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LMI-based robust sliding control for mismatched uncertain
nonlinear systems using fuzzy models
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SUMMARY

We propose a robust sliding control design method for uncertain Takagi—Sugeno fuzzy models. The uncer-
tain fuzzy systems under consideration have mismatched parameter uncertainties in the state matrix and
external disturbances. We make the first attempt to relax the restrictive assumption that each nominal local
system model shares the same input channel, which is required in the traditional VSS-based fuzzy control
design methods. We derive the existence conditions of linear sliding surfaces guaranteeing the asymptotic
stability in terms of constrained LMIs. We present an LMI characterization of such sliding surfaces. Also, an
LMI-based algorithm is given to design the switching feedback control term so that a stable sliding motion
is induced in finite time. Finally, we give two simulation results to show the effectiveness of the proposed
method. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the past two decades, fuzzy techniques have been widely and successfully exploited in nonlin-
ear system modeling and control. The Takagi—Sugeno (T-S) model [1] is a popular and convenient
tool for handling complex nonlinear systems. Correspondingly, the fuzzy feedback control design
problem for a nonlinear system has been studied extensively by using the T-S model where simple
local linear models are combined to describe the global behavior of the nonlinear system [2-7].
In practice, the inevitable uncertainties may enter a nonlinear system model in a very complicated
way. The uncertainty may include modeling errors, parameter variations, external disturbances, and
fuzzy approximation errors. In such a situation, the fuzzy feedback control design methods in [2—7]
may not work well anymore. To deal with the problem, some authors [8, 9] have exploited the
variable structure system (VSS) theory, which has provided an effective means to design robust
controllers for uncertain nonlinear systems where the uncertainties are bounded by known scalar
valued functions.

In the VSS, the control design of the plant is intentionally changed by using a viable high-speed
switching feedback control to obtain a desired system response, from which the VSS arises in finite
time. The VSS drives the trajectory of the system onto a specified and user-designed surface, which
is called the sliding surface or the switching surface, and maintains the trajectory on this sliding
surface for all subsequent times. The closed-loop response obtained from using a VSS control law
comprises two distinct modes. The first is the reaching mode, also called nonsliding mode, in which
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the trajectory starting from anywhere on the state space is being driven towards the switching sur-
face. The second is the sliding mode in which the trajectory asymptotically tends to the origin. The
central feature of the VSS is the sliding mode on the sliding surface on which the system remains
insensitive to internal parameter variations and external disturbance. In sliding mode, the order of
the system dynamics is reduced. This enables simplification and the decoupling design procedure
[10-13]. However, all the VSS-based fuzzy control system design methods are based on the assump-
tion that each nominal local system model shares the same input channel. This assumption is very
restrictive and inadequate to modeling uncertainty/nonlinearity in various mechanical systems.

Considering these facts above, we propose a robust sliding control design method for the mis-
matched uncertain T-S fuzzy model with parameter uncertainties and norm-bounded external dis-
turbances. Each nominal local system model of the uncertain system under consideration may not
share the same input channel. As the local controller, we use a sliding mode controller with a non-
linear switching feedback control term. We derive LMI conditions for the existence of linear sliding
surfaces guaranteeing asymptotic stability of the reduced order equivalent sliding mode dynamics,
and we give an explicit formula of the switching surface parameter matrix in terms of the solution
of the LMI existence conditions. We also design the nonlinear switching feedback control term to
drive the system trajectories so that a stable sliding motion is induced in finite time on the switching
surface and the state converges to zero. To show the effectiveness of the proposed method, we give
a numerical design example together with an LMI-based design algorithm. The rest of the paper
is organized as follows. Section 2 describes the T-S fuzzy model and reviews some preliminary
results. Section 3 presents an LMI existence condition of linear sliding surfaces and an explicit
characterization of the sliding surface parameter matrices and a sliding control law. Section 4 gives
two numerical design examples to demonstrate the validity and effectiveness. Finally, Section 5
offers some concluding remarks.

2. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following uncertain T-S fuzzy model [14], including parameter uncertainties and
external disturbances:

£(0) =Y BiO)([Ai + AAi(O]x (1) + Bi[u(t) + h(t.x)]) (1)

i=1

where x(¢) € R" is the state, u(t) € R™ is the control input, A;, B; are constant matrices of
appropriate dimensions, A A; (¢) represents the parameter uncertainties in A4;, i(¢,x) € R™ denotes
external disturbances. 0 = [01,...,6,],0;(j =1,...,s) are the premise variables, s is the number
of the premise variables, B;(0) = w; (9)/2;210)]- (0),w; : R® = [0,1],i =1,...,r is the mem-
bership function of the system with respect to plant rule 7, r is the number of the I[F-THEN
rules, B; can be regarded as the normalized weight of each IF-THEN rule and it satisfies that
Bi(0) =0.>"I_, Bi(0) = 1. We will assume that the following are satisfied:

Al: The nxm matrix B definedby B =1/r ) ;_, B; satisfies the rank constraint rank (B) = m,
that is, the matrix B has full column rank m.

A2: The function A (¢, x) is unknown but bounded as Hh(z, X) — i;(t, X) H < Zi:o Pr |1 x ||k where

0o, - - -, p; are known constants, A (, x) is an estimate of /(¢, x), and / is a known positive
integer.
A3: AA;(¢) is of the form T; IT; (¢) where IT; (¢) is unknown but bounded as || IT; (¢)|| < 1.

The system (1) does not have to satisfy the restrictive assumption that all the input matrices of the
local system models are in the same range space. It should be noted that the assumption A1 implies
that rank(B;) < m and each nominal local system model may not share the same input channel. The
assumption A2 with / = 1 and h (t, x) = 0 has been used in the literature [15]. We can set h (t,x) as
the nominal value of 4 (¢, x). Using the above assumptions, the uncertain T-S fuzzy model (1) can
be written as follows:
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(1) =) Bi(O)(Ai + i (1)x(1) + [B + HF (B)G][u + h(z, X)), 2

i=1

where 8 = [1(0),. .., B,(0)], and the matrices H, G, F(B) are defined by

H=%[(B —By),...,B— Br)],Gz[I,...,I]T,F(ﬁ) =diag[(1=26:0)1,...,(1=2B8,(0))1].

(3)
It should be noted that the system (1) does not have to satisfy By = B, = -+ = B,, which is
used in almost all published results on VSS design methods including the VSS-based fuzzy control
design methods of [11, 12]. Hence, the methods [8] and [9] cannot be applied to the above model
(1). Because 3;(#) = 0and Y ;_, B(f) = 1, we can see that the following inequality always holds:

FT(B)F(B)=FPBF (B)<I )

Many examples in the literature and various mechanical systems such as motors and robots do
not satisfy the restrictive assumptions that each nominal local system model shares the same input
channel and they fall into the special cases of the above model [14].

3. SLIDING CONTROL DESIGN VIA LMI APPROACH

In this section, we demonstrate the problem of designing a robust sliding controller via LMI
approach.

3.1. LMI characterization of linear sliding surfaces

The sliding mode control (SMC) design is decoupled into two independent tasks of lower dimen-
sions: the first involves the design of m(n — 1)— dimensional switching surfaces for the sliding
mode such that the reduced order sliding mode dynamics satisfies the design specifications such as
stabilization, tracking, regulation, etc. The second is concerned with the selection of a switching
feedback control for the reaching mode so that it can drive the system’s dynamics into the switching
surface [11]. We first characterize linear sliding surfaces using LMIs.

Let us define the linear sliding surface as 0 = Sx = 0 where S is an m x n matrix. Referring to
the previous results [11] and [16], we can see that for the system (2) it is reasonable to find a sliding
surface such that

Pl [SB + SHF(B)G] is nonsingular for any B satisfying f;(8) = 0,i = 1,...,r, and
i1 Bi0) =1.

P2 The reduced (n — m) order sliding mode dynamics restricted to the sliding surface Sx = 0 is
asymptotically stable for all admissible uncertainties.

It should be noted that P1 is necessary for the existence of the unique equivalent control [11] and
the assumption Al is necessary for the nonsingularity of SB.

Theorem 1
Consider the following LMIs:

AT[(A; + T;TL;(0))Y +%]A  * %

nHT A -1 % |<0,Vi Q)
(A; + TiI1; (2)) YA nH -1

Y I 0

I 0 > 0, (6)

0 0 cl-Y
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2nk  x %
rci rn 0 >0 @)
rca 0 rp

where Y € R ¢, € R,c, € R, € R are decision variables, k = Amin(BT B), A € Rnx(n—m) jq
any full rank matrix such that BT A =0, AT A = I, and * represents blocks that are readily inferred
by symmetry. Suppose that the LMIs (5)—(7) have a solution vector (Y, ¢y, ¢2, 17), then there exists
a linear sliding surface parameter matrix S satisfying P1-P2 and by using a solution matrix Y to
(5)—(7), S can be parameterized as follows:

o(x)=Sx=(BTY'B)"'BTy lx. (®)

Proof
By using Schur complement formula [17], we can easily show that in fact the following LMIs are
incorporated in the LMIs (5)—(7)

c1>0,¢c2>0, >0, ”? HHT < I, 20%k > r(c? + ¢3). )

It is clear that if the following inequality (10) holds, then SB + SHF(8)G = I + SHF(B)G is
nonsingular and hence P1 holds

SHF(B)GGTFT(B)HTS < I. (10)
Using (3), (4), (9) and GGT < |G ||2 I =rl, we can obtain

r

SHF(B)GGTFT(B)H" ST < — 58T, (11)
n
By using the Schur complement formula [17], we can see that (6) and (9) imply
O<cf' I <Y <e,0<e;' T <Y<l (12)
And this leads to
SHF(B)GGTFT(B)HTST < = 55T < 02 3Ty < T12 (13)
n n kn

Using the inequality 2ab < a? + b? where a and b are scalars, we can show that (13) implies

r

SHF(B)GGTFT(B)HT ST <
2Kk n?

(cZ+edl. (14)

Finally, by using the above inequalities (9) and (13), we can obtain
SHFB)GGTFT(BYHTST < 58T <1, (15)
n
which implies that [SB + SH F(f)G] is nonsingular, that is, P1 holds. O

Now, we will show that S of (8) guarantees P2. Define a transformation matrix and the associ-
ated vector v as M = [A(ATYA)"LY 1 BBTY 1By T = VT, ST|T v = [l oI]T = Mx
where v; € R"™™, v, € R™.

Then we can see that M ~! = [YA, B] and v, = 0. By the above transformation we can obtain

0] g o [ VA + TILO)YA V(4 + TIL@0)B ([ v
[ 5 ]_;ﬂ’(e)[ S(A; + T;TL;(1))YA  S(A; + T;T1;(1))B ][ o }

VHF(B)G
[ [+ SHIg)G |1 R (16)
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2012; 22:1827-1836

DOI: 10.1002/rnc
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From the equivalent control method [11], we can see that the equivalent control is given by
Ueg(t) ==Y 1_, Bi(O)[I + SHF(B)G] ' S(A; + T; I1;(¢))x — h(t, x). By setting & = 0 = 0 and
substituting u () with u.4(¢), we can show that the reduced (n — m) order sliding mode dynamics
restricted to the switching surface 0 = Sx = 0 is given by

o1 =Y Bi(O)(ATYA) AT D(B)(Ai + Ti11;(1))Y Av, (17

i=1

where D(B) =1 — HF(B)G[I + SHF(B)G]™'S.
Using the matrix inversion lemma

(I + AB)™'=1— A + BA)B,

where A and B are compatible constant matrices such that (/ + A B) is nonsingular, we can show
that the sliding mode dynamics is equivalent to

1= Bi(O)ATYA) AT C(B)(A; + TiTLi (1)) Y Avy, (18)
i=1

where v; = (ATYA)'ATxand C(B) =1 — H[I + F(B)GSH]| ' F(B)GS.
The previous results [18, 19] imply that sliding mode dynamics (18) is asymptotically stable.

3.2. Sliding control law design

After the switching surface parameter matrix S is designed so that the reduced (n —m) order sliding
mode dynamics has a desired response, the next step of the SMC design procedure is to design a
switching feedback control law for the the reaching mode such that the reachability condition is met.
If the switching feedback control law satisfies the reachability condition, it drives the state trajectory
to the switching surface 0 = Sx = 0 and maintain it there for all subsequent times. In this section,
with o of (8), we design a sliding fuzzy control law guaranteeting that o converges to zero. We will
use the following nonlinear sliding switching feedback control law as the local controller.
Control rule i: IF 6y is p;; and ... and 65 is u;5, THEN

u(t) = —h(t.x) — 110 — S(A; + TIL()x — —— 81, x) -
- lo |
where
1
8i(t.x) =i + @ [|S(A; + TTLO)x ] + (1 +0) > pe [Ix][* (19)
k=0

ando = Sx,w = /r||SH| ,a; >0, xi > 0. It should be noted that (15) implies w = /7 |SH | <
VTSI IIH| < n||H] . This and (9) guarantee 0 < w < 1. The final controller inferred as the
weighted average of the each local controller is given by
r
N 1 o
u(t) = —hit.x)~ 3 BO) (m T S(As + T ) + m‘*l‘(”’”m) 20)

i=1

and we can establish the following theorem.

Theorem 2

Suppose that the LMIs (5)—(7) have a solution vector (Y, ¢y, ¢z, 1) and the linear sliding surface is
given by (8). Consider the closed-loop control system of the uncertain system (2) with control (20).
Then the state converges to zero.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2012; 22:1827-1836
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Proof
Because Theorem 1 implies that the linear sliding surface (8) guarantees P1-P2, we only have to
show that o converges to zero. Define a Lyapunov function as E(f) = 0.50 T 0. The time derivative
of E(t)is E = 0T 6. From (2), (8), (20), [SHF(B)G|| < 7 ||SH| = 0,0 < » < 1, and A2, we
obtain

oT6 =0T Y Bi(6)S(A; + T;T(1)x(t) + 0T [ + SHF(B)Glu + h(t, x)]

i=1

<Y Bi@)0T S(Ai + TiTL(0)x(1) + 0w+ { l|ull + (1 + ) A )|} o] .
i=1

O
. r r

This implies that £ < —(1 —w) Y. B:i(@) i llo]|* — . Bi (A ||o|| < 0, which indicates that
i=1 i=1

E€lyNLg, E € L. Finally, by using Barbalat’s lemma, we can conclude that o converges to
Zero.

4. NUMERICAL EXAMPLE

In this section, two examples are used to illustrate the effectiveness of the proposed method and to
compare with the existing method.

Example 1
To illustrate the performance of the proposed SMC fuzzy control design method, consider the
following two-rule fuzzy model from a vertical take-off and landing helicopter model [20]

Plant Rule 1: IF x; is about 0, THEN
X = (A1 + T 111 (1)) x + Bi[u + h(z, x)]
Plant Rule 2: IF x; is about 2, THEN

X = (A2 + TrI12(2))x + Ba[u + h(t, x)]

where
r —0.0366  0.0271  0.0188 —0.4555 7 T 0
A= 0.0482 —1.0100  0.0024 —4.0208 | 01
1= 0.1002  0.3181 —0.7070 14100 |° "'~ | 0 ’
) 0 1 0 i L 0 |
r —0.0366  0.0271  0.0188 —0.4555 T -0 ]
s — 0.0482 —1.0100  0.0024 —4.0208 7| Ol
2= 0.1002  0.4181 —0.7070 14300 |> 27| 0 ’
L 0 0 1 0 i L0
0.4422  0.1761 0.4422  0.1761
B — 3.5446 —7.5922 | o _ 3.6446 —7.5922
=1 55200 44900 |[>72 7 | —5.5200  4.4900 |’
0 0 0 0
(1) =MH()=[ 0 0 sinz 0 ]
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2012; 22:1827-1836
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1—1/(1 4 e~ 14171
1+ e—14(x1+1)

h(t,x)=d(t)+ [ 0.9sin3r 0.9sin3t |7, 8y = Ba=1—P1. 1

It should be noted that 7 and 75 are not matched and thus the previous VSS-based fuzzy control
design methods cannot be applied to the above system (21). Via LMI optimization with (21), we can
obtain the sliding surface 0 = Sx.

By setting /i(r,x) = [ 0.9sin3r 0.9sin3r |7, i =5,0s = 0.1,r = 2,1 = 1, p = I, we can
obtain the following nonlinear controller:

Control Rule 1: IF x; is about O, THEN

u(t) = [—0.9sin3r  —0.9sin3t |  —50—S(A;+Ty 1 (t))x—

1
S1sgn(o).
l-—w

Control Rule 2: IF x; is about =2, THEN

u(t) = [—0.9sin3r  —0.9sin3t | —50—S(Ao+ToTT5(1))x—

Sxsgn(o).
l-w

The final controller inferred as the weighted average of each local controller is given by

u(t) =[ —0.9sin3r —0.9sin 3z ]T — Z,B(G) |:50 + S(A; + T;T1;(t))x + —

i=1

Sisgn(a)].

(22)
To assure the effectiveness of our fuzzy controller, we apply the controller to the two-rule fuzzy model
(21) with nonzero d(t). We assume that d(t) = [x1 sin2t—0.5sgn(x4) xpsin2¢— 0.5sgn(x4)]T.
The time histories of the state, the sliding variable o, and the input (22) are shown in Figure 1 when
x1(0) = x2(0) = x4(0) = 0, x3(0) = 10.

From Figure 1, the proposed controller is applicable to low order fuzzy control synthesis for
uncertain fuzzy systems with mismatched parameter uncertainties in the state matrix and external
disturbances. The control performances are satisfactory. It should be noted that all existing VSS-
based fuzzy control system design methods cannot be applied to the two-rule fuzzy model (21)
because Bj is not in the range space of B;.

Solid:x1, Dotted:x2, Dashdot:x3, Dashed:x4

10
x oF— - i
_10 | | | | | | | | |
0 0.5 1 1.5 2 25 3 35 4 45 5
Time(sec)
Solid:o1, Dotted:c2
5 T
© 0 1
_5 | | 1 | | | 1 | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time(sec)
50
S of 7
_50 | | 1 | | | 1 | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time(sec)
50
S of 1
_50 | | 1 | | | 1 | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time(sec)

Figure 1. Simulation results for initial conditions x1(0) = x2(0) = x4(0) =0, x3(0) = 10.
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Example 2
For the special case of I1;(z) = 0, the robust sliding controller design is proposed in [19]. Consider
the following inverted pendulum on a cart [19]

X1 = X2, X3 =X4

Xy = i(.’ag sinx; —3acosxi[u+d(t)+¢]), xs = —%(1.5mag sin2x; —4alu+d(t)+¢]) (23)

where x7 is the angle (rad) of the pendulum from the vertical, x, = X1, x3 is the displacement (m)
of the cart, x4 = X3, ¥ = 4 —3macos® xy,¢ = mlx% sin x1, u is the input, and d () is related to
external disturbances, which may be caused by the frictional force. a = 1/(m + M), m is the mass
of the pendulum, M is the mass of the cart, 2/ is the length of the pendulum, and g = 9.8m/s? is
the gravity constant. We set M = 9 kg,m = 1 kg,l = 1 m. We assume that d(¢) is bounded as
|d(t)| < po + p1 ||x|| where pg and p; are known constants. Here, we approximate the system (23)
by the following two-rule fuzzy model.

Plant Rule 1: IF x; is about O, THEN

X =A1x + Bi[u + h(t, x)]
Plant Rule2: IF x; is about +60°(+x/3"ad), THEN
X = Azx + Bau + h(t, x)]

where

-0 1 0 0 -0 .

7.9459 0 0 0 —0.0811
Ai=1 o0 1| B=| o ’

| 07946 0 0 0 | 0.1081 |

-0 1 0 07 -0 ]

6.1945 0 0 0 ~0.0382
Az = 0 00 1 | B= 0 ’

| 03097 0 0 O 0.1019 |

1—1/(1 4 e~ 14x1=7/8))
1+ e—14(x1+7/8)

h(t,x) =d(t) + x5 sinxy, f1 = ,B2=1-p1. (24)
Because B; is not in the range space of B», all existing VSS-based fuzzy control system design
methods cannot be applied to the above system (24). Via LMI optimization with (24), we can obtain
the sliding surface o = Sx.

By setting ﬁ(t,x) = x% sinxy, yi = 5,05 = 1,r =2,1 =1, pr = 1, we can obtain the following
nonlinear controller:

Control Rule 1: IF x; is about 0, THEN

1
u(t) = —x2sinx; — 50 — SA;x — 1 S1sgn(o).
—w
Control Rule 2: IF x; is about +60°(+/3 rad ), THEN
1
u(t) = —x3sinx; — 50 — SArx — 0 Srsgn(o).
—w

The final controller inferred as the weighted average of each local controller is given by

1

_ 2 )
u(t) = —x3sinxy — Zﬂ(@) [50 + SA4;x + 1

i=1

8,-sgn(0)]. (25)
1)

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2012; 22:1827-1836
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Figure 2. Simulation results for initial conditions x (0) = 40°(2x/9 rad ), x2(0) = x3(0) = x4(0) = 0.

To assure the effectiveness of our fuzzy controller, we apply the controller to the two-rule
fuzzy model (24) with nonzero d(¢). We assume that d(t) = xj sin2x¢ — 0.5sgn(x4). The time
histories of the state, the sliding variable o, and the input (25) are shown in Figure 2 when
x1(0) =40°(27/9rad ), x2(0) = x3(0) = x4(0) = 0.

5. CONCLUSIONS

A robust sliding fuzzy control design method was developed for the uncertain T-S fuzzy model,
which includes mismatched parameter uncertainties and external disturbances. We relaxed the
restrictive assumption that each nominal local system model shares the same input channel, which is
always invoked in the traditional VSS-based fuzzy control design methods. As the local controller,
an SMC law with a nonlinear switching feedback control term is used. We gave an LMI condition
for the existence of linear sliding surfaces guaranteeing the asymptotic stability of the reduced order
equivalent sliding mode dynamics. An explicit formula of the switching surface parameter matrix
is derived in terms of the solution of the LMI existence condition and an LMI-based algorithm
is developed to design the nonlinear switching feedback control term guaranteeing the reachabil-
ity condition. Besides, two numerical design examples are given to show the effectiveness of our
method. Finally, by using the proofs of Theorem 1 and Theorem 2, the previous VSC-based fuzzy
control system design methods can be easily extended to include a T-S fuzzy model where each
nominal local system model does not share the same input channel.
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