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The success of 3D IC requires novel EDA techniques. Although many EDA tech-

niques exist, this paper focuses on 3D IC partitioning, especially at the architectural level 
to maximize its benefits. First, logical formulations for 3D IC partitioning problems are 
derived and then the formulations are transformed into integer linear programs (ILPs). 
The ILP formulation can minimize the usage of vertical interconnects subject to the 
footprint and power consumption constraints. The flexibility of ILP formulation can be 
demonstrated by extending the generic ILP formulation to support designs with multiple 
supply voltages. This study proposes ILP reduction techniques to speed up the conver-
gence. Experimental results based on the GSRC benchmark show that our approach 
converges efficiently. Moreover, our approach is flexible and can readily extend to the 
partitioning problems with variant objectives and constraints, and with different abstrac-
tion levels, for example, from the architectural level down to the physical level. This 
flexibility makes the ILP formulation a superior alternative to 3D IC partitioning prob-
lems.  
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1. INTRODUCTION 
 

As technology advances into the nanometer era, the substantially high design com-
plexity and the integration of heterogeneous designs in a chip require fresh design meth-
odology. Three-dimensional (3D) integration, an emerging and promising technology, 
can meet this requirement. Compared with the two-dimensional (2D) implementation, a 
3D IC stacks multiple dies and interconnects them vertically thus offering a smaller foot-
print, shorter interconnect delay/power, wider bandwidth, higher-density/larger-scale in- 
tegration over heterogeneous technologies, potentially lowering cost and creating a 
shorter time-to-market [1-4]. As the optical lithography is approaching its natural limits 
as predicted by the International Technology Roadmap for Semiconductors (ITRS) [5], 
increasing the scale of integration is particularly attractive. Theoretically, a 3D IC may 
integrate and interconnect tens of dies, vertically. Fig. 1 illustrates a 3D IC using through- 
silicon vias (TSVs) to interconnect three sets of device and metal layers. One bonding 
layer is placed in between two adjacent sets. Although 3D integration is feasible and 
beneficial from many perspectives, the process variation on TSV, say 11.1%, is much 
larger than the variation of threshold voltage of the device, say 6.4% [3]. Hence, vertical 
interconnects (TSVs) should cleverly be used. 
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Successful 3D integration requires novel design and automation techniques. Parti-
tioning is especially important because it has a great impact on the circuit performance 
across all abstraction levels. On the other hand, decisions and optimizations made at 
higher abstraction levels can gain more benefits than those done at lower levels. For ex-
ample, functional partitioning at the architectural level has more benefits than circuit 
partitioning at the physical level, because functional partitioning can compromise func-
tionality and connectivity between operations (logic blocks). Debugging a functionally 
partitioned design is significantly easier than debugging a circuit-wise partitioned one. In 
addition, the problem size at the architectural level is obviously smaller than that at the 
physical level, e.g., tens of logic blocks, usually no more than one hundred, versus bil-
lions of cells. This paper focuses on architectural-level partitioning for 3D IC integration. 
This approach can readily extend to all abstraction levels. Here, one partition corre-
sponds to one layer (stacked die), which is comprised of one device layer plus a set of 
metal layers. Previous works empirically showed that minimizing the cutsize can indi-
rectly optimize wirelength [6, 7, 15]. Thus, good partitioning algorithms may result in 
better solutions for later stages. 

Since all interactions with external signals can only be conducted through the bot-
tom layer, the partitioning problem for 3D ICs is quite different from the conventional 
one. As shown in Fig. 2, the conventional multi-way partitioning algorithms, for example 
hMetis [8], cannot guarantee optimality for 3D integration. Considering a naïve exten-
sion based on the conventional multi-way partitioning, after each partition is assigned to 
a distinct set of device and metal layers in a 3D IC, one cut net or one input/output (I/O) 
may contribute more than one TSV when its related partitions are unfortunately scattered 
over several non-adjacent layers. Thus, the minimized cutsize during multi-way parti-
tioning cannot reflect how well the usage of TSVs is optimized. Moreover, the arrange-
ment of these partitions could be non-trivial. 

This paper develops a partitioning approach to handle the impact on external inter-
actions and the discrepancy with the conventional multi-way partitioning. We first derive 
logical formulations for 3D IC partitioning problems and then transform the formulations 
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Fig. 1. A 3D IC with TSVs for vertical interconnects (via last, front to back integration) [3]. 
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into integer linear programs (ILPs). The flexibility of ILP formulation can be demon-
strated by extending the generic ILP formulation to support designs with multiple supply 
voltages. This study also proposes ILP reduction techniques to speed up the convergence 
by solving ILPs iteratively and performing pre-clustering. These techniques not only 
improve the efficiency of ILPs but also maintain a reasonably good solution quality. The 
ILPs can control the footprint, minimize the TSV count, and lower the power simultane-
ously. More importantly, this approach is very flexible and can readily extend to the par-
titioning problems with variant objectives and constraints, and with different abstract 
levels, such as the architectural, logic, or physical level. This flexibility makes the ILP 
formulation a superior alternative to the 3D IC partitioning problems. 

The remainder of this paper is organized as follows. Section 2 introduces prelimi-
naries of this work. Section 3 defines our problem, formulates ILPs, as well as proposes 
reduction techniques. Section 4 then extends the ILP formulations to handle designs with 
multiple supply voltages. Section 5 shows and analyzes experimental results. Finally, 
section 6 concludes this paper. 
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(a) hMetis multi-way partitioning.            (b) Conversion to 3D integration. 

Fig. 2. Conventional multi-way partitioning in (a) cannot guarantee optimality in 3D IC integration in (b). 

2. PRELIMINARIES 

This section introduces TSVs, multilevel multi-way partitioning, and multiple sup-
ply voltage. 
 
2.1 Vertical Interconnects 

 
The following TSV components are used for vertical interconnects in 3D ICs (see 
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Fig. 1). 
 

1. A TSV cell connects a signal net between two internal neighboring layers. 
2. Given two consecutive layers, a landing pad at the lower layer contacts the upper layer, 

and its size must be larger than a TSV cell for safe alignment. Since the landing pad is 
connected to the top metal layer, it is assumed not to affect the devices under it, and its 
area could be neglected. 

3. A TSV through consists of a TSV cell and a landing pad. 
4. A TSV IO connects an I/O terminal to one package pin. The diameter of a TSV IO is 

greater than that of a TSV cell. Please note that only the bottom set of device & metal 
layers (layer 1) contains the TSV IOs that can connect to the external package pins. 

 
Hence, without loss of generality, this paper counts a TSV through or a TSV IO as 

one TSV. 
 
2.2 Multilevel Multi-Way Partitioning 

 
To produce a high-quality solution for large hypergraphs in a small amount of run-

time, the multilevel partitioning adopts a bottom-up hierarchical approach based on re-
cursive clustering; hMetis is one of the earliest and best multilevel hypergraph partition-
ing algorithms [8]. 

The multilevel scheme consists of three phases: coarsening (clustering), initial parti-
tioning, and uncoarsening (disclustering) & refinement, as illustrated in Fig. 3. The initial 
bipartition is simply a random bipartition. The refinement on the uncoarsening hyper-
graphs is done by the classical Fiduccia and Mattheyses heuristic for bipartitioning on 
hypergraphs [9]. 
 
2.3 Multiple Supply Voltage (MSV) 

 
Power consumption is a critical issue in modern VLSI design. Multiple supply volt-

age (MSV) is one of several low power techniques. MSV reduces system power by de-
livering a lower supply voltage to noncritical parts of a system, while maintaining system 
performance. Each logic block corresponds to a number of timing safe supply voltage 
values which ensure that the logic block works correctly. For example, the supply volt-
age of a logic block with timing safe supply voltages = {1.0V, 1.2V, 1.3V} is being de-
cided. Designers deduce that less power consumption is better. Since power consumption 
is quadratically proportional to the supply voltage, 1.0V is assigned to the block. Con-
sidering the overall design targets, the fittest supply voltage value would be chosen as the 
operating voltage. 

3. GENERIC ILP FORMULATION FOR 3D IC PARTITIONING 

This section details our generic ILP formulation as well as the speed-up generic ILP 
formulation. 
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Fig. 3. The three phases of hMetis [8]: coarsening, initial partitioning, uncoarsening phases. 
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Fig. 4. 3D IC partitioning. 

3.1 Problem Definition 
 
As depicted in Fig. 4, the input design contains logic blocks, I/O terminals, as well 

as the connections between them. Implementing this design using an l-layer 3D IC is 
equivalent to partitioning it into l layers with the minimum TSV usage and the minimum 
footprint. Hence, the l-layer 3D IC partitioning problem is formulated as follows. 

 

Problem: l-layer 3D IC Partitioning 
Given the number of layers l of a 3D IC and a design with logic blocks, I/O terminals, the 
connectivity between them, find l partitions with the minimum TSV usage and with the 
best area-balance. 

3.2 Hypergraph Modeling 
 

The input design is modeled as a hypergraph, G = (V, E). A vertex in V represents 
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either an I/O terminal or a logic block, while a hyperedge in E denotes a net connecting 
two or more vertices. An l-layer 3D IC can be achieved by a multi-way partitioning on 
the input hypergraph. The TSV usage is counted by the number of TSVs used, including 
both TSV throughs and TSV IOs. The footprint is contributed by the largest area over l 
layers, so the minimum footprint can be achieved by minimizing the largest area or by 
balancing the area of each layer in the 3D IC. 
 
3.3 ILP Formulation 

 
Table 1 lists the notations used for ILP formulation and the basic constraints. Based 

on Table 1, the -bounded area limits the footprint. Therefore, the objective function 
only counts the number of TSVs used. The TSV usage can be given by 

 

ei  E p = 1…l yi,p, (1) 

Table 1. Notations used in our generic ILP formulation. 
Category Notation Description 

l 
The number of layers l in a 3D IC. 
The external world is viewed as layer 0. 

p Cut p is the cut between layers p  1 and p 
G Input design is a hypergraph G = (V, E) 
vi Vertex vi  V is a logic block or an I/O terminal. 

General 

ei Hyperedge ei = {vi1,vi2,…, viq}  E is a q-pin net. 

Layer  
assignment 

xi,j 

xi,j is a 0-1 integer variable associated with vertex 
vi. xi,j = 1 if vi is assigned to layer j; otherwise, xi,j = 0. 
For an I/O terminal vi, xi,0 = 1, while for a logic 
block vj, xj,0 = 0. 

TSV yi,p 
yi,p is a 0-1 integer variable associated with net ei. 
yi,p = 1 if net ei introduces a TSV to cut p, between 
layers p  1 and p, 1  p  l; otherwise, yi,p = 0. 

si 
si is the area of vertex vi. 
si = 0 if vi is an I/O terminal. 

t t is the area of a single TSV. 
A A = viV si, total area of all vertices. 

  
 is the perfectly balanced area for each layer,  = 
A/l. 

Area 

  

 is the -bounded ratio of the deviation from the 
perfectly balanced area, 0 <  < 1. 
The -bounded area for each layer is subject to the 
range [(1  ), (1 + )]. 

 

where yi,p is a 0-1 variable computed by the contribution from a q-pin net ei = {vi1,vi2, . . . , 
viq}  E to cut p, and the computation can be fulfilled by applying logical operations as 
follows, 
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yi,p = [(xi1,1 OR xi1,2 OR . . . OR xi1,p-1) OR 
(xi2,1 OR xi2,2 OR . . . OR xi2,p-1) OR . . . OR 
(xiq,1 OR xiq,2 OR . . . OR xiq,p-1)] AND 
[(xi1,p OR xi1,p+1 OR . . . OR xi1,1) OR 
(xi2,p OR xi2,p+1 OR . . . OR xi2,1)) OR . . . OR  
(xiq,p OR xiq,p+1 OR . . . OR xiq,1)], 1  p  l. (2) 
 

Eq. (2) means yi,p = 1 if some logic blocks of net ei are located below cut p and some 
are above. Moreover, Table 2 details how to convert logical expressions [10], e.g., logi-
cal AND and logical OR, into mathematical constraints. 

Therefore, combining Tables 1 and 2 together allows us to successfully formulate 
the 3D IC partitioning problem as the following ILP: 

 
  minimize  eiE p=1..l yi,p  
  subject to  j=0..l xi,j = 1, vi  V; 
       (1  )  viV si xi,j + teiE yi,j  (1 + ), 1  j  l. 

 
Some detailed equations and formulations in Tables 1 and 2 are not shown here for 

simplicity. (Note that they should be fed into the ILP solver for the completeness of the 
formulation.) It can be seen that our formulation is very flexible because the objective 
function, TSV usage, and the main constraint, area balance, can be mutually exchanged. 
 

Table 2. Logical expressions vs. mathematical constraints. 
Logical Expression Mathematical Constraints 
C = A AND B C  A 

C  B 
C  A + B  1 

C = A OR B C  A 
C  B 
C  A + B 

 
3.4 ILP Reduction 

 
The state-of-the-art ILP solvers, e.g., LINGO and CPLEX, are capable of finding 

optimal/feasible solutions according to our formulation. However, the runtime of ILP 
solvers might be lengthy. For a circuit with hundreds of logic blocks, the runtime can be 
unreasonable due to numerous constraints and variables. This study proposes two reduc-
tion techniques to speed up ILP. 

First of all, we solve ILP iteratively to speed up the convergence. Fig. 5 lists the it-
erative ILP algorithm. For each iteration, the UNBALANCED-2LAYER-ILP function parti-
tions the circuit into two layers. After partitioning is finished, the logic blocks on the top 
layer (i.e., layer two) are fixed. Thus, in line 4 of ITERATIVE-ILP, these blocks are ex-
cluded from the future iteration by taking the difference of G and the set of vertices 
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placed on the top layer. Please notice that when l = 1, only one layer is left implying that 
the un-fixed blocks will be placed in layer one. Hence, no more partitioning is needed. 

 

ITERATIVE-ILP(G, l) 
1.  m = 0; // #TSVs 
2.  while l > 0 do 
3.   m = m + UNBALANCED-2LAYER-ILP(G, l); 
4.   G = G  {vi|xi,2 = 1}; 
5.   l = l  1; 
Fig. 5. The iterative ILP algorithm. UNBALANCED-2LAYER-ILP means 2-way partitioning with an 

unbalanced area constraint. 
 

Except the area constraint, the UNBALANCED-2LAYER-ILP function is basically the 
same with the generic ILP formulation mentioned in section 3.3. In the top layer, the 
constraints still remain while they are modified for dealing with the unbalance area in the 
bottom layer. Since the bottom layer is actually mapping to layers 1, …, l  1, the area at 
bottom layer should be l  1 times of that at the top layer. As the result, the UNBAL-

ANCED-2LAYER-ILP can be formulated as follows. 
 

  minimize  eiE p=1,2 yi,p  
  subject to  j=0..2 xi,j = 1, vi  V; 
       (1  )  viV si xi,2 + teiE yi,2  (1 + );  
       (1  )(l  1)  viV si xi,1 + teiE yi,1  (1 + )(l  1). 

 
After termination, the number of TSVs and the layer of each logic block are ob-

tained. Since UNBALANCED-2LAYER-ILP always returns a partial solution that is either 
optimal or feasible, the summation of these partial solutions is always feasible. In fact, 
our experimental results will show that iterative ILP trades a reasonable number of TSVs 
with a dramatic runtime reduction. 

Second, logic blocks are pre-clustered to further reduce variables used in ILP. We 
use FirstChoice proposed in [14] as our pre-clustering method. FirstChoice clusters logic 
blocks based on the strength of connectivity by net weights, which is the inverse of the 
number of blocks connected by this net minus one. FirstChoice performs coarsening in 
descending order of net weights. The area of this cluster is the summation of logic blocks 
belonging to it. For area balancing, we set an area upper bound for a cluster. In addition, 
I/O terminals will not be coarsened. Before applying ILP, logic blocks with strong con-
nections are clustered together. Then, the iterative-ILP algorithm described above is ap-
plied. During ILP, the logic blocks in the same cluster are regarded as one vertex.  

4. AN EXTENSION TO MSV DESIGN 

For demonstrating the flexibility of our generic ILP, this study extends ILP formula-
tion proposed in section 3 to MSV design. For each block, several timing safe supply 
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voltages are given. One and only one timing safe voltage will be chosen as the operating 
voltage. The power constraint is added to minimize the overall power consumption. The 
extension is detailed in the following subsections. 

 
4.1 Problem Definition 

 
For MSV design, the targets of ILP include minimizing TSV usage, footprint, or 

power. Hence, the extended ILP problem with MSVs can be defined as follows: 
 

Problem: l-layer 3D IC Partitioning with MSVs 
Given the number of layers l in a 3D IC and a design with logic blocks, I/O terminals, the 
connectivity between them, and the timing safe supply voltages of each logic block, find 
l partitions with the minimum TSV usage, subject to area-balance as well as power-bal-
ance. 

 
Please note that due to the flexibility of the ILP formulation, the objective and the 

constraints can be exchanged (i.e., minimize power consumption subject to the limit of 
TSV usage). 

 
4.2 Extended ILP Formulation for MSV Design 

 
Table 3 presents the notations for extended ILP formulation with MSVs and their 

constraints. Compared to Table 1, which lists the variables used in generic ILP formula-
tion, Table 3 includes notations for voltage assignment and power constraints. The for-
mulation of extended ILP with MSVs is presented as follows, 

 

  minimize  eiE p=1..l yi,p  
  subject to  j=0..l xi,j = 1, j=1..r zi,j = 1,vi  V; 
       (1  )  viV si xi,j + teiE yi,j  (1 + ), 1  j  l. 
       (1  )  viV cixi,j(k=1..r zi,kUk

2) + weiE yi,j  (1 + ), 1  j  l. 

 

Compared to the formulation in section 3.3, a constraint related to power (dynamic 
power) is added. If the power density of a layer is much higher than others, the heat gen-
erated from this layer will flow to the other layers and affect them. To avoid this situation, 
the constraint of balancing power for each layer is considered. Please note that  here is 
not a constant (see Table 3). Moreover, the power is consumed not only by logic blocks 
but also by TSVs. The power dissipation of a logic block is directly proportional to the 
capacitance of this block, and quadratically proportional to its operating voltage. The 
power consumed by a TSV w is set as a constant for simplicity. Each used supply voltage 
is modeled as an I/O terminal (placed in layer 0); the logic blocks operating at the same 
voltage level are also viewed as being connected by a net–the common supply voltage. 
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Table 3. Notations used in our extended ILP formulation for MSV design. 
Category Notation Description 

L The number of layers l in a 3D IC. 
The external world is viewed as layer 0. 

p Cut p is the cut between layers p  1 and p 
G Input design is a hypergraph G = (V, E) 

vi 
Vertex vi  V is a logic block or an I/O terminal. 
A supply voltage is viewed as an I/O terminal for MSV design.

General 

ei 

Hyperedge ei = {vi1,vi2,…, viq}  E is a q-pin net. 
The set of logic blocks operating at the same voltage Uj 
forms a hyperedge. 
Uj  {vi : zij = 1} 

Layer  
assignment 

xi,j 

xi,j is a 0-1 integer variable associated with vertex vi. xi,j = 1 
if vi is assigned to layer j; otherwise, xi,j = 0. 
For an I/O terminal vi, xi,0 = 1, while for a logic block vj, xj,0 
= 0. 

TSV yi,p 
yi,p is a 0-1 integer variable associated with net ei. yi,p = 1 if 
net ei introduces a TSV to cut p, between layers p-1 and p, 
1  p  l; otherwise, yi,p = 0. 

si 
si is the area of vertex vi. 
si = 0 if vi is an I/O terminal. 

t t is the area of a single TSV. 
A A = viV si, total area of all vertices. 
  is the perfectly balanced area for each layer,  = A/l. Area 

 

 is the -bounded ratio of the deviation from the perfectly 
balanced area and power, 0 <  < 1. 
The -bounded area for each layer is subject to the range 
[(1  ), (1+)], while the -bounded power for each 
layer is subject to the range [(1  ), (1+)]. 

Voltage 
assignment 

zi,j 

zi,j is a 0-1 integer variable associated with vertex vi. zi,j = 1 
if vi is assigned to voltage Uj; otherwise, zi,j = 0. For an I/O 
terminal vi, zi,j = 0. For a logic block, a subset of timing safe 
supply voltages from U={Uj, j = 1..r} is given. 

 j=1..rzi,jUj The operating voltage of logic block vi. 
ci The capacitance of logic block vi. 
w w is the power of a single TSV. 
P P = viV ci(k=1..r zi,kUk

2) + weiEp=1..l yi,p, total power. 

Pj 
Pj = viV cixi,j(k=1..r zi,kUk

2) + weiE yi,j, total power for layer 
j. For simplicity, the TSV power for cut j is included at layer j. 

Power 

  is the perfectly balanced logic power for each layer,  
 = P/l = (viV ci(k=1..r zi,kUk

2) + weiEp=1..l yi,p)/l. 

 
4.3 ILP Reduction for MSV Design 
 

For MSV design, iterative ILP is also used to speed up. By adding the power con-
straints, the formulation of UNBALANCED-2LAYER-ILP is changed as follows, 
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  minimize  eiE p=1,2 yi,p  
  subject to  j=0..2 xi,j = 1, j=1..r zi,j = 1,vi  V; 
       (1  )  viV si xi,2 + teiE yi,2  (1+),  
       (1  )(l  1)  viV si xi,1 + teiE yi,1  (1+)(l  1); 
       (1  )  viV cixi,2(k=1..r zi,kUk

2) + weiE yi,2  (1 + ), 
       (1  )(l  1)  viV cixi,1(k=1..r zi,kUk

2) + weiE yi,1  (1 + )(l 1).  

 
After termination, the number of TSVs, the layer of each logic block, and the oper-

ating voltage of each block assigned are obtained. We also apply pre-clustering to reduce 
variables in ILP for MSV design. During ILP, the logic blocks in the same cluster are 
regarded as one vertex. The area of this cluster is the summation of logic blocks belong-
ing to it, while the set of timing safe supply voltages of this cluster is the intersection of 
those of the logic blocks. 

5. EXPERIMENTAL RESULTS 

This study has conducted experiments on the GSRC floorplanning benchmarks [11, 
16]. This set of testcases can be used for both the architectural and physical levels. The 
statistics of the testcases are listed in Table 4. In addition, the postfix attached in each 
testcase name indicates the number of logic blocks, for example, n10 has 10 logic blocks 
and 69 I/O terminals. The  value is set based on hMetis [8] and enlarged as the number 
of logic blocks in a testcase increasing [12]. For MSV design, the set of available supply 
voltages is {1.0, 1.1, 1.2, 1.3, 1.4, 1.5}; we set timing safe voltages for each block the 
same as [16] in each testcase. The results are obtained based on the IBM ILOG CPLEX 
Optimizer [13]. 

Table 4. Statistics of the testcases. 
 (%) testcase #vertices #hyperegdes l

hMetis [12] Ours 
n10 79 118 2 2.0 2.0 
n30 242 349 3 5.5 4.0 
n50 259 485 4 9.0 6.0 

n100 434 885 5 9.5 15.0 
n200 764 1585 6 NA 18.0 
n300 869 1893 7 NA 20.0 

 

To show the effectiveness of the pre-clustering technique, greedy pre-clustering is 
provided as the baseline. For each cluster, greedy pre-clustering iteratively adds the ver-
tex with the least number of pins outside the cluster. When the current cluster is saturated, 
meaning the vertices inside it reach the pre-specified bound, the next cluster will be cho-
sen. Greedy pre-clustering terminates when the number of vertices becomes manageable. 
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5.1 Generic ILP vs. Iterative ILP 
 

Table 5 summarizes the results of the generic ILP and iterative ILP. The second and 
third columns present the number of TSVs and runtime of the generic ILP formulation. 
The rest of columns list the number of TSVs and runtime of the iterative ILP formulation 
without pre-clustering, iterative ILP formulation with greedy pre-clustering and iterative 
ILP formulation with FirstChoice pre-clustering. 

 

Table 5. Results on GSRC benchmark with single voltage.  
Iterative ILP 

Generic ILP 
w/o pre-clustering 

w/ greedy 
pre-clustering 

w/ FirstChoice 
pre-clustering 

test-
case 

#TSVs runtime (sec) #TSVs runtime (sec) #TSVs runtime (sec) #TSVs runtime (sec) 
n10 113 0.10 132 0.36
n30 481 19.41 539 2.21
n50 798*** 4000.00 726 45.69

  

n100 1807*** 10000.00 1333 129.90 1437 68.51 1268 15.80 
n200 NA* NA* 3011 4523.02 3401 1804.39 2857 2019.33 
n300 NA* NA* 3711 8210.66 4320 5862.55 3346 4090.65 

Average 1.000** 1.000** 1.037** 0.010** -- -- -- -- 
* NA represents the ILP formulation is terminated by CPLEX. 
** The average of the first three cases. 
*** This is a feasible solution instead of an optimal solution. Timeout is set as the runtime, respectively. 
 

It can be seen that the iterative ILP improves the runtime dramatically. On average, 
our iterative ILP speeds up generic ILP by 100 times while suffering only 3.7% penalty 
on TSVs for the first three cases. For the bigger cases, n100, n200 and n300, iterative ILP 
with two different pre-clustering techniques is also performed. Greedy pre-clustering 
trades 14% more #TSVs with a 1.67X speedup; FirstChoice pre-clusterung even saves 
7% #TSVs with a 2X speedup. It implies that with a sophisticated pre-clustering method, 
iterative ILP can perform very well. FirstChoice pre-clustering greatly reduces the vari-
ables used in ILP, so the ILP can converge faster and probably find better solutions com-
pared with generic ILP. For example, generic ILP just generates a feasible solution for 
n100, while iterative ILP with FirstChoice pre-clustering obtains a better feasible solu-
tion in a short runtime. As a result, it can be concluded that this iterative ILP not only 
improves runtime of generic ILP but also provides reasonably good solutions. 
 
5.2 ILP with MSVs 

 
Table 6 summarizes the results of the generic ILP and iterative ILP with MSVs. It 

can be seen that iterative ILP achieves a 7X speedup with 0.3% TSV overhead, which 
also indicates that a huge benefit in runtime comes along with small TSV overhead. For 
testcases from n100 to n300, iterative ILP with FirstChoice pre-clustering not only runs 
23% faster than generic ILP but also saves 3% #TSVs, while iterative ILP with greedy 
pre-clustering uses average 9% more TSVs. 
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Table 6. Results on GSRC benchmark with MSVs. 
Iterative ILP 

Generic ILP 
w/o pre-clustering

w/ greedy 
pre-clustering 

w/ FirstChoice 
pre-clustering 

test-
case 

#TSVs runtime (sec) #TSVs runtime (sec) #TSVs runtime (sec) #TSVs runtime (sec) 

n10 124 2.60 135 2.28
n30 497 2639.00 545 27.54
n50 833 4000.00 778 902.00

  

n100 NA* NA* 1344 2399.95 1450 1846.70 1571 1815.59 
n200 NA* NA* 3231 4999.83 3493 4009.57 3066 4013.70 
n300 NA* NA* 4051 7799.61 4482 6632.15 3763 6508.97 

Average 1.000** 1.000** 1.003** 0.140** -- -- -- -- 
* NA represents the ILP formulation is terminated by CPLEX. 
** The average of the first three cases. 

Table 7. Results of area and power. (Generic ILP vs. Iterative-ILP w/o pre-clustering). 
Single voltage MSV 

Area* Area* Power** 
test-
case 

Generic ILP Iterative ILP Generic ILP Iterative ILP Generic ILP Iterative ILP 
n10 1.01 1.01 1.01 1.01 0.72 0.85 
n30 1.03 1.03 1.03 1.03 0.69 0.83 
n50 1.04 1.06 1.05 1.05 0.71 0.80 

n100 1.10 1.11 -- 1.12 -- 0.75 
n200 -- 1.37 -- 1.39 -- 0.82 
n300 -- 1.20 -- 1.19 -- 0.76 

* Area=footprint_area/A/l. 
** Power=P/ the power dissipation if all logic blocks are using the highest timing safe voltage as operating voltage. 
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Fig. 6. Comparisons of (a) #TSVs and (b) runtime between iterative ILP (without pre-clustering) 

with and without MSVs. 

Fig. 6 illustrates the comparison between the number of TSVs (see Fig. 6 (a)) and 
runtime (see Fig. 6 (b)) of iterative ILP (the one without pre-clustering) with and without 
MSVs, respectively. With MSVs, the number of TSVs used for supplying different volt-
ages must be considered. Thus, #TSVs of iterative ILP with MSVs is naturally more than 
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that without MSVs. Experimental results show that there is nearly 6% more TSVs used 
in iterative ILP with MSVs. Fig. 6 (b) demonstrates the runtime of these two ILPs. Since 
the variables of voltage assignment constraints of power balance are deliberated, the 
complexity of ILP is increased, resulting in slower convergence. The runtime overhead 
of iterative ILP with MSVs is 25%, compared to iterative ILP. However, considering that 
the runtime of iterative ILP is much faster than that of generic ILP, this runtime penalty 
is relatively tolerable. 

Table 7 shows the area and power results of generic ILP as well as iterative ILP 
without pre-clustering. For each testcase, the area is the ratio of footprint area over A/l, 
while the power represents the ratio of total power dissipation P over the power dissipa-
tion if all logic blocks are using the highest timing safe voltage as operating voltage. 
With MSV design, the power saving is 20% on average. Although iterative ILP does not 
balance area very well, the results are still acceptable. The footprint area overhead of 
n200 is not within the  ratio is because that the iterative ILP may lose global informa-
tion during iterations.  

6. CONCLUSION 

In this paper, we derive integer linear programs for 3D IC partitioning problems that 
minimize one of the three objectives: the overall TSV usage, the footprint, and the power. 
Extending the generic ILP formulation to support designs with MSVs demonstrates that 
the proposed approach is very flexible and can easily extend to the partitioning problem 
with variant objectives and constraints. Last but not least, this study speeds up the ILP 
formulation by iteratively solving it and pre-clustering. Experimental results show that 
the speed-up approach reduces runtime substantially while maintains a reasonably good 
solution quality. 
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