and node 2 as the seeds, most heat is also spread around node 1’s community,
as in Fig. 2b. Nodes in the other community gain very little heat. We can conclude that if
we choose many nodes in the same community as seeds, most gains of heat are in their own
community, and the nodes in other communities gain little heat. Therefore, information about
the community is very useful to avoid the influence of overlapping in the HDM.

The reason for using community detection algorithms rather than a conventional graph
partitioning algorithm is that we want to detect “the best,” or in other words, the “most
natural” partitioning of a network without providing any heuristic information, such as the
number of partitions. For example, if it is natural to partition the network into 3 communities,
then we should not force the network to be partitioned into 4 communities. The second phase,
the selection phase, finds the most influential nodes based on the result of the partition phase
and some parameters of the HDM, that is, flow duration, thermal conductivity and activation
threshold. For example, in Fig. 2a, community 1 is larger than community 2. We can observe
that selecting nodes in community 1 as seeds instead of nodes in community 2 could trigger
more individuals to be activated. The degree of each node in a social network also fits the
power-law distribution [1,2], that is, a very large number of nodes have a very small number of
neighbors. Hence, most large-degree nodes are in large communities. Due to this reason, we
only consider nodes in the large communities as seed candidates and put them in a potential
pool.

Then, we detect the “fundamental nodes” from the potential pool. A fundamental node
means a node that has more potential to be a seed due to (1) a larger degree than other
nodes in the same community or (2) location at an important position in the network. An
important position means one that connects many communities. Figure 3a, b shows two kinds
of fundamental nodes. As in Fig. 3a, node 3 is a fundamental node since it has the largest
degree among all nodes. In Fig. 3b, node 11 is a fundamental node since it has a better
position that can easily influence two sets {1, 2, 3,4, 5} and {6, 7, 8, 9, 10}. How to detect
the fundamental nodes is one of the differences between the CDH-Kcut and CDH-SHRINK
algorithms.

Although fundamental nodes have a good chance of becoming final seeds, they are not the
best seeds in different situations (parameters) of the HDM. For example, seeds that perform
well in short flow duration may not be good in long flow duration. Therefore, adjusting the
fundamental nodes to become more significant seeds is very important.
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(c) Potential pool (d) Fundamental nodes (assume

construction two fundamental nodes)

Fig. 4 An example of the concept of the community and degree heuristic approach

We use an example, as shown in Fig. 4, to describe the concept of the CDH. Given a
social network as in Fig. 4a, we first detect the communities of the network. Figure 4b is the
result of community detection where different colors mean different communities. After the
partition phase, the first step of the selection phase is to construct the potential pool. The two
communities circled by red dotted circles are potential pools since they are the two largest
communities among all communities, as shown in Fig. 4c. Assume two seeds are needed for
a user. Figure 4d shows that two fundamental nodes are selected in the potential pool since
they have the largest degree. After the step of constructing the potential pool and finding
the fundamental nodes, we effectively reduce the number of candidates for seed selection.
Based on the concept of CDH, two algorithms, CDH-Kcut and CDH-SHRINK, are proposed
to efficiently solve the maximum influence problem.

3.2 CDH-Kcut

CDH-Kcut utilizes the Kcut algorithm to first discover communities in the partition phase.
Note that the Kcut algorithm [21] combines the recursive partitioning and direct k-way
method based on the eigenvectors of the Laplacian matrix of a graph. It achieves the efficiency
of arecursive approach, while also having the same accuracy as a direct k-way method. If there
are multiple communities, using multiple eigenvectors to directly compute a k-way partition
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Algorithm 1: CDH-Kcut (G, k, p)

Input: Graph of social network G ; number of total seeds k ; parameters p
Output: & seeds

01: call Kcut (G );

02: S ; [/l seed set

03: select top-k biggest communities from the communities in Kcut (G );
04: for each selected community SC; do

05: add top-p degree nodes into set SC/ ;

06: for each SC/ do

07: S < Suthe most degree node in SC/? ;

08: I(t) < execute HDM on G with §; //I(f): the set of influenced nodes of current S
09: IM — lI(1)l; // IM : save the max number of influenced nodes

10: for each community SC; do

11: if size(SC;) > avg( Zlesize(SCi)) then

12: add SC;in LC; //LC : the set of large communities

13: sort LC based on community size;

14: di < 0; // di: index of d_node

15: for each SC;in LC

16: ai < 2; /lai: index of a_node

17: while true do

18: a_node « the ai-th large degree node in SC/ ;
19: d_node < the seed candidates s;.41in S ;
20: replace the d_node with a_node in S ;
21: 1(t) < execute HDM on G with S;

22: if 17,(1)| < IM then

23: restore the replacement in line 20;
24. break;

25: IM — |[(1);

26: ai «— ai +1; di — di +1;

27: output S;

Fig. 5 Pseudo code of the CDH-Kcut algorithm

is better than using the recursive bi-partitioning method. Every node in social network graph
G will belong to only one community, and overlapping communities are not allowed in Kcut.
We assume that G is partitioned into / communities. In most cases, / is larger than k, so in this
paper, we do not discuss the case [ < k. For more details of the Kcut algorithm, interested
readers could refer to [21].

Figure 5 illustrates the pseudo code of the CDH-Kcut algorithm. First, we select the top-k
biggest communities from the discovered communities by Kcut, denoted as SC;, 1 <i <k
(lines 1-2, algorithm 1). Then, we construct a potential pool, P P(G) (lines 3-5, algorithm 1).
A potential pool is defined as, PP(G) = {sc’, SCf, R SC,f}, where SCip is the set of
top-p degree nodes in the i-th largest community SC;. P P (G) keeps the top- p degree nodes
in each community of the top-k largest communities. In most cases, p = 10 % of community
size is enough for selecting good seeds. Then, the fundamental nodes are selected from the
potential pool. Since Kcut cannot identify the important location of nodes in each S Cip ,degree
is considered as the only attribute that distinguishes good fundamental nodes. We select the
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largest degree node in each SCf as the set of fundamental nodes S = {s1, s2,...., sk} (lines
6-8, algorithm 1). By potential pool and fundamental node construction, we can significantly
narrow down the range of possible seeds (Fig. 5).

Moreover, we adjust the fundamental nodes to be the final seeds. Our basic idea of adjust-
ment is a heuristic that tries to use an add-node, a_node, to replace a delete-node, d_node.
By our observation, seeds selected from a large community could trigger more adoptions
of a product or an innovation than seeds selected from a small community. For example,
in Fig. 3a, community 1 is large and community 2 is small. If the size of a community is
larger than AvgSC = an(E{‘=1 size(SC;)), this community is deemed as being large (lines
10-13, algorithm 1). As a result, we are inclined to select an a_node from large communities
and a d_node from small communities. We would like to investigate whether selecting nodes
from large communities can gain more influence spread (lines 17-20, algorithm 1). If the
number of influenced nodes after replacing is larger than before replacing, we replace the
d_node with an a_node in S (lines 21-24, algorithm 1). Notice that delete-nodes must be
fundamental nodes, that is, the d_node is selected from S. Finally, we output the nodes in set
S as the selected seeds (line 27, algorithm 1).

Moreover, we adjust the fundamental nodes to be the final seeds. Our basic idea of adjust-
ment is a heuristic that tries to use an add-node, a_node, to replace a delete-node, d_node.
By our observation, seeds selected from a large community could trigger more adoptions
of a product or an innovation than seeds selected from a small community. For example, in
Fig. 3a, community 1 is large and community 2 is small. If the size of a community is larger
than AvgSC = avg(Z;_,size(SC;)), this community is deemed as a large community (lines
10-13, algorithm 1). As aresult, we are inclined to select an add-node from large communities
and a delete-node from small communities. We would like to investigate whether selecting
nodes from large communities can gain more influence spread (lines 17-20, algorithm 1). If
the number of influenced nodes after replacing is larger than before replacing, we replace the
delete-node, d_node with an add-node, a_node in S (lines 21-24, algorithm 1). Notice that
delete-nodes must be fundamental nodes, that is, the d_node is selected from S. Finally, we
output the nodes in set S as the selected seeds (line 27, algorithm 1).

The adjustment is to avoid the influence spread being spoiled by the effect of different
parameter values, such as flow duration, activation threshold and thermal conductivity. We
discuss these effects individually. Comparing the different effects by time duration, informa-
tion will diffuse farther in long flow duration. That is, in long flow duration, the seeds would
influence more individuals than in short flow duration. Therefore, we should not select too
many seeds from a single community in long flow duration. In contrast, it is appropriate to
select more seeds from a single community if the flow duration is very short.

It is more difficult to make individuals adopt products if the activation threshold is high.
Individuals need more heat to be activated with a higher activation threshold, so we tend
to select more seeds in a community with a high activation threshold. High thermal con-
ductivity makes information diffuse more quickly. Compared with low thermal conductivity,
information with high thermal conductivity diffuses over a longer distance. Hence, we do
not select many seeds from a community with high thermal conductivity. We conclude that
different parameters may cause different levels of seed clustering. It is better to select more
seeds in one community, that is, to have a higher level of seed clustering with short flow
duration, a high threshold and low thermal conductivity. On the contrary, in long flow dura-
tion, low threshold, and high thermal conductivity social networks, not many seeds in a
single community are needed, that is, there is a lower level of seed clustering. Therefore, the
adjustment in CDH-Kcut is to test and verify whether large communities should need more
seeds.
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Fig. 6 Illustration of community size reduction

3.3 CDH-SHRINK

As with CDH-Kcut, CDH-SHRINK also consists of two phases, the partition phase and the
selection phase. However, SHRINK [13] is utilized to discover communities in the partition
phase. SHRINK is a parameter-free hierarchical network clustering algorithm combining
the advantages of density-based clustering and modularity optimization methods. It uses the
density-based method to quickly discover which set of nodes may be in the same cluster
and then uses modularity optimization to decide whether the results of the clustering are
good or not. SHRINK not only detects hierarchical communities but also identifies hubs
and outliers. For community partition, a hub, that is, a node connecting different commu-
nities, can provide more information about the community structure properties. As in the
example in Fig. 6, node 7 is a hub connecting communities 1 and 2. A brief introduction
to the SHRINK algorithm is provided here; please refer to [13] for more details. Since the
communities detected by SHRINK are more precise than those found by Kcut, we can select
more productive fundamental nodes.

In the selection phase, we construct the potential pool and select fundamental nodes
and then adjust the fundamental nodes to find final seeds. Since the hub can provide more
information about community structure, constructing the potential pool and selecting fun-
damental nodes are quite different from the same process in CDH-Kcut. If we have to find
k seeds, we need k iterations of selecting the fundamental nodes. In the i—th iteration,
1 < i < k, we only choose the largest community SC; among all remaining commu-
nities and select the top-p degree nodes in SC;, denoted as S Cip , for the potential pool
construction, and then select a fundamental node from SCip . Based on the observation of
experiments, p = 10% of SC/s size is sufficient to select good seed nodes. After select-
ing a fundamental node in SCip (how selection is made is discussed later), the size of
each un-chosen community covered by this fundamental node has to reduce its degree.
For example, as shown in Fig. 6, assume that node 7 is the fundamental node in commu-
nity 1 (size = 10) in the 1st iteration. In the 2nd iteration, when we choose the biggest
community, the size of community 2 (size = 7) will reduce the degree of node 7 in com-
munity 2, that is, 7 — 3 = 4. Community size reduction can effectively avoid influence
overlap.

Now, we discuss how to select a fundamental node in the potential pool. A good fundamen-
tal node should “cover” communities as much as possible while having as much influence on
its communities as possible. In Fig. 7, nodez belongs to communities C;, C» and Cs. That
is, z covers Cy, C» and C3. We define two evaluation metrics, position score and hub purity,
to measure how good a fundamental node is.
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Fig. 7 An example of how to
compute purity. C1, Cp, C3, and
C4 are communities A °

Definition 1 (Position Score and Hub Purity) To evaluate the importance of a node’s
position in a network, the position score of a node u is defined as the number of com-
munities which u belongs to, that is, position_score(u) = [{Cilu € C;,u € V and C; €
set of discovered communities} |. If the node u is a non-hub node, the position_score(u) is

1. Otherwise, the position_score(u) is larger than 1. The hub purity of a node is defined as,

. _ |{CilueCiuisahuband C; ¢ FCY) . .. .
hub_purity(u) = position_score(u) , where F'C is the set of communities, which

contains fundamental node u and u is a hub. For example, in Fig. 7, C; and C; are commu-
nities containing fundamental node x. Cy, C, and C3 are communities containing node z.
C> and C4 are communities containing nodey. Therefore, position_score(z) = 3, hub_purity
(z) = 1/3 and position_score(y) = 2, hub_purity (y) = 1/2.

We choose the “MAX priority” nodes from S Cip as fundamental nodes, 1 < i < k.
Selecting fundamental nodes in CDH-SHRINK is different from the same process in CDH-
Kcut. To compare the priority of nodes, we use the function compare_priority, which works
as follows,

1) If both nodes are hubs, we compare their position_score other than their degree. We
compare hubs according to how many communities they belong to, since we want to
cover more communities. That is, we want to choose a hub that has important positions
in the network. Besides, if the node is a hub, its purity must exceed the purity threshold.
A low-purity hub may cause information overlap since it may cover too many commu-
nities.

2) When comparing non-hub nodes with either hub or non-hub nodes, we compare their
influence on their neighbors, that is, degree, due to the non-availability of information
about the importance of the location of the non-hub nodes.

After comparing the top-p degree nodes in SC;, we can successfully find the fundamental
nodes. The fundamental node may have a very good position that connects SC; with many
other communities and has much influence on its neighbors. The set of selected fundamental
nodes is denoted as S = {s1, s2,...,85}, 1 <i <k.

Finally, we adjust the fundamental nodes to be the final seed nodes. Adjustment in CDH-
SHRINK is also a heuristic, which tries to choose an add-node to replace a delete-node.
Then, we test whether the influence spread (influenced nodes) after replacing is larger than
before replacing. Two evaluation metrics, left and seed load, are defined as the auxiliaries to
determine the add-nodes and delete-nodes.

Definition 2 (Left and Seed Load) Given acommunity C; €, a set of discovered communities
in G, we define left(C;) = |{u|lu € C; and u is a non-activated node} |. left (C;) might be
thought of as “the need to add more seeds to C;.” As left (C;) increases, the need to select

more seeds for C; increases. We define seed_load(C;) = I SIZE(C;)

TalueC sy The implication of
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Algorithm 2: CDH-SHRINK (G, k, p)

Input: Graph of social network G ; number of total seeds k ; parameters p
Output: & seeds

01: call SHRINK (G);

02: S — ; SC — OJ; [/l seed set

03: while ISCl <k do // select the fundamental node

04: SC — SC U biggest community SC; among all remaining communities;
05: add top-p degree nodes of SC; into set SC?;
06:  for each node in SC/ do

07: max_node = compare_priority (n;, max_node); [/ n; : the i-th largest degree node
inSC/

08: S «— S U max_node;

09: for each community C; which has max_node do

10: size(C;) = size(C;) — degree(max_node);

11: I(t) <« execute HDM on G with S; //I(¢): the set of influenced nodes of current S
12: IM — I (t)l; /] IM : save the max number of influenced nodes
13: for 1 to r do //adjustment

14: a_node — u | max{ =_ left (C;| ue C)), t = position_ score (u)};
15: d_comm «— min ¢icsc seed_load (C));

16: d_node «— min ,c s ye a_comm 1{v 1 ve A(u), A(u)c G(V)}l;

17: replace the d_node with a_node in S;

18: 1(t) < execute HDM on G with S;
19: if 1,(r) < IM then

20: restore the replacement in line 17;
21: IM — I(1);

22: Output individuals in S;

Procedure: Compare_priority (a, b)

23: if (a is hub) A (hub_purity (a) < purity_threshold) then
24 return b;

25: if (a is hub) A (b is hub) then

26: return max (position_score (a), position_score (b));
27: if a is non-hub then

28: return max (degree(a), degree(b));

Fig. 8 Pseudo code of the CDH-SHRINK algorithm

seed_load (C;) is that there are too many seeds in C;. When seed_load (C;) is small, that
perhaps means that there are too many seeds in C;.

In each iteration, we firstly select the add-node, a_node = u| max{Ef=1 left(Cilu €
Ci),t = position_score(u)} and choose a delete-community, d_comm, which has the
smallest seed_load among SC;, 1 < i < k. We define a function A(u) that outputs a set
of active nodes adjacent to node u. Subsequently, we select the delete-node, d_node, which
has the minimum |A(d_node)| among all seeds in d_comm. Finally, we test whether we
should substitute an add-node for the delete-node. If the influence spread after substitution
is more than before, we make a substitution. To quickly find a productive a_node, we do not
consider very low degree nodes. We could assume that selecting low degree nodes as seeds
is not productive.

The pseudo code of the CDH-SHRINK algorithm is given in Fig. 8. The information
of community structure and hubs can be discovered by the SHRINK algorithm (line 1,
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Table 1 Parameters of LFR

benchmark graphs [15, 16] Parameters Description
N Number of nodes
M Number of edges
maxd Maximum degree
mp Mixing parameter (each node shares a fraction mp

of its edges with nodes in other communities)

Table 2 Five generated

synthetic networks Dataset N M maxd P
1000Smp 1,000 9,097 100 0.1
1000Lmp 1,000 9,097 100 0.5
1000Lmaxd 1,000 9,097 200 0.1
1000LM 1,000 22,484 100 0.1
50008mp 5,000 47,094 100 0.1

algorithm 2). If k seeds are desired, k iterations of selecting fundamental nodes (lines 3-9,
algorithm 2) are executed. Then, we adjust the fundamental nodes to select the final seeds
(lines 13-21, algorithm 2). The adjustment uses r iterations to test the substitution. In most
cases, r = 2k ~ 3k is sufficient to obtain satisfactory influence spread. Finally, we output
the nodes in set S as the selected seeds (line 22, algorithm 2).

4 Experiments

To evaluate the performance of the CDH, three influence maximization algorithms, CDH-
Kcut, CDH-SHRINK, and the enhanced greedy algorithm (EGA) [17], are implemented for
comparison. We also implement a naive algorithm, degree heuristic (DH) as a baseline, which
only selects the top-k largest degree nodes as the seed nodes. All algorithms are designed
based on the HDM, are implemented in the C++ language, and are tested on a Pentium D
3.0GHz with 2 GB of main memory running the Windows XP system. The comprehensive
performance study is conducted on five synthetic networks and three real-world datasets, the
karate network [30], the NETHep network, and the Facebook network. In each experiment, we
vary three parameters, the activation threshold (6), flow duration (¢), and thermal conductivity
() of the HDM, to compare the influence spread (number of activated nodes) and efficiency
(execution time) of the four algorithms.

4.1 Synthetic networks

The synthetic datasets in the experiments are generated using a synthetic generation program,
Lancichinetti-Fortunato—Radicchi (LFR) benchmark graphs [15,16]. The parameter setting
of the LFR generator is shown in Table 1. We generate five different undirected graphs, (1)
1000Smp: the graph with 1,000 nodes and small mixing parameter; (2) 1000Lmp: the graph
with 1,000 nodes and large mixing parameter; (3) 1000Lmaxd: the graph with 1,000 nodes
and large maximum degree; (4) 1000LM: the graph with 1,000 nodes and large number of
degree; and (5) 5000Smp: the graph with 5,000 nodes and small mixing parameter, as shown
in Table 2. Generally, the higher the mixing parameter of a network, the more difficult it is
to reveal the community structure.
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Table 3 The influence spread of different algorithms in 1000Smp (1,000 nodes and small mixing parameter,
the largest influence spread is highlighted in boldface)

Parameter setting DH EGA CDH-SHRINK CDH-Kcut
t=0.1,6=0.1,a=0.1 215 341 341 339
t=01,6=02a=0.1 215 336 335 332
t=01,6=150a=0.1 95 223 221 216
t=01,6=20,ad=0.1 95 133 141 166
t=02,6=01,a=0.1 336 386 379 345
t=03,6=01,0a=0.1 472 503 499 508
t=04,0=0.1,aa=0.1 567 635 628 649
t=0.1,6=01a=02 336 386 386 345
t=01,6=01,a=03 472 503 498 503
t=01,6=01a=04 567 635 632 649

Table 4 The influence spread of different algorithms in 1000Lmp (1,000 nodes and large mixing parameter,
the largest influence spread is highlighted in boldface)

Parameter setting DH EGA CDH-SHRINK CDH-Kcut
t=0.1,0=0.1,a=0.1 206 251 249 233
t=0.1,6=02,0=0.1 187 225 225 215
t=0.1,0 =15a=0.1 105 176 170 149
t=0.1,0 =16, =0.1 56 137 131 114
t=02,0=0.1,a0 =0.1 484 562 559 535
t=03,0=0.1,a0a =0.1 722 790 782 763
t=04,0=0.1,0a =0.1 829 892 888 853
t=0.160=0.1,a=02 484 562 560 520
t=0.1,6=01,0a =03 722 790 781 742
t=01,60=01a=04 829 892 885 863

Table 3 provides the results of the four algorithms with different activation thresholds
(0), flow duration (¢), and thermal conductivity (&) in 1000Smp. The influence spreads of
CDH-SHRINK and CDH-Kcut from 8 = 0.2 to 6 = 1.4 are almost the same. Hence, we only
discuss 6 = 0.2, 6 = 1.5 and 6 = 2.0. We can observe that CDH-SHRINK and CDH-Kcut
have the same influence spread in most cases and are even better than EGA with 6 = 2.0.
Figure 9a, b shows 5 seed nodes selected by CDH-Kcut with = 0.1, 6 = 0.1, @ = 0.1 and
with 1= 0.1, 0 = 0.2, « = 0.1 in 1000Smp, respectively. We can see that a higher activation
threshold leads to the phenomenon of seed clustering.

Table 4 shows the influence spread of different algorithms with different parameter settings
in 1000Lmp. CDH-Kcut performs worse than CDH-SHRINK in 1000Lmp since SHRINK
could detect a more accurate community structure than Kcut. Hence, if it is difficult to identify
the correct community structure of the network, CDH-SHRINK will probably perform better
than CDH-Kcut. The accuracy of the detected community structure reflects the performance
of the influence spread of CDH-SHRINK and CDH-Kcut. Therefore, with increased mixing
parameters, that is, each node shares a fraction of its edges with nodes in other communities,
the influence spread performance of CDH-SHRINK and CDH-Kcut deteriorates. Table 5
indicates the influence spread of different algorithms with different activation thresholds,
flow duration, and thermal conductivity in 1000Lmaxd. Nodes in 1000Lmaxd could have
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Table S The influence spread of different algorithms in 1000Lmaxd (1,000 nodes and large maximum degree,
the largest influence spread is highlighted in boldface)

Parameter setting DH EGA CDH-SHRINK CDH-Kcut
t=0.1,6=0.1,a=0.1 202 332 333 315
t=01,6=02a=0.1 196 290 288 269
t=01,6=150a=0.1 146 170 161 143
t=01,6=16,0a=0.1 136 138 120 113
t=02,6=01,a=0.1 299 494 495 473
t=03,6=0.1,a=0.1 404 565 569 561
t=04,0=0.1,a=0.1 482 627 620 599
t=0.1,6=01a=02 299 494 495 473
t=01,6=01,aa=03 404 565 569 561
t=01,6=01a=04 482 627 620 599

Table 6 The influence spread of different algorithms in 1000L M (1,000 nodes and large number of edge, the
largest influence spread is highlighted in boldface)

Parameter setting DH EGA CDH-SHRINK CDH-Kcut
t=0.1,06=0.1a=0.1 521 663 653 653
t=01,6=02a=0.1 316 506 499 487
t=01,6=150a=0.1 246 430 430 412
t=02,6=01a=0.1 184 226 226 218
t=03,6=01,a=0.1 816 923 919 898
t=04,0=0.1,aa=0.1 939 991 989 976
t=01,06=01a=02 996 1,000 993 1,000
t=01,6=01,a=03 816 923 919 898
t=01,6=01a=04 939 991 989 976

larger degrees. That is, the degree of some nodes will be much larger than that of others.
Consequently, the performance of the influence spread of DH will be improved, especially
with a high activation threshold.

Table 6 shows the influence spread of the four algorithms with different parameters in
1000LM. In 1000LM, each node has more neighbors, so information will spread quickly.
Hence, we could see that the influence spread in 1000LM is higher than that in 1000Smp,
1000Lmp, and 1000Lmaxd. In most cases, the influence spreads of CDH-SHRINK and CDH-
Kcut are still better than that of DH. Table 7 indicates the influence spread of different
algorithms with different activation thresholds, flow duration and thermal conductivity in
50008mp. 5000Smp has 5,000 nodes. In most cases, the influence spread of CDH-SHRINK
and CDH-Kcut is almost equal to that of EGA and still better than DH.

In summary, CDH-SHRINK, in general, is more productive than CDH-Kcut. With the
increase in the activation threshold, seeds will cluster together to trigger a larger influence
spread. As shown in Fig. 9a, b, the graphs indicate the seed clustering phenomenon with a
high activation threshold.

4.2 Zachary’s karate network

Zachary’s karate network [30] consists of 34 nodes and 78 edges. Nodes represent the
members of a karate club in the United States who have been observed over a period of
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Table 7 The influence spread of different algorithms in 5000Smp (5,000 nodes and small mixing parameter,
the largest influence spread is highlighted in boldface)

Parameter setting DH EGA CDH-SHRINK CDH-Kcut
t=0.1,6=0.1,a=0.1 391 540 540 536
t=01,6=02a=0.1 252 438 433 426
t=01,6=150a=0.1 210 397 393 356
t=02,6=01a=0.1 169 261 255 232
t=03,6=0.1,a=0.1 843 1,258 1,238 1,202
t=04,60=01,a=0.1 877 1,284 1,275 1,213
t=0.1,0=01a=02 952 1,451 1,423 1,378
t=01,6=01a=03 843 1,258 1,238 1,202
t=01,6=01a=04 877 1,284 1,275 1,213

(@) 1=0.1,6=0.1,0=0.1 (b) 1=0.1,6=02, a=0.1

Fig. 9 5 Seeds (red nodes) selected by CDH-Kcut in 1000Smp (color figure online)

Fig. 10 Zachary’s karate network. Red nodes are node 0 and node 33 (color figure online)

3years. Edges connect individuals who have been observed to interact outside the activities
of the club. The Zachary’s karate network is shown in Fig. 10. Table 8 lists the final seed
selection (the two numbers in parentheses) and the influence spread of the four algorithms
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Table 8 The influence spread and two selected seeds of different algorithms in Zachary’s karate network
(the largest influence spread is highlighted in boldface)

Parameter setting DH EGA CDH-SHRINK CDH-Kcut
t=0.1,0=0.1, x=0.1 31 (0, 33) 31 (0, 33) 31(0, 33) 31 (0, 33)
t=0.1,0=0.2, 0= 0.1 6 (0, 33) 12 (32,33) 12 (32, 33) 12 (32, 33)
t=0.1,0=0.3, =0.1 6 (0, 33) 12 (32, 33) 12 (32, 33) 12 (32, 33)
t=0.1,0=0.2,0=02 31 (0, 33) 31 (0, 33) 31(0,33) 31(0,33)
t=0.4,0=0.6,x=0.1 6 (0, 33) 84,7 12 (32, 33) 12 (32, 33)
Fig. 11 Influence spread of —-— °
different algorithms on NETHep EGA CDH_Keut
witht =0.1,0 =0.1,0 = 0.1 —®— CDH_SHRINK —&— DH
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3
=
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=
=
4000 -
3000

5 ' 10' 15' 20' 25' 30' 35' 40' 45' 50'

Number of Seeds
with different parameter settings. From Table 8, we can find that CDH-SHRINK and CDH-
Kcut could select good seeds according to different parameter values, but DH could not.
Consequently, CDH-SHRINK and CDH-Kcut get the same influence spread as EGA in most
cases. In case t=0.1,0 =0.2 and @ = 0.1, two seeds, 0 and 33, are selected, as the red nodes
in Fig. 10. Furthermore, in some cases, like t = 0.4, 0 =0 .6, « = 0.1, the CDH strategy gets
better influence spread. We could see that the two seeds selected with 7= 0.1, 6 = 0.2 and
o =0.1 are 32 and 33. That is, a high activation threshold easily causes the phenomenon of
seed clustering while high thermal conductivity does not. Therefore, two seeds 0 and 33 are
selected with t= 0.1, 0 = 0.2, and « = 0.2 that are the same seeds as those with t= 0.1, 0 =
0.1, and o = 0.1.

4.3 NETHep network

In this section, we extract a large real-life academic collaboration network, NETHep from
the e-print. Each node in the network represents an author. If an author i co-authored a paper
with author j, the graph contains an undirected edge from i to j. If the paper is co-authored
by k authors, this generates a completely connected graph on k nodes. Including all papers
from the period January 1993 to April 2003 (124 months), NETHep contains 12,008 nodes
and 237,010 edges.

On the large real collaboration network, NETHep, we report the efficiency and influence
spread of EGA, CDH-SHRINK, CDH-Kcut, and DH with different numbers of seeds and
values of parameters. In CDH-SHRINK, the purity threshold is set to 0.35, which can get
satisfactory influence spread. Figure 11 shows the influence spread of different algorithms
with different numbers of seeds on NETHep. The x-axis indicates the number of seeds
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Fig. 12 Influence spread of different algorithms on NETHep with different parameter settings

and the y-axis indicates influence spread. In most cases, EGA’s influence spread ~ CDH-
SHRINK’s influence spread > CDH-Kcut’s influence spread > DH’s influence spread. With
the increasing number of seeds, CDH-SHRINK and CDH-Kcut improve and are better than
DH since most seeds selected by DH are only in a few communities.

Figure 12a, b shows the influence spread of 10 seeds and 30 seeds with different 6 from 0.1
to 0.5 with a span of 0.1, respectively. The x-axis indicates the activation threshold, and the
y-axis indicates the influence spread. The results reflected in the figures show that although
the total influence spread of the four algorithms will decrease as 6 increases, CDH-SHRINK
and CDH-Kcut still maintain a good influence spread. Notice that DH improves its influence
spread with the increase of 8, which results from the effect of seeds with high 6. However,
it is still worse than CDH-SHRINK and CDH-Kcut when selecting more seeds. Figure 12c,
d indicates the influence spread of 10 seeds and 30 seeds with different ¢ from 0.1 to 0.4
with a span of 0.1, respectively. The x-axis describes flow duration, and the y-axis describes
influence spread. The figures show that our proposed algorithms still maintain good influence
spread with the increase of 1. We only report results from ¢ = 0.1 to # = 0.4 since a ¢ value
that is too large will lead to the situation that most nodes are influenced, and thus, we cannot
easily distinguish the performance of the four algorithms.
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Fig. 13 Running time of different algorithms on the NETHep network when selecting 10 seeds and 50 seeds,
respectively

We present the execution times of the four algorithms in Fig. 13 with 10 seeds and 50
seeds. The x-axis indicates different algorithms, and the y-axis (logarithmic scale) indicates
the execution time. Since DH only needs to select the top-k degree nodes as seeds, its
execution time is extremely efficient. CDH-SHRINK has the shortest execution time among
the other three algorithms and is about 3,446 times faster than EGA (68927/20). We can
also see that the running time of EGA is proportional to the number of seeds. The execution
times of CDH-SHRINK and CDH-Kcut are only slightly different between 10 seeds and 50
seeds. This is because CDH-SHRINK and CDH-Kcut only have to spend a little more time
on adjustment when the number of nodes increases. As shown is Figs. 11 and 13, although
on average EGA is about 1.3 % better than CDH-SHRINK in terms of influence spread, the
execution time is much slower than the proposed CDH methods. Nowadays, social networks
are becoming bigger and bigger. If a time-consuming algorithm takes a long time to decide
which set of individuals should be seed nodes, its selection may be ineffective and it will lose
superiority due to the dynamic variation of the networks. The efficiency of an algorithm is
also a critical issue.

4.4 Facebook network

In this section, we discuss the influence maximization on a large real-life dataset, the Facebook
network. Each node in the network represents a user. If user i is a friend of user j, the graph
contains an undirected edge from i to j. The network is denoted as FB, in the period from
April 2004 to 2009 January (124 months), and contains 63,731 nodes and 817,090 edges. We
not only analyze the efficiency but also the influence spread of our algorithms with respect
to different numbers of seeds and parameter values. In CDH-SHRINK, the purity threshold
is set to 0.2, which can demonstrate satisfactory influence spread in FB.

Figure 14 shows the influence spread of different algorithms with different numbers of
seeds on FB. The x-axis indicates the number of seeds, and the y-axis indicates the influence
spread. As shown in Fig. 14, in most cases, EGA’s influence spread ~ CDH-SHRINK’s
influence spread > CDH-Kcut’s influence spread > DH’s influence spread. Since EGA is
too time-consuming, we only report the influence spread from 5 seeds to 30 seeds.

Figure 15a, b depicts the influence spread of 10 seeds and 30 seeds with different 6 from
0.1 to 0.4 with a span of 0.1, respectively. The x-axis indicates the activation threshold,
and the y-axis indicates the influence spread. We can observe that, when only 10 seeds
are selected, EGA’s influence spread ~ CDH-SHRINK’s influence spread > CDH-Kcut’s
influence spread > DH'’s influence spread, with 6 = 0.2, 0.3 and 0.4. In Fig. 15b, we can
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Fig. 15 Influence spread of different algorithms on FB with different parameter settings
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Fig. 16 Execution time of the different algorithms on the FB network when selecting 5 seeds and 30 seeds

see that DH’s influence spread is better than that in Fig. 15a. Moreover, CDH-SHRINK’s
influence spread is better than that of EGA when 6 = 0.1 and 0.3.

Figure 15c, d illustrates the influence spread of 10 seeds and 30 seeds with different ¢
from 0.1 to 0.4 with a span of 0.1, respectively. The x-axis indicates the flow duration, and
the y-axis indicates the influence spread. Unlike other cases on NETHep or FB, in Fig. 15c,
CDH-SHRINK s influence spread > CDH-Kcut’s influence spread > EGA’s influence spread
> DH’s influence spread. However, when we select 30 seeds as shown in Fig. 15d, the ranking
of influence spread becomes CDH-SHRINK = EGA > CDH-Kcut > DH. EGA still has the
most influence spread in most cases. It is noticed that no matter what parameter values are
set on FB, CDH-SHRINK’s influence spreads are very close to those of EGA.

We present the execution times of the four algorithms in Fig. 16 with 5 seeds and 30
seeds, respectively. The x-axis indicates the different algorithms, and the y-axis (logarith-
mic scale) indicates the execution time. CDH-SHRINK has the shortest running time. Just
like on NETHep, we can see that the running time of EGA is proportional to the number
of seeds. Overall, in terms of influence spread, CDH-SHRINK ~ EGA > CDH-Kcut >
DH; in terms of efficiency, DH > CDH-SHRINK > CDH-Kcut 3> EGA. One point that
deserves mentioning is that due to the phenomenon of seed clustering, DH will get better
performance in terms of influence spread with high activation than with a low activation
threshold.

5 Conclusion and future work

In this paper, we present two algorithms, CDH-Kcut and CDH-SHRINK, adopting the undi-
rected HDM by integrating the information of community structure and the modified degree-
centrality method. The purpose of our work is to solve the influence maximization problem
efficiently and still have good influence spread based on the HDM. The experimental results
on the real-world and synthetic datasets also validate that our proposed algorithms achieve
great performance in running time and influence spread. When comparing CDH-SHRINK
with CDH-Kcut, CDH-SHRINK, in general, utilizes hubs and better community structure to
achieve better influence spread. Although both algorithms are efficient with time complexity
O(MlongN), CDH-Kcut, in practice, would take more execution time.

In the future, to interpret the real world more realistically, the influence maximization
problem can be extended to weighted graphs. Furthermore, dynamic evolution is also an
important property of social networks. Static community detection algorithms could only
detect community structure without considering the evolution of social networks. It would
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be a worthwhile investigation to utilize dynamic community structures to solve the influence
maximization problem.

Acknowledgments Suh-Yin Lee was supported by the National Science Council, Project No. NSC99-
2221-E-009-128-MY2. Wen-Chih Peng was supported in part by the National Science Council, Project No.
100-2218-E-009-016-MY3 and 100-2218-E-009-013-MY3, by Taiwan MoE ATU Program, by ITRI JRC,
Project No. B352BW3300, by D-Link and by Microsoft.

References

N —

20.
21.

22.

Albert R, Jeong H, Barabasi A (1999) Diameter of the World Wide Web. Nature 401:130-131

. Barabasi A, Albert R (1999) Emergence of scaling in random networks. Science 286:509-512

Bortner D, Han J (2010) Progressive clustering of networks using structure—connected order of traversal.
In: 26th IEEE international conference on data, engineering (ICDE’10), pp 653-656

Chen W, Wang Y, Yang S (2009) Efficient influence maximization in social networks. In: Proceedings of
the 15th ACM SIGKDD international conference on knowledge discovery and data mining (KDD’09),
pp 199-208

Danon L, Duch J, Diaz-Guilera A, Arenas A (2005) Comparing community structure identification. J Stat
Mech Theory Exp 09:P09008

Domingos P (2005) Mining social networks for viral marketing. IEEE Intell Syst 20(1):80-93
Domingos P, Richardson M (2001) Mining the network value of customers. In: Proceedings of the 7th
ACM SIGKDD international conference on knowledge discovery and data mining (KDD’01), pp 57-66
Domingos P, Richardson M (2002) Mining knowledge-sharing sites for viral marketing. In: Proceedings
of the 8th ACM SIGKDD international conference on knowledge discovery and data mining (KDD’02),
pp 61-70

Ester M, Kriegel H, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large
spatial databases with noise. In: Proceedings of 2nd international conference on knowledge discovery
and data Mining (KDD’96), pp 226-231

Estevez P, Vera P, Saito K (2007) Selecting the most influential nodes in social network. In: Proceedings
of the international joint conference on, neural networks (IJCNN’07), pp 2397-2402

. Feng Z, Xu X, Yuruk N, Schweiger T (2007) A novel similarity-based modularity function for graph

partitioning. In: Proceedings of the 9th international conference on data warehousing and knowledge,
discovery (DaWaK’07), pp 385-396

Goldenberg J, Libai B, Muller E (2001) Talk of network: a complex systems look at the underlying process
of word-of-mouth. Mark Lett 12(3):211-223

HuangJ, Sun H, Han J, Deng H, Sun Y, Liu Y (2010) SHRINK: a structural clustering algorithm for detect-
ing hierarchical communities in networks. In: Proceedings of the 19th ACM conference on information
and, knowledge management (CIKM’10), pp 219-228

Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of influence through a social network. In:
Proceedings of the 9th ACM SIGKDD international conference on knowledge discovery and data mining
(KDD’03), pp 137-146

Lancichinetti A, Fortnato S, Kertesz J (2009) Detecting the overlapping and hierarchical community
structure in complex network. New J Phys 11(3):033015

Lancichinetti A, Fortnato S, Radicchi F (2008) Benchmark graphs for testing community detection
algorithms. Phys Rev E 78(4):046110

Ma H, Yang H, Lyu M, King I (2008) Mining social networks using heat diffusion processes for market-
ing candidates selection. In: Proceedings of the 17th ACM conference on information and, knowledge
management (CIKM’08), pp 233-242

Ng A, Jordan M, Weiss Y (2001) On spectral clustering: analysis and an algorithm. In: Neural information
processing systems: natural and synthetic (NIPS 2001), pp 849-856

Palla G, Derenyi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex
networks in nature and society. Nature 435:814-818

Rogers E (2003) Diffusion of innovations. Free Press, New York

Ruan J, Zhang W (2007) An efficient spectral algorithm for network community discovery and its appli-
cations to biological and social networks. In: Proceedings of the 7th IEEE international conference on
data mining (ICDM’07), pp 643-648

Saito K, Kimura M, Ohara K, Motoda H (2011) Efficient discovery of influential nodes for SIS models
in social networks. Knowl Inf Syst 30(3):613-635

@ Springer



600

Y.-C. Chen et al.

23.
24.

25.

26.

217.

28.

29.

30.

Valente T (1995) Network models of the diffusion of innovations. Hampton Press, Cresskill

Wan L, Liao J, Zhu X (2008) Finding and evaluating community structure in social networks. In:
Proceedings of the 4th international conference on advanced data mining and applications (ADMA’08),
pp 620-627

Wang Y, Feng X (2009) A potential-based node selection strategy for influence maximization in a social
network. In: Proceedings of the 5th international conference on advanced data mining and applications
(ADMA’09), pp 350-361

Wasserman S, Wasserman S, Faust K (1994) Social network analysis: methods and applications. Cam-
bridge University Press, Cambridge

White S, Smyth P (2005) A spectral clustering approach to finding communities in graph. In: Proceedings
of the 5th STAM international conference on data mining (SDM’05), pp 274-286

Xu X, Yuruk N, Feng Z, Schweiger T (2007) SCAN: a structural clustering algorithm for networks.
In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data
mining (KDD’07), pp 824-833

Young H (2000) The diffusion of innovations in social networks. The Johns Hopkins University, economics
working paper 437

Zachary W (1997) An information flow model for conflict and fission in small group. J Anthropol Res
33:452-473

Author Biographies

Yi-Cheng Chen received the B.S. degree in computer science from
Yuan Ze University, Taiwan, in 2000, and the M.S. degree in com-
puter science from National Taiwan University of Science and Tech-
nology, Taiwan, in 2002, and the Ph.D. degree in computer science
from National Chiao Tung University. He is an assistant researcher
in the department of Computer Science, National Chiao Tung
University, Taiwan. His research interests include sequential pattern
mining, cloud computing, social network analysis, bioinformatics and
data mining.

‘Wen-Chih Peng was born in Hsinchu, Taiwan, R.O.C in 1973. He
received the BS and MS degrees from the National Chiao Tung Uni-
versity, Taiwan, in 1995 and 1997, respectively, and the Ph.D. degree
in Electrical Engineering from the National Taiwan University, Taiwan,
R.O.C in 2001. Currently, he is an associate professor at the depart-
ment of Computer Science, National Chiao Tung University, Taiwan.
Prior to joining the department of Computer Science and Information
Engineering, National Chiao Tung University, he was mainly involved
in the projects related to mobile computing, data broadcasting and
network data management. Dr. Peng published some papers in sev-
eral prestigious conferences, such as IEEE International Conference
on Data Engineering (ICDE), IEEE International Conference on Data
Mining (ICDM) and ACM Conference on Information and Knowledge
Management (ACM CIKM) and prestigious journals (e.g., IEEE TKDE,
IEEE TMC, IEEE TPDS). Dr. Peng has the best paper award in ACM
Workshop on location-based social network 2009 and the best student

paper award in IEEE International Conference on Mobile Data Management 2011. His research interests
include mobile computing, network data management and data mining. He is a member of IEEE.

@ Springer



Efficient algorithms

601

Suh-Yin Lee received the B.S. degree in electrical engineering from
National Chiao Tung University, Taiwan, in 1972, and the M.S. degree
in computer science from University of Washington, U.S.A., in 1975,
and the Ph.D. degree in computer science from Institute of Electronics,
National Chiao Tung University. She has been a professor in the
Department of Computer Science and Information Engineering at
National Chiao Tung University since 1991 and was the chair of that
department in 1991-1993. Her research interests include content-based
indexing and retrieval, distributed multimedia information system,
mobile computing, and data mining.

@ Springer



	Efficient algorithms for influence maximization in social networks
	Abstract
	1 Introduction
	2 Related works
	2.1 Diffusion models
	2.2 Influence maximization algorithms
	2.3 Community structure

	3 Algorithm CDH
	3.1  Concept overview
	3.2 CDH-Kcut
	3.3  CDH-SHRINK

	4  Experiments
	4.1  Synthetic networks
	4.2  Zachary's karate network
	4.3 NETHep network
	4.4 Facebook network

	5  Conclusion and future work
	Acknowledgments
	References


