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ABSTRACT: The laser-polarization effects on nonadiabatically coupled π-
electron rotation (ring current) and molecular vibration have been
theoretically analyzed for aromatic molecules with quasi-degenerate excited
states irradiated by an ultrashort laser pulse of arbitrary polarization. We
first derived general formulations of the coherent electronic wave packet
and expectation value of electronic angular momentum within a frozen-
nuclei model. The relative quantum phase of the superposed quasi-
degenerate states, which determines the oscillating behavior of angular
momentum, can be manipulated by the ellipticity and orientation of the
incident laser. Nuclear wave packet simulations with a model molecule
confirmed the controllability of π-electron rotation, although the angular
momentum is gradually reduced by nonadiabatic couplings. The amplitude
of molecular vibration depends prominently on the orientation of linear
polarization vectors rather than the helicity of circular polarization. The characteristic feature in vibrational amplitudes is
attributed to the interference in nonadiabatic transition governed by the relative quantum phase between nuclear wave packets.
This offers a new strategy for laser control of molecular vibrations through the wave packet interference in nonadiabatic
transition.

1. INTRODUCTION

Laser pulses with a duration ranging from attoseconds to
several femtoseconds instantaneously change the electronic
state of atomic and molecular systems. In recent years, control
and observation of ultrafast dynamics in polyatomic molecules
such as valence-electron motion and molecular vibration have
been attempted by means of ultrashort laser pulses. For
instance, from both experimental and theoretical aspects, time-
resolved photoelectron angular distribution has been utilized to
monitor the ultrafast dynamics through conical intersections,
e.g., in the nonadiabatic transition in nitrogen dioxide NO2,

1 in
the photodissociation of carbon disulfide CS2,

2 and in the
internal conversions of aromatic hydrocarbons.3−6 Each of the
parameters that characterize a laser pulse plays a decisive role in
the excitation of molecules; the light intensity of the pulse
affects the number of molecules excited, the central frequency
specifies the average energy absorbed by the molecules, and the
pulse duration is related to the bandwidth of the incident laser.
Among the parameters, laser polarization is attracting more and
more attention as a key regulating factor of molecular motion.
So far, intense polarized light pulses have been extensively
employed for the alignment7−12 and orientation7,10,13−15 of
molecules by manipulating their rotational states. The non-
adiabatic alignment technique,11,16 which achieves the field-free
periodic alignment of linear17−19 or nonlinear20,21 molecules
due to their rotational revival after pulse irradiation (from
several tens of femtoseconds to picoseconds), has been used in

the first step of high harmonic generation22−24 and molecular
orbital (MO) tomography.25−27

Currently, it is an intriguing issue whether or not the vibronic
dynamics of polyatomic molecules can be controlled by the
polarization of shorter attosecond/several-femtosecond laser
fields. For C60 fullerene, which is a large three-dimensional π-
conjugated system, Hertel et al. has experimentally revealed
that the patterns of multiphoton ionization and subsequent
fragmentation caused by an intense femtosecond near-infrared
laser depend significantly on optical ellipticity.28 As for
theoretical work, electronic and nuclear probability density
currents or fluxes in molecules triggered by polarized
femtosecond lasers have been actively investigated.29−34

Among them, we refer to the quantum simulation by Barth
et al. of laser-driven electron ring currents in Mg porphyrin,
which is a planar two-dimensional π-conjugated system, i.e., an
aromatic molecule.29 The results of the simulation performed
under a frozen-nuclei condition indicated that π electrons of the
molecule can be rotated along its aromatic ring by applying a
circularly polarized ultraviolet (UV) laser pulse. The circular
motion of π electrons around the ring is associated with the
angular momentum along the molecular axis perpendicular to
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the ring plane. Mg porphyrin has a pair of doubly degenerate π-
electronic excited states, which are the eigenstates of the
electronic angular momentum with opposite signs, owing to its
high molecular symmetry. On irradiation the spin angular
momentum of a photon is transferred to π electrons to produce
one of the eigenstates selectively, and therefore, the rotation
direction of π electrons is predetermined by the helicity of
circular polarization. Laser-induced electron dynamics in ring-
shaped systems such as aromatic molecules have been reported
by other authors as well;35−38 in particular, Ulusoy and Nest
have shown by optimal control simulations that the aromaticity
of benzene can be switched off by exciting it to nonaromatic
target states.38

In contrast to the work by Barth et al., we have demonstrated
that transient rotation of π electrons in an ansa (planar-chiral)
aromatic molecule can be induced along its aromatic ring by a
linearly polarized UV laser pulse.39 In this case, the origin of
directional ring current is not photon helicity but the
asymmetry of the molecule. Lowering the molecular symmetry
breaks the degeneracy of relevant excited states. Ultrashort laser
pulses can create a coherent superposition of optically allowed
quasi-degenerate excited states. The relative quantum phase of
the superposed quasi-degenerate states can be controlled by the
polarization direction of the incident laser with respect to the
spatial configuration of the molecule. Another controlling factor
is the relative optical phase between different frequency
components if a two-color laser is employed.40 When the
nonstationary electronic state is so adjusted, π electrons travel
in an intended direction, clockwise or counterclockwise, around
the ring. Moreover, as an extension to nonadiabatic vibrational
dynamics coupled to the laser-driven π-electron rotation, we
have also performed nuclear wave packet (WP) simulations
including nonadiabatic interactions between quasi-degenerate
excited states.41 The amplitudes of vibronically coupled
molecular vibrations in the quasi-degenerate electronic states
dramatically vary depending on the initial rotation direction of
π electrons, which is determined by the linear polarization
direction. We have explained this in both intuitive42 and
analytical43 ways as an interference effect between nuclear WPs
caused by nonadiabatic transition. This finding suggests that the
information on attosecond π-electron dynamics can be
obtained by spectroscopic detection of femtosecond molecular
vibrations.
In this paper, we further extend the series of our studies to

investigate nonadiabatic dynamics of aromatic molecules with
quasi-degenerate π-electronic excited states irradiated by an
ultrashort laser pulse of arbitrary polarization. Theoretical and
numerical analyses in molecular optical response are made on
the basis of the time-dependent Schrödinger equation (TDSE)
explicitly taking into account the polarization of an applied laser
field. The comparison between the results for linear and circular
polarizations exemplifies the laser-polarization effects on
coherent vibronic motion. We thereby establish a general
optical control scheme for nonadiabatic dynamics of aromatic
molecules with quasi-degenerate excited states.
The remainder of this paper is organized as follows. In

section 2, first, we describe the concept of electronic angular
momentum for aromatic molecules in terms of MO theory so
as to introduce approximate angular momentum eigenstates in
a quasi-degenerate system. Next, the optical excitation process
is theoretically analyzed within a frozen-nuclei model to clarify
the laser-polarization dependence of the relative quantum phase
of the superposed quasi-degenerate states. In section 3, we

present the numerical results of nuclear WP simulations for a
model system with a six-membered ring excited by linearly and
circularly polarized UV laser pulses. It is shown that noticeable
polarization-dependent nonadiabatic effects are found in both
electronic angular momentum and vibrational amplitudes. We
also discuss the laser control of the interference between
nuclear WPs of the quasi-degenerate states in nonadiabatic
transition. Finally, section 4 concludes this paper.

2. THEORY
2.1. Molecular Symmetry and Angular Momentum

Eigenstates. First of all, let us begin with a description of
angular momentum eigenstates of π electrons in an aromatic
molecule of DNh symmetry. The z axis is taken to be the CN
axis. According to MO theory, complex MOs {|πm⟩} of the
molecule are given as linear combinations of atomic orbitals
(LCAO-MOs) in the form44

∑

∑

π
π

ϕ
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where ϕj  2jπ/N and |pzj⟩ denote the azimuthal angle and pz
orbital at the jth atom in the aromatic ring, respectively. When
N is an odd (even) number, the integer m reads m = −(N −
1)/2, ..., 0, ... (N − 1)/2 (−N/2 + 1, ..., 0, ..., N/2). The energy
levels of {|πm⟩} are well-known as a Frost circle:45 |π0⟩ is the
lowest MO and, for the other values of m, |πm⟩ and |π−m⟩ are
degenerate. For odd N, |π±(N−1)/2⟩ are the highest MOs; for
even N, the nondegenerate |πN/2⟩ is the highest. When a
molecular polygon is approximated with a complete cylindrical
ring, the symmetry of the molecule becomes D∞h and the z
component of electronic angular momentum is quantized in
units of ℏ. Note that the expansion coefficients N−1/2 exp(imϕj)
in eq 1 have the same mathematical form as the eigenfunctions
of the angular momentum operator lẑ = −iℏ∂/∂ϕ, (2π)−1/2
exp(imϕ), except for the normalization constant. Hence, the
complex MO |πm⟩ can be regarded as an angular momentum
eigenstate and its eigenvalue of lẑ is mℏ for degenerate MOs or
zero for nondegenerate ones.
Here, we define real MOs |πmx⟩ and |πmy⟩ (m > 0) as linear

combinations of the complex degenerate ones |πm⟩ and |π−m⟩:

π π π| ⟩ ≡ | ⟩ + | ⟩−
+ −2 ( )mx m m

1/2
(2a)

π π π| ⟩ ≡ − | ⟩ − | ⟩−
+ −2 i( )my m m

1/2
(2b)

The expansion coefficients for |pzj⟩ in |πmx⟩ and |πmy⟩ are (2/
N)1/2 cos mϕj and (2/N)1/2 sin mϕj, respectively. From eqs 2a
and 2b, one readily finds

π π π| ⟩ = | ⟩ ± | ⟩±
−2 ( i )m mx my

1/2
(3)

Recalling that complex AOs |2p+1⟩ and |2p−1⟩ are angular
momentum eigenstates of an electron in a hydrogen atom, the
relation in eq 3 is similar to that between the complex AOs and
real ones |2px⟩ and |2py⟩ with the real azimuthal functions π−1/2

cos ϕ and π−1/2 sin ϕ, respectively.
On the basis of the concept of angular momentum

eigenstates, we next explain the mechanism of π-electron
rotation in Mg porphyrin interacting with a circularly polarized
laser pulse29 as an example. Mg porphyrin belongs to the D4h
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point group and its highest occupied and lowest unoccupied
MOs (HOMO and LUMO) are nondegenerate a1u and doubly
degenerate eg orbitals, respectively.46,47 The degenerate
LUMOs are one-electron angular momentum eigenstates with
m = ±1. As for multielectron states constructed from MOs, Mg
porphyrin has doubly degenerate 1Eu excited states whose
major components are single excitations from nondegenerate
MOs such as the HOMO to the LUMOs. The degenerate
excited states are viewed as the eigenstates of the total angular
momentum operator L̂z of the multielectron system with the
quantum number M = ±1. As in the case of MOs, the
multielectron angular momentum eigenstates |1Eu±⟩ with M =
±1 can be expressed as linear combinations of real excited
states |1Eux⟩ and |1Euy⟩:

| ⟩ = | ⟩ ± | ⟩±
−E 2 ( E i E )x

1
u

1/2 1
u

1
uy (4)

When a circularly polarized laser pulse is applied to Mg
porphyrin propagating along its C4 axis, the spin angular
momentum of a photon selects |1Eu+⟩ or |

1Eu−⟩ and π electrons
start to rotate clockwise or counterclockwise depending on the
selected state. This is the origin of the unique correspondence
between the rotation direction of π electrons and that of the
polarization plane of a circularly polarized laser pulse. In this
way, one immediately recognizes that a linearly polarized laser
pulse, which has no spin angular momentum, cannot rotate π
electrons in Mg porphyrin.
If the molecular symmetry is lowered, e.g., by introducing

functional groups and/or replacing some carbon atoms in the
aromatic ring with heteroatoms, no two-dimensional irreducible
representation E is allowed to exist and, accordingly, relevant
MOs or multielectron states are not degenerate. There exists no
excited state that is an eigenstate of L̂z in such a system. Then,
how can π -electron rotation be triggered in an aromatic
molecule with quasi-degenerate excited states by light?
Ultrashort laser pulses can coherently prepare a linear
combination of the optically allowed quasi-degenerate states.
With the notations of the real wave functions |L⟩ and |H⟩ for
the lower and higher of the quasi-degenerate excited states,
respectively, the approximate angular momentum eigenstates
can be defined as

| ± ⟩ ≡ | ⟩ ± | ⟩−2 ( L i H )1/2
(5)

where the matrix elements ⟨±|L̂z|±⟩ are close to ±ℏ. We
denote the angular frequency of |L⟩ (|H⟩) by ωL (ωH). Because
of the nonzero energy gap between the quasi-degenerate states,
|+⟩ or |−⟩ prepared by a laser pulse subsequently evolves in
time as a coherent nonstationary state:

| ± ⟩ = | ⟩ ± | ⟩

= | ⟩ ± | ⟩

ω ω

ω ω

− ̂ ℏ − − −

− − − Δ

e 2 (e L ie H )

e 2 ( L ie H )

H t t t

t t

i / 1/2 i i

i 1/2 i2

0 L H

L (6)

where Ĥ0 is the field-free electronic Hamiltonian and 2Δω ≡
ωH − ωL. The approximate angular momentum eigenstates can
be transiently created within the period of the electronic-state
change, T ≡ π/Δω. Selective generation of an approximate
angular momentum eigenstate is expected to bring about
transient rotation of π electrons along an aromatic ring. The
strategy for generating predominantly either |+⟩ or |−⟩ by a
laser field will be discussed in section 2.2.
2.2. Optical Excitation Process within a Frozen-Nuclei

Model. We focus on the theoretical analysis of the optical
excitation process in aromatic molecules with quasi-degenerate

excited states, in particular, on the effects of laser polarization.
Here, nuclear degrees of freedom are all ignored.

2.2.1. V-Type Three-Level Model. The time-dependent
electronic Hamiltonian of a molecule interacting with a classical
laser field ε(t) is expressed in the length gauge under the dipole
approximation as

μ ε̂ = ̂ − ̂ ·H t H t( ) ( )0 (7)

where μ̂ is the electric dipole moment operator. The TDSE for
an electronic WP is

ℏ ∂
∂

|Ψ ⟩ = ̂ |Ψ ⟩
t

t H t ti ( ) ( ) ( )
(8)

with the initial condition |Ψ(0)⟩ = |G⟩, where |G⟩ is the
electronic ground state. To analytically solve the TDSE 8, we
adopt the so-called V-type three-level model.48a In this model,
the state vector of the system, |Ψ(t)⟩, is expanded in terms of
the minimum set, i.e., the ground and quasi-degenerate excited
states:

|Ψ ⟩ = | ⟩ + | ⟩ + | ⟩ω ω− −t c t c t c t( ) ( ) G ( )e L ( )e Ht t
G L

i
H

iL H (9)

where the angular frequency of |G⟩, ωG, is set to be zero. The
optically allowed quasi-degenerate states |L⟩ and |H⟩ are
independently coupled to |G⟩, that is, ⟨L|μ̂|H⟩ = ⟨H|μ̂|L⟩ = 0;
the other off-diagonal matrix elements of μ̂ are real. For
simplicity, all the diagonal elements of μ̂ are assumed to be
zero, although this assumption is not necessary for our model
analysis to be valid. When eq 9 is inserted into eq 8, the
equation of motion for the expansion coefficient vector C(t) ≡
(cG(t), cL(t), cH(t))

T is derived as

= *

*

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
t

t

g t g t

g t

g t

t
C

C
d ( )

d
i

0 ( ) ( )

( ) 0 0

( ) 0 0

( )

L H

L

H (10)

where

μ ε≡ ⟨ | ̂ | ⟩·
ℏ

=ω−g t
n t

n( )
G ( )

e ( L and H)n
ti n

(11)

and the initial condition is C(0) = (1, 0, 0)T. For notational
convenience, we denote μn ≡ ⟨G|μ̂|n⟩ = ⟨n|μ̂|G⟩. A set of three-
dimensional Cartesian coordinates x, y, and z is introduced so
that both μL and μH can be expanded in terms of the unit
vectors ex and ey only (Figure 1a): μn = μnxex + μnyey (n = L and
H).
The laser field is supposed to propagate in the z direction

and thus ε(t) oscillates in the xy plane. Its mathematical form is
given by

ε
ε

= + *ω φ ω φ− + +t f t e e( )
2

( )[e e ]t tp i( ) i( )
(12)

where εp is the peak field strength, ω is the central frequency, φ
is the optical phase, and e is the complex polarization unit
vector. The time-dependent envelope function f(t) slowly varies
between zero and unity for 0 ≤ t ≤ td with td being the pulse
duration; otherwise, f(t) = 0. The central frequency ω is set to
be resonant with the average energy of the quasi-degenerate
states: ω = ωL + Δω = ωH − Δω. The general expression of e
for an arbitrary (elliptical) polarization is

β β= +δ δ−
+ −e e ee (cos ) e (sin )i

1
i

1 (13)
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where e+1 and e−1 are the spherical unit vectors corresponding
to positive and negative helicities (spins), respectively, defined
as

≡ ±±
−e e e2 ( i )x y1

1/2
(14)

Following the convention in optics, we refer to e+1 (e−1) as left
(right) circular polarization. In eq 13, δ represents the
orientation angle of the major axis of the polarization ellipse
with respect to the x axis and β is called the ellipticity angle
(Figure 1b). The value of β ranges from zero to π/2 and the
minor-to-major axial ratio of the polarization ellipse is equal to |
tan(π/4 − β)|; specific examples are β = 0, π/4, and π/2 for left
circular, linear, and right circular polarizations, respectively.
Substituting eq 12 into eq 11 yields

= Ω + Ω*ω ω φ ω φ− −Δ + Δ +g t
f t

( )
( )
2

{ e e }t t
L L

i[(2 ) ]
L

i( )
(15a)

= Ω + Ω*ω ω φ ω φ− +Δ + − Δ −g t
f t

( )
( )
2

{ e e }t t
H H

i[(2 ) ]
H

i( )
(15b)

where Ωn ≡ (εp/ℏ)μn·e (n = L and H) are the complex Rabi
frequencies. Here, we resort to the rotating-wave approximation
(RWA),48b in which the contribution of the rapidly oscillating
exponentials, i.e., the first terms in eqs 15a and 15b, to the time
evolution of C(t) is averaged out and removed (ω ≫ Δω).
Under the RWA, eq 10 is rewritten as

=

Ω* Ω*

Ω

Ω

ω φ ω φ

ω φ

ω φ

Δ + − Δ −

− Δ +

Δ −

⎛
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2
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t t
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(16)

For the purpose of efficiently producing an approximate
angular momentum eigenstate |+⟩ or |−⟩ defined in eq 5, the
quasi-degenerate states |L⟩ and |H⟩ need to be populated
equally. The laser field is therefore assumed to satisfy |ΩL| =
|ΩH| or, at least, |ΩL| ≃ |ΩH|. This leads to the orthogonality

μ μ− · =θ e(e ) 0i
L H (17)

where θ is an arbitrary phase between ΩL and ΩH, that is, θ ≡
arg(ΩH/ΩL), and eq 17 requires

μ μ
μ μ

β = −
− ·
− ·

δ
θ

θ
+

−

e

e
e tan

(e )

(e )
i2

i
L H 1

i
L H 1 (18)

Hence, the condition |ΩL| = |ΩH| can be met with the ellipticity
angle β and orientation angle δ determined by the absolute
value and argument of the right-hand side of eq 18, respectively.
To further simplify eq 16, we introduce the alternative pair of
superposition states

| ⟩ ≡
Ω̅

Ω | ⟩ ± Ω | ⟩ =
Ω
Ω̅

| ⟩ ± | ⟩θ
±S

1
( L H ) ( L e H )L H

L i
(19)

where Ω̅ ≡ (|ΩL|
2 + |ΩH|

2)1/2 = 21/2|ΩL| = 21/2|ΩH|. They are
normalized and orthogonal to each other because of the overlap
⟨S+|S−⟩ = (|ΩL|

2 − |ΩH|
2)/Ω̅2 = 0. Using these superposition

states, the electronic WP can be expanded as
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+ + − −t c t c t c t( ) ( ) G e [ ( ) S ( ) S ]t
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L H
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Then, eq 16 can be converted to the equation of motion for the
new coefficient vector D(t) ≡ (cG(t), c+(t), c−(t))

T:

ω
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with the initial condition D(0) = (1, 0, 0)T.
2.2.2. Relative Quantum Phase between Degenerate

Excited States. Before proceeding to the solution of eq 22
for a quasi-degenerate system, let us consider the degenerate
case Δω = 0. In this case, eq 22 becomes extremely compact:

= Ω̅
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

t
t

f t t
D

D
d ( )

d
i

2
( )

0 1 0
1 0 0
0 0 0

( )
(23)

This clearly indicates that the system can be treated in practice
as a two-level one consisting of |G⟩ and |S+⟩. One can easily
integrate eq 23 to obtain

=

Ω̅

Ω̅

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎡
⎣⎢

⎤
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t

F t

F t
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cos
2

( )

i sin
2

( )

0 (24)

where F(t) ≡ ∫ 0
tdu f(u). Within the RWA, complete population

inversion from |G⟩ to |S+⟩ can be achieved by the so-called π
pulse,48c which fulfills Ω̅F(td) = π. When eq 24 is inserted into
eq 20, the electronic WP can be written as

Figure 1. (a) Spatial configurations of transition moments μL and μH
and (b) orientation of the polarization ellipse. An aromatic molecule is
represented by a hexagon. The x and y axes are chosen so that both μL
and μH lie in the xy plane; in a degenerate system, the two axes can be
parallel to the directions of the transition moments. χH − χL denotes
the angle between μL and μH. The laser field propagates in the z
direction and oscillates in the xy plane. The orientation angle of the
major axis of the polarization ellipse with respect to the x axis is
represented by δ. The minor-to-major axial ratio is |tan(π/4 − β)|.
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|Ψ ⟩ = Ω̅ | ⟩

+
Ω
Ω̅

Ω̅ | ⟩ + | ⟩ω φ θ− +
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The relative quantum phase between the degenerate excited
states |L⟩ and |H⟩ coincides with that between the Rabi
frequencies ΩL and ΩH, i.e., θ, which is independent of time
and controllable by the ellipticity angle β and orientation angle
δ. This implies that a desired superposition of the degenerate
states can be created by tuning the polarization of an incident
light properly. The populations of the exact angular momentum
eigenstates |+⟩ and |−⟩, P±(t) ≡ |⟨±|Ψ(t)⟩|2, are derived as

θ= Ω̅ ±±
⎡
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⎤
⎦⎥P t F t( )

1
2

sin
2

( ) (1 sin )2

(26)

From these populations, the expectation value of angular
momentum, Lz(t) ≡ ⟨Ψ(t)|L̂z|Ψ(t)⟩, is

θ= ℏ − = ℏ Ω̅
+ −

⎡
⎣⎢

⎤
⎦⎥L t P t P t F t( ) [ ( ) ( )] sin

2
( ) sinz

2

(27)

The sign of Lz(t), i.e., the rotation direction of π electrons, is
subject to the relative quantum phase θ and remains unchanged
throughout the time evolution: π electrons flow in a sole
direction even after a laser pulse ceases at t = td.
Let us revert to eq 18, which links the relative quantum phase

θ with the ellipticity angle β and orientation angle δ. In general,
for aromatic molecules with degenerate states, μL and μH have
the same magnitude and are perpendicular to each other, that
is, ∥μL∥ = ∥μH∥ and μL·μH = 0. The x and y axes can thus be
chosen to be parallel to μL and μH, respectively, so that μLx =
μHy ≠ 0 and μLy = μHx = 0; in the case of Mg porphyrin, this
holds when |L⟩ = |1Eux⟩ and |H⟩ = |1Euy⟩. Consequently, eq 18 is
reduced to

β π θ= − −
+

= −δ
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(28)

which involves neither transition electric dipole moments nor
spherical unit vectors and is purely imaginary. Given a value of
β, there exist two solutions of eq 28:

δ π θ π β= ± = ∓
4

and
2

2
(29)

The major axis of the polarization ellipse with δ = π/4 bisects
the angle between μL and μH; that with δ = −π/4 is
perpendicular to it. In both cases, the value of Lz(td) for the
π-pulse excitation is ℏ sin θ = ℏ cos 2β. In the case of circular
polarization in which β = 0 or π/2, the value of δ is
indeterminate from eq 28 or 29; in fact, it can be chosen
arbitrarily as will be mentioned in the next paragraph.
We present illustrative examples and the case of linear

polarization (β = π/4) is taken as the first one; eq 13 is then
rewritten as

δ δ= +e e e(cos ) (sin )x y (30)

and δ determines the polarization direction. The Rabi
frequencies ΩL and ΩH are thus real-valued and their relative
phase θ takes either zero or π (eiθ = ±1). Hereafter, the linear
polarization vectors for θ = 0 and π are denoted by ein and eout,
respectively. From eq 29, the values of δ for the two

polarization vectors are δin = π/4 and δout = −π/4. As in eq
25, a linearly polarized laser pulse with the polarization vector
ein (eout) produces an in-phase (out-of-phase) superposition |L⟩
+ |H⟩ (|L⟩ − |H⟩), which is an equal mixture of the exact
angular momentum eigenstates |+⟩ and |−⟩: P+(t) = P−(t) and
thus Lz(t) = 0 for all t. π-electron rotation cannot be induced in
a degenerate system by a linearly polarized laser pulse. Next, for
circular polarization, β = 0 (π/2) reads e = e−iδe+1 (e

iδe−1) and
δ acts as an additional optical phase. From the definition of θ as
an argument of ΩH/ΩL, we have θ = ±(χH − χL) for e±1, where
χH − χL is the angle between μL and μH, that is, tan χn = μny/μnx
(n = L and H); therefore, θ = ±π/2 (eiθ = ±i) in a degenerate
system. Meanwhile, δ can be set to any value because eq 25
shows that the optical phase does not affect the superposition
of the degenerate states. The superposition states |S±⟩ are
equivalent to the exact angular momentum eigenstates |±⟩ (|
∓⟩) for left (right) circular polarization, whereas the population
is transferred only to |S+⟩ as in eq 24. π electrons of the
molecule circulate along its ring in the direction inherent to the
eigenstate generated.
The above consequences for linear and circular polarizations

are consistent with the discussion on optically induced π-
electron rotation in Mg porphyrin in section 2.1. The phase
factor eiθ yielded by elliptical polarization is neither real nor
purely imaginary regardless of whether δ = ± π/4. As seen in
eqs 26 and 27, the resultant behavior of π electrons is
intermediate between those for linear and circular polarizations:
The rotation direction of π electrons is subject to the more
populated of |+⟩ or |−⟩, whereas the magnitude of Lz(td) is less
than ℏ even under complete population inversion by the π
pulse.

2.2.3. Relative Quantum Phase between Quasi-Degener-
ate Excited States. Now, we turn to the quasi-degenerate case
Δω ≃ 0. Because it is impossible to integrate eq 22 with an
arbitrary envelope function f(t), we restrict f(t) to a rectangular
form: f(t) = 1 for 0 ≤ t ≤ td and otherwise zero. Then, eq 22
becomes solvable: During irradiation,
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of which the solution is
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(32)

The generalized Rabi frequency Ω ≡ [Ω̅2 + (2Δω)2]1/2 is the
root-mean-square of the Rabi frequencies and the detuning
frequency 2Δω. One can immediately confirm that eq 32 for
Δω = 0 is identical to eq 24 for f(t) = 1. The ground state |G⟩
can be fully emptied by imposing 2Δω ≤ Ω̅ and ΩF(td) = Ωtd
= 2 arccos[−(2Δω/Ω̅)2] on the rectangular-envelope pulse.
The pulse area of this laser field (named the full-excitation
pulse) is larger than that of the π pulse, ΩF(td) = Ωtd = π.
Finally, we acquire the coherent electronic WP in a quasi-
degenerate system:
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and ϑ(t) ≡ 2 arg α̅ (t). The relative quantum phase between
the quasi-degenerate excited states |L⟩ and |H⟩ is given by θ −
ϑ(t) and its temporal behavior is the main point of this model
analysis. Using α(t) in eq 34, the populations P±(t) are
expressed as

α θ θ= Ω̅
Ω

| | ± −±
⎡
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⎦⎥P t t t( )

1
2

( ) {1 sin[ ( )]}
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and the angular-momentum expectation value Lz(t) is
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where ⟨±|L̂z|±⟩ ≡ ±L (L > 0). In distinction from eq 27, the
rotation direction of π electrons can be reversed during
irradiation owing to the presence of the time-dependent phase
ϑ(t) in eq 36.
For aromatic molecules with quasi-degenerate states, eqs 28

and 29 do not strictly hold because in general lowering the
molecular symmetry leads to ∥μL∥ ≠ ∥μH∥ and μL·μH ≠ 0. In
this case, the linear polarization vectors ein (θ = 0) and eout (θ =
π) can be derived by substituting eq 30 into eq 17:
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μ μ
μ μ
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∓
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⎟⎟arctan x x

y y
in,out

L H

L H (37)

It is straightforward to find a pair of β and δ for the other values
of θ from eq 18 with the transition moments specified. Circular
polarizations do not exactly satisfy eq 18, i.e., the condition |ΩL|
= |ΩH| unless the magnitudes of μL and μH happen to be equal
(∥μL∥ = ∥μH∥). On the assumption that the energy gap
between |L⟩ and |H⟩ is small (Δω ≃ 0), the relationship
between β, δ, and θ should be close to that in the degenerate
case; for example, ein and eout whose polarization directions are
defined by eq 37 should be almost perpendicular to each other,
and we approximately have ±iΩL ≃ ΩH (θ ≃ ±π/2) for e±1.
The time-dependent part of the relative quantum phase, i.e.,

ϑ(t) follows

θ ω= Δ
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from its definition. Hence, ϑ(t) evolves as 0→ π/2→ π→ 3π/
2 → 2π → ... with the progression of time, 0 → TR − γ → TR
→ TR + γ → 2TR → ..., where TR ≡ 2π/Ω is the period of the
(generalized) Rabi oscillations and γ ≡ 4arctan(2Δω/Ω)/Ω.

Because 2Δω ≤ Ω, TR is not larger than the period T of the
field-free electronic-state change and γ ≤ TR/2. The relative
quantum phase grows from its initial value θ in the negative
direction by ϑ(t); if the full-excitation pulse is employed, ϑ(td)
≤ π from the inequality TR/2 ≤ 2 arccos[−(2Δω/Ω̅)2]/Ω ≤
TR. The populations P±(t) and the expectation value Lz(t) vary
in time according to the relative quantum phase θ − ϑ(t) as
shown in eqs 35 and 36, respectively.
After the laser pulse is turned off (t > td), the electronic WP

propagates freely. In a fashion similar to that in eq 6, the
relative quantum phase in the free propagation is θ − ϑ(td) −
2Δω(t − td) and thereby the coherent superposition of the
quasi-degenerate states oscillates with the period T. Eventually,
the populations P±(t) and the expectation value Lz(t) are also
the oscillating functions of t in the form
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respectively. The approximate angular momentum eigenstates |
+⟩ and |−⟩ are alternately generated as predicted in section 2.1,
and therefore, the rotation direction of π electrons switches
between clockwise and counterclockwise. This is a notable
difference from the degenerate case, in which the rotation
direction is fixed and the angular-momentum expectation value
Lz(t) is constant after the applied pulse fully decays.
We have formulated the coherent electronic WP |Ψ(t)⟩ and

the angular-momentum expectation value Lz(t) of the quasi-
degenerate system irradiated by a laser pulse of arbitrary
polarization. It should be emphasized that, despite the
subsequent oscillating behavior, the initial relative phase of
the superposed quasi-degenerate states or the initial rotation
direction of π electrons depends on θ, which can be
manipulated by the ellipticity angle β and orientation angle δ
of the incident laser. Generation of polarization-shaped
femtosecond UV laser pulses has become experimentally
realizable.49,50 In section 3, comparison will be made between
this frozen-nuclei model in a rectangular-envelope case and
nuclear WP simulations for pulse excitation with smooth rise
and decay.

2.3. Propagation of Nuclear Wave Packets including
Nonadiabatic Couplings. We describe the method of real-
time nuclear WP propagation for nonadiabatically coupled
vibronic dynamics. The initial nuclear WP is set to be the
vibrational ground-state wave function of |G⟩ and the system is
then electronically excited by a laser pulse ε(t) of the form in eq
12. To include the effects of nonadiabatic couplings on the WP
propagation, we take advantage of the diabatic representation.
Rigorous construction of the adiabatic−diabatic unitary trans-
formation matrix requires the nonadiabatic (derivative)
coupling matrix,51,52 which is usually difficult to compute.
Instead, we utilize the quasi-diabatization scheme proposed by
Simah et al.53 that is based on an analysis of configuration
interaction vectors; it has been implemented by the original
authors in the quantum chemistry program MOLPRO.54 The
state vector of the system is expanded in terms of the three
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diabatic states {|nD⟩}, each of which is a linear combination of
the adiabatic states |G⟩, |L⟩, and |H⟩. The time evolution of the
expansion coefficients for |nD⟩, ψn

D(Q,t), where Q is the mass-
weighted nuclear position or vibrational mode vector, can be
obtained from the following equations of motion:55
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where ∇2 is the Laplacian with respect to Q. Vnn′
D (Q) are the

diabatic potentials (n = n′) and couplings (n ≠ n′) and μnn′
D (Q)

are the transition moments between the two diabatic states.
The coupled equations can be integrated numerically with the
split-operator method for a multisurface Hamiltonian.56 The
resultant diabatic WPs ψn

D(Q,t) are converted to adiabatic WPs
ψn(Q,t).

3. RESULTS AND DISCUSSION
3.1. Model System. In this section, we present the

numerical results of nuclear WP simulations for an aromatic
molecule with a six-membered ring, 2,5-dichloropyrazine
(DCP), which was also used as a model system in our previous
studies.41−43 The chemical formula of DCP is illustrated in
Figure 2a. The molecule is assumed to be preoriented, e.g., by
the nonadiabatic optical alignment technique.11,16

We performed all ab initio electronic structure computations
for DCP with the 6-31G* Gaussian basis set57 by using
MOLPRO. Geometry optimization for the ground state was
carried out at the level of the second-order Møller−Plesset
perturbation theory (MP2)57 and the optimized geometry was
of C2h symmetry. Then, to evaluate the excited-state properties
at this geometry, the single-point ground- and excited-state
calculation was executed at the state-averaged complete-active-
space self-consistent field (CASSCF)57 level of theory with ten
active electrons and eight active (four au and four bg) orbitals.
At the optimized geometry in the ground state |G⟩ = |11Ag⟩,
DCP has a pair of optically allowed quasi-degenerate excited
states, |L⟩ = |31Bu⟩ and |H⟩ = |41Bu⟩, with the energy gap 2ℏΔω
= 0.44 eV (Table 1). The directions of the transition electric
dipole moments between the ground and two excited states, μL
and μH, at this geometry are depicted in Figure 2b. The
magnitudes of μL and μH are 1.66ea0 and 1.58ea0, respectively,

and the angle between them is χH − χL = 0.35π. The
approximate angular momentum eigenstates |+⟩ and |−⟩ in
DCP are superpositions of |L⟩ and |H⟩ as in eq 5, where ⟨±|L̂z|
±⟩ = ± 0.98ℏ. π electrons with positive (negative) angular
momentum travel counterclockwise (clockwise) around the
ring in Figure 2a.
The effective vibrational degrees of freedom for nuclear WP

simulations were chosen by performing geometry optimizations
for |L⟩ and |H⟩ at the CASSCF(10,8) level of theory. The
optimized geometries of both |L⟩ and |H⟩ also belong to the
C2h point group. Hence, the displacements from the optimized
geometry of |G⟩ to that of |L⟩ and |H⟩ are totally symmetric.
Furthermore, vibrational modes that couple two 1Bu states are
totally symmetric Ag modes as well. For these reasons, we
consider two types of Ag normal modes with large potential
displacements and nonadiabatic coupling matrix element,
namely, breathing and distortion modes (Figure 2c,d) whose
ground-state harmonic wave numbers are 1160 and 1570 cm−1,
respectively. Nonadiabatic couplings between the ground and
two excited states were neglected because there is no potential
crossing between them near the Franck−Condon region. The
two-dimensional adiabatic potential energy surfaces (PESs) of |
L⟩ and |H⟩ with respect to the normal coordinates Q of the
breathing and distortion modes were calculated at the
CASSCF(10,8) level of theory (Figure 3). There exists an

avoided crossing (not a conical intersection) between the PESs,
although whether it is an avoided crossing or a conical
intersection does not influence the discussion below. The
energy gap at the crossing point is about 190 cm−1. We
confirmed by a calculation at the level of the second-order CAS
perturbation theory (CASPT2)57 that the avoided crossing

Figure 2. (a) Chemical formula of DCP. (b) Directions of transition
moments μL and μH at the ground-state optimized geometry of DCP
as well as those of linear polarization vectors ein and eout whose
orientation angles are defined by eq 37. The magnitudes of μL and μH
are 1.66ea0 and 1.58ea0, respectively, and the angle between them is χH
− χL = 0.35π. The normal coordinates of the (c) breathing and (d)
distortion modes are represented by thick arrows.

Table 1. Properties of Optically Allowed π-Electronic
Excited States of DCPa

excited state transition energy (eV) oscillator strength

|41Bu⟩ 9.84 1.81
|31Bu⟩ 9.40 1.90
|21Bu⟩ 8.04 1.31
|11Bu⟩ 4.78 1.73 × 10−1

aThe excited states whose transition energies from |G⟩ = |11Ag⟩ are
less than 10.0 eV are listed. The ab initio geometry optimization for |
G⟩ and succeeding single-point calculation were carried out at the
MP2/6-31G* and CASSCF(10,8)/6-31G* levels of theory, respec-
tively.

Figure 3. Two-dimensional adiabatic PESs of |L⟩ and |H⟩ with respect
to the breathing and distortion modes of DCP. The origin of the PESs
is the optimized geometry of |G⟩. The minimum of each PES and the
avoided crossing between them are designated by a square and circle,
respectively.
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remains unchanged when dynamical electron correlation is
taken into account, whereas the PESs are lowered by ∼3 eV.
The split-operator integration of eq 41 was executed with the

aid of the fast Fourier transform algorithm. For each of the two
modes, the domain [−1.60 u1/2a0, 1.55 u1/2a0] was divided into
64 grid points at intervals of 0.05 u1/2a0 so as to represent
nuclear WPs. The time step for the WP propagation was 2.4 as.
3.2. Nonadiabatic Transition between Quasi-Degen-

erate Excited States. To elucidate the effects of laser
polarization on nonadiabatically coupled π-electron rotation
and molecular vibration, we compare the results of nuclear WP
simulations for linear (β = π/4) and circular (β = 0 and π/2)
polarizations. The orientation angles δ of the linear polarization
vectors ein and eout were evaluated from eq 37 with the
transition moments μL and μH at the optimized geometry of |
G⟩ (Figure 2b). Note that an ultrashort laser pulse ε(t)
vanishes before the WPs created on the two adiabatic PESs
start to propagate, and accordingly, the coordinate dependence
of μL(Q) and μH(Q) is important only in the Franck−Condon
region, in which they are almost constant. For circular
polarizations (e+1 and e−1), we set δ = 0. The excitations by
a laser pulse ε(t) with the four different polarization vectors are
termed ein, eout, e+1, and e−1 excitations. Instead of the
rectangular function adopted in the model analysis in section
2.2, we here assumed a sin2 envelope: f(t) = sin2(πt/td) for 0 ≤
t ≤ td and otherwise zero. The common laser parameters for the
four types of excitations were td = 7.26 fs, ω = 9.62 eV/ℏ
(corresponding to the wavelength of 129 nm), and φ = 0. The
peak field strength εp was determined in analogy to the full-
excitation pulse in the rectangular-envelope case: ΩF(td) =
Ωtd/2 = 2 arccos[−(2Δω/Ω̅)2] with 2Δω ≤ Ω̅. The Rabi
frequencies to meet this requirement for td = 7.26 fs were Ω̅ =
0.62 eV/ℏ and Ω = 0.76 eV/ℏ. The values of εp so determined
for ein, eout, e+1, and e−1 excitations were 5.99, 9.80, 7.22, and
7.22 GV m−1, respectively. Such high-intensity UV lights may
induce two-photon excitations to higher excited states or
ionizations but our previous studies39,42 demonstrated that the
contribution of these additional processes is not large. The use
of weaker laser pulses does not affect the conclusions of this
paper, although less population is transferred to the quasi-
degenerate excited states. The results obtained for linear
polarizations are very close to those reported in ref 41 for the π
pulses whose peak field strengths are slightly lower with the
smaller pulse area ΩF(td) = Ωtd/2 = π. Because for DCP we
have ||μL|| ≃ ||μH|| in the vicinity of the optimized geometry of |
G⟩, the condition |ΩL| ≃ |ΩH| approximately holds for circular
polarizations.
Figure 4 shows the temporal change in the populations of the

quasi-degenerate states |L⟩ and |H⟩ for the four types of
excitations. The populations on the two adiabatic PESs are
defined as Pn(t) ≡ ∫ dQ |ψn(Q,t)|

2 (n = L and H). In all the four
cases, it takes a few femtoseconds after a laser pulse ε(t) is
turned on for PL(t) and PH(t) to increase because of the
relatively slow rise of the sin2 envelope, whereas |L⟩ and |H⟩
begin to be populated within 1 fs by a rectangular-envelope
pulse with the same peak field strength εp. A significant amount
of the population is transferred to the quasi-degenerate states
and divided almost equally between them at t < 4 fs. When the
laser pulse ceases at t = td = 7.26 fs, the total population in the
quasi-degenerate states, PL(td) + PH(td), reaches 0.84, 0.93,
0.89, and 0.91 for ein, eout, e+1, and e−1 excitations, respectively.
However, the subsequent behaviors of PL(t) and PH(t) are quite
different between the four types of excitations. For ein excitation

(Figure 4a), a small fraction of the population shifts from |L⟩ to
|H⟩ by t ∼ 10 fs and then a downward population transfer takes
place around t ∼ 10−14 fs by nonadiabatic transition. In the
case of eout (Figure 4b), a considerable amount of the
population is transferred from |H⟩ to |L⟩ and consequently
PL(t) is more than 7 times larger than PH(t) at t ∼ 10 fs.
Afterward, the direction of population transfer is reversed
periodically with the rather small portion of the population
transferred. In contrast, the nonadiabatic transition for e+1
excitation persists much longer (Figure 4c): A part of the
population is continuously exchanged between the quasi-
degenerate states and thus electronic relaxation is completed
after t = 30 fs. In the remaining case, i.e., e−1 excitation (Figure
4d), the behaviors of PL(t) and PH(t) are more or less
intermediate between those for ein and eout excitations: A
substantial population transfer from |H⟩ to |L⟩ is observed
around t ∼ 8−13 fs. These distinct patterns in the evolutions of
PL(t) and PH(t) indicate that the polarization of the applied
laser exerts a profound influence on the nonadiabatic transition
between the quasi-degenerate states, which occurs mainly after
irradiation.

3.3. Laser-Polarization Effects on Nonadiabatically
Coupled Vibronic Dynamics. The expectation value of
electronic angular momentum Lz(t) for the four types of
excitations are plotted as a function of time in Figure 5. In the
course of the interaction with the laser pulse ε(t), the timing of
the initial increase in the magnitude of Lz(t) and its sign (i.e.,
the phase in the oscillation of angular momentum) evidently
depend on the type of excitation. In Figure 5a, π electrons start
to rotate clockwise (counterclockwise) for ein (eout) excitation,
while the amplitude of Lz(t) reaches its maximum at t = 5.4 fs
in both cases. This agrees with the difference in the initial
relative phase θ by π between the two linear polarization
vectors predicted in the model analysis. Compared to ein and
eout excitations, the magnitudes of Lz(t) for circular polar-
izations in Figure 5b grow earlier. In addition, the largest
amplitude of angular momentum for e+1 (e−1) excitation
appears 1−2 fs later (earlier) than those in Figure 5a. The
curves of Lz(t) in Figure 5b, which oscillate with different
phases from those for linear polarizations, are fairly consistent
with θ = ±(χH − χL) = ± 0.35π for e±1. These agreements with
the model analysis manifest the controllability of the initial

Figure 4. Temporal behavior in the populations of the quasi-
degenerate excited states for (a) ein, (b) eout, (c) e+1, and (d) e−1
excitations. In each panel, the solid line denotes the population of |L⟩;
the dotted line denotes that of |H⟩. The laser pulses fully decay at t =
7.26 fs.
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relative phase of the superposed quasi-degenerate states by laser
polarization. As in eqs 36 and 40, the magnitude of Lz(t) turns
to decrease or even the rotation direction of π electrons flips
before t = td = 7.26 fs and after irradiation the angular
momentum oscillates with the period of T = π/Δω = 9.4 fs as
shown in Figure 5. A little difference in the oscillation period
between the four types of excitations stems from the fact that
the energy gap between the two adiabatic PESs in the regions
where the WPs run depends on the type of excitation.
Nevertheless, the amplitude of its oscillation is gradually
reduced for both linear and circular polarizations, which is a
characteristic feature absent in a frozen-nuclei model. As we
pointed out in ref 41, the reduction in the angular momentum
is attributed to two factors: decrease of the overlap between the
WPs moving on the relevant two adiabatic PESs, which is
observed even within the Born−Oppenheimer approximation
(BOA),58 and electronic relaxation due to nonadiabatic
couplings shown in Figure 4, which is the major factor. Both
of the factors cause the loss of a superposition of |L⟩ and |H⟩.
The oscillatory curves of Lz(t) for ein and e+1 excitations can be
approximately expressed by a sinusoidal exponential decay. The
lifetime of the decay is ∼6 fs for ein and ∼18 fs for e+1, of which
difference originates from the different rates of nonadiabatic
transition in Figure 4a,c. On the other hand, the amplitudes of
Lz(t) for eout and e−1 excitations do not undergo a monotonic
decrease but make a small transient recovery (around t ∼ 14−
20 fs for eout and t ∼ 18−24 fs for e−1). This recovery arises
from the regeneration of the superposition of |L⟩ and |H⟩ due
to the upward population transfer in the respective time ranges
in Figure 4b,d. The results in Figure 5 confirm that π-electron
rotation can be controlled by the polarization of a laser pulse,
although it is attenuated on the time scale of several tens of
femtoseconds by nonadiabatic couplings.
Figure 6 depicts the expectation value of the normal

coordinates Q(t) ≡ ⟨Ψ(t)|Q̂|Ψ(t)⟩, with Q̂ being the operator
of Q. In Figure 6a, the behaviors of Q(t) triggered by linearly
polarized laser pulses are remarkably dependent on the
polarization direction: The vibrational amplitude for eout
excitation is more than two-times larger than that for ein

excitation. Contrary to this, in Figure 6b, the vibration of
DCP differs only slightly between circular polarizations and the
trajectories of Q(t) are located between those for linear ones.
These findings are reinforced by vibrational spectral analysis.
The frequency spectrum of the WP on the lower PES, ψL(Q,t),
after the nonadiabatic transition from |H⟩ to |L⟩ is given by the
Fourier transform of its autocorrelation function:59

∫ ∫σ ω ψ ψ≡ *ω τ− −Re t t tQ Q Q( ) d e d ( , ) ( , )
t

t
t t

L
(i 1/ )( )

L i L
i

f
i

(42)

The parameter τ was introduced to smooth the spectra and set
at 39.6 fs, which is longer than the vibrational periods of the
breathing and distortion modes (28.8 and 21.2 fs). The values
of ti for ein, eout, e+1, and e−1 excitations were 14.0, 10.0, 34.0,
and 13.0 fs, respectively, and tf − ti = 99.1 fs for all of them. The
zero of ω was chosen to be the minimum of the relevant PES.
The frequency spectra for the four types of excitations are
displayed in Figure 7. For ein excitation, the maximum value of
σL(ω) is located at ν̃ ∼ 1400 cm−1 and another peak appears at
ν̃ ∼ 2500 cm−1 in Figure 7a; for eout excitation, the strongest
peak of σL(ω) is found at ν̃ ∼ 2500 cm−1 and besides a couple
of strong peaks are identified at ν̃ > 3000 cm−1. The wave
numbers of 1400, 2500, and 3000 cm−1 are almost identical to
those of the lowest three vibrational states of |G⟩ owing to the
analogy between |G⟩ and |L⟩ in the PES around its minimum.
The frequency spectra for linear polarizations in Figure 7a
support that at t > ti ψL(Q,t) is mainly composed of low (high)
vibrational quantum states for ein (eout) excitation. In marked
distinction from linear polarizations, the spectral features for
circular ones in Figure 7b are quite similar: The primary peaks
of σL(ω) for e+1 and e−1 excitations are both at ν̃ ∼ 1400 cm−1,
whereas the intensities of the other peaks are a little stronger
for the latter. This obviously indicates that ψL(Q,t) contains the
same frequency components for left and right circular
polarizations after the nonadiabatic transition.

Figure 5. Expectation value of the electronic angular momentum Lz(t)
in DCP irradiated by (a) linearly and (b) circularly polarized UV laser
pulses. In panel a, the solid and dotted lines denote the expectation
values for ein and eout excitations, respectively; in panel b, the solid and
dotted lines denote those for e+1 and e−1 excitations, respectively. The
laser pulses fully decay at t = 7.26 fs.

Figure 6. Expectation value of the normal coordinates Q(t) of the
breathing and distortion modes in DCP irradiated by (a) linearly and
(b) circularly polarized UV laser pulses. In panel a, the solid and
dotted lines denote the expectation values for ein and eout excitations,
respectively; in panel b, the solid and dotted lines denote those for e+1
and e−1 excitations, respectively. The laser pulses fully decay at t = 7.26
fs. The values of Q(t) are plotted up to t = 40 fs.
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3.4. Comparison to the Born−Oppenheimer Approx-
imation. We also carried out nuclear WP simulations within
the BOA, in which the nonadiabatic coupling between the
quasi-degenerate states was completely neglected and thereby
the WPs simply propagated on the individual PESs. As seen in
Figure 8, the laser-polarization dependence of the phase in the
oscillation of angular momentum is observed in this case as
well; however, other features in Figures 5 and 6 that are
deemed to be caused by nonadiabatic couplings disappear
under the BOA as expected. The amplitude of Lz(t) does not
decay exponentially but exhibits periodic reduction and

recovery in turn owing to the temporal change in the WP
overlap. The trajectory of Q(t) in Figure 9 hardly depends on

the type of excitation and the vibrational amplitude is larger
than that for ein excitation in Figure 6a but smaller than those
for circular polarizations in Figure 6b. These facts corroborate
that the laser-polarization effects on nonadiabatic transition
indeed give birth to the polarization-dependent behaviors in π-
electron rotation and molecular vibration such as the decay of
angular momentum with different lifetimes.

3.5. Laser Control of Interference between Nuclear
Wave Packets. To take a close look at the laser-polarization
effects on nonadiabatic transition, the propagations of the WPs
on the relevant two adiabatic PESs are illustrated in Figure 10.
For both linear and circular polarizations, the probability
densities |ψL(Q,t)|

2 and |ψH(Q,t)|
2 created in the two excited

states at t ∼ 5 fs resemble that of the initial WP |ψG(Q,0)|
2, and

then the WPs start to move along the gradient of each PES. Yet,
the nonadiabatic nature of vibronic dynamics in this system
emerges differently for the four types of excitations when the
WPs approach the avoided crossing. For ein excitation, the WP
on the higher PES is diminished by nonadiabatic transition at t
∼ 12 fs and the contour map of |ψL(Q,t)|2 in Figure 10a clearly
displays the node originating from the interference; thereafter,
the WPs on the two adiabatic PESs are deformed largely. In
contrast, the WPs for eout excitation in Figure 10b maintain a
Gaussian-like form even after the nonadiabatic transition, which
is already in progress at t ∼ 8 fs. The WPs excited by circularly
polarized laser pulses behave as expected from the tendencies of
the populations in Figure 4c,d. In Figure 10c, only a small
fraction of ψH(Q,t) has been transferred to |L⟩ until t ∼ 12 fs
and no interference patterns are found in the WPs for e+1
excitation. The WPs for e−1 excitation in Figure 10d have
intermediate features between those for ein and eout excitations:
They do not exhibit a clear interference but the shape of
|ψL(Q,t)|

2 is distorted from a Gaussian especially at t ∼ 12 fs. As

Figure 7. Frequency spectra of ψL(Q,t), σL(ω), defined by eq 42 for
DCP irradiated by (a) linearly and (b) circularly polarized UV laser
pulses. In panel a, the solid and dotted lines denote the spectra for ein
and eout excitations, respectively; in panel b, the solid and dotted lines
denote those for e+1 and e−1 excitations, respectively. In each case, the
values of σL(ω) were scaled so that the maximum value is unity.

Figure 8. Expectation value of the electronic angular momentum Lz(t)
in DCP irradiated by (a) linearly and (b) circularly polarized UV laser
pulses under the BOA. In panel a, the solid and dotted lines denote the
expectation values for ein and eout excitations, respectively; in panel b,
the solid and dotted lines denote those for e+1 and e−1 excitations,
respectively. The laser pulses fully decay at t = 7.26 fs. The values of
Lz(t) are plotted up to t = 40 fs.

Figure 9. Expectation value of the normal coordinates Q(t) of the
breathing and distortion modes in DCP irradiated by (a) linearly and
(b) circularly polarized UV laser pulses under the BOA. In panel a, the
solid and dotted lines denote the expectation values for ein and eout
excitations, respectively; in panel b, the solid and dotted lines denote
those for e+1 and e−1 excitations, respectively. The laser pulses fully
decay at t = 7.26 fs. The values of Q(t) are plotted up to t = 40 fs.
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a consequence of nonadiabatic couplings, the center of ψL(Q,t),
which contributes dominantly to Q(t) in Figure 6, proceeds in
a low-energy (high-energy) region on the lower PES for ein
(eout) excitation, whereas the motions of the center for circular
polarizations are analogous to each other.
The laser-polarization effects on the populations, expectation

values Lz(t) and Q(t), and WPs can be understood in terms of
interferences between the WP existing on the original PES and
that created by nonadiabatic couplings. As mentioned in the
model analysis in section 2.2, a linearly polarized laser pulse
with eout achieves θ = π; in other words, it initially produces a
linear combination of ψL(Q,t) and ψH(Q,t) out of phase. Then,
their relative quantum phase evolves during irradiation [by
−ϑ(t) in the cases of rectangular-envelope pulses] and also
gains a dynamical phase associated with potential shape as the
WPs move on each PES. In nonadiabatic transition, an
additional phase shift is further imposed on the WP created
by nonadiabatic couplings, which interferes with that on the
other PES. We do not quantify the additional phase, but the
downward population transfer around t ∼ 5 − 10 fs in Figure
4b implies opposite interferences on the two PESs: The WPs
are almost in phase and interfere constructively on the lower
PES, whereas those on the higher one are out of phase with
destructive interference. The constructive interference works
particularly on high vibrational quantum states in ψL(Q,t). The
direction of the population transfer flips as the relative quantum
phase develops. For ein excitation in which the two excited WPs
are in phase (θ = 0), the interference effects are reversed from
those for eout excitation: The interference is destructive on the
lower PES but constructive on the higher one around t ∼ 5−10
fs. The resultant upward population transfer is small because
the amount of the WP created by the nonadiabatic transition
from |L⟩ to |H⟩ is less than that for the transition from |H⟩ to |
L⟩. The WPs on the two PESs then reach the avoided crossing
and the reverse population transfer takes place around t ∼ 10−
14 fs. The interference enhances low vibrational quantum states

in ψL(Q,t), increasing the probability density in a low-energy
region on the lower PES as seen in Figure 10a. In the cases of
circular polarizations, ψL(Q,t) and ψH(Q,t) are initially neither
in phase nor out of phase because θ = ±0.35π for e±1. Hence,
no fully constructive or destructive interference occurs on
either PES at t ∼ 5 − 10 fs, resulting in the vibrational
amplitudes in Figure 6b that are intermediate between those for
linear polarizations in Figure 6a. As the relative quantum phase
between the WPs evolves in the negative direction, for e−1
excitation with θ = −0.35π, the downward population transfer,
which requires constructive and destructive interferences on the
lower and higher PESs, respectively, appears at t ∼ 8−13 fs; for
e+1 excitation with θ = 0.35π, the WPs pass through the avoided
crossing before matching the requirement of interference for
population transfer and thus the nonadiabatic transition is
unfinished until they come closer again to the avoided crossing
at t ∼ 30 fs.
The nuclear WP simulations demonstrated that the initial

relative phase θ between the WPs of the quasi-degenerate
excited states, which is determined by the ellipticity angle β and
orientation angle δ of the incident light, governs not only π-
electron rotation but also the subsequent molecular vibration
through nonadiabatic couplings. What is more, we can also
manipulate the time-dependent phase due to irradiation,
namely, ϑ(t) by tuning the other laser parameters such as the
peak field strength εp and pulse duration td. This suggests that
in principle it is possible to produce a superposition of the
quasi-degenerate states with an arbitrary relative phase after
excitation by a laser pulse of arbitrary polarization. Ultimately,
the interference between nuclear WPs in nonadiabatic
transition can be controlled as desired by means of ultrashort
laser pulses, leading to sophisticated control of molecular
vibrations.

Figure 10. Propagation of the adiabatic WPs on the two-dimensional adiabatic PESs of |L⟩ and |H⟩ for (a) ein, (b) eout, (c) e+1, and (d) e−1
excitations. The origin of the PESs is the optimized geometry of |G⟩ and the avoided crossing is designated by a circle. The bold contours represent
the probability densities |ψL(Q,t)|

2 and |ψH(Q,t)|
2. The arrows indicate the motion of the center of the WPs.
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4. CONCLUSIONS

We have theoretically investigated the nonadiabatically coupled
vibronic dynamics of aromatic molecules with quasi-degenerate
π-electronic states excited by an ultrashort UV laser pulse of
arbitrary polarization. First, the concept of electronic angular
momentum eigenstates in aromatic molecules was introduced
to quantify laser-driven π-electron rotation (ring current) in
reference to MO theory. Next, for the purpose of analyzing the
role of laser polarization in the optical excitation process, we
employed the V-type three-level model under the frozen-nuclei
condition and derived general formulations of the coherent
electronic WP and angular-momentum expectation value in
both degenerate and quasi-degenerate systems. The initial
relative phase between the quasi-degenerate excited states, θ, is
determined by the ellipticity angle β and orientation angle δ of
an applied laser field, and the relation among the three variables
was provided in eq 18. The time-dependent part of the relative
quantum phase, ϑ(t), is adjustable by the laser pulse as well. It
is therefore possible to create a desired superposition of the
quasi-degenerate states by applying ultrashort laser pulses. The
angular-momentum expectation value follows the temporal
behavior in the relative quantum phase as shown in eq 36 and
oscillates after irradiation with the period corresponding to the
energy gap between the quasi-degenerate states.
Nuclear WP simulations were also carried out with a model

system of DCP and the numerical results confirmed the
controllability of the phase in the oscillation of angular
momentum. The angular momentum of π electrons, however,
decays on the time scale of several tens of femtoseconds by
nonadiabatic couplings. The comparison in the expectation
values of vibrational coordinates between the linear and circular
polarization cases revealed an interesting finding: The
amplitude of the molecular vibration coupled to π-electron
rotation is prominently dependent on the orientation of linear
polarization vectors rather than the helicity of circular
polarization. This characteristic dependence of vibrational
amplitudes on laser polarization is ascribed to the interference
effects in nonadiabatic transition dictated by the relative
quantum phase between the WPs. The results in this paper
suggest the potential application of attosecond/several-femto-
second polarized laser pulses as a promising tool to control
molecular vibrations through the WP interference in non-
adiabatic transition.
We expect that the knowledge obtained for aromatic

molecules serves as a basis for studying more complicated
polarization-dependent dynamics in larger systems, e.g.,
intense-field fragmentation of C60.

28 Control of nonadiabatic
vibrational/fragmentation dynamics induced by multiphoton
electronic excitation is a worthwhile subject for future research.
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N. Phys. Rev. A 2003, 68, 043406.
(36) (a) Ceccherini, F.; Bauer, D. Phys. Rev. A 2001, 64, 033423.
(b) Ceccherini, F.; Bauer, D.; Cornolti, F. J. Phys. B 2001, 34, 5017.
(37) Nobusada, K.; Yabana, K. Phys. Rev. A 2007, 75, 032518.
(38) Ulusoy, I. S.; Nest, M. J. Am. Chem. Soc. 2011, 133, 20230.
(39) (a) Kanno, M.; Kono, H.; Fujimura, Y. Angew. Chem. 2006, 118,
8163;(b) Kanno, M.; Kono, H.; Fujimura, Y. Angew. Chem., Int. Ed.
2006, 45, 7995.
(40) Kanno, M.; Hoki, K.; Kono, H.; Fujimura, Y. J. Chem. Phys.
2007, 127, 204314.
(41) Kanno, M.; Kono, H.; Fujimura, Y.; Lin, S. H. Phys. Rev. Lett.
2010, 104, 108302.
(42) Kanno, M.; Kono, H.; Fujimura, Y. In Progress in Ultrafast
Intense Laser Science; Yamanouchi, K., Charalambidis, D., Normand,
D., Eds.; Springer: Berlin, 2011; Vol. 7, pp 53−78.
(43) Mineo, H.; Kanno, M.; Kono, H.; Chao, S. D.; Lin, S. H.;
Fujimura, Y. Chem. Phys. 2012, 392, 136.
(44) Salem, L. The Molecular Orbital Theory of Conjugated Systems;
Benjamin: New York, 1966; pp 112−116.
(45) Frost, A. A.; Musulin, B. J. Chem. Phys. 1953, 21, 572.
(46) Rubio, M.; Ross, B. O.; Serrano-Andreś, L.; Merchań, M. J.
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