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Abstract In this paper, a new effective approach—
backstepping with Ge–Yao–Chen (GYC) partial re-
gion stability theory (called BGYC in this article)
is proposed to applied to adaptive synchronization.
Backstepping design is a recursive procedure that
combines the choice of a Lyapunov function with the
design of a controller, and it presents a systematic
procedure for selecting a proper controller in chaos
synchronization. We further combine the systematic
backstepping design and GYC partial region stability
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theory in this article, Lyapunov function can be chosen
as a simple linear homogeneous function of states, and
the controllers and the update laws of parameters shall
be much simpler. Further, it also introduces less sim-
ulation error—the numerical simulation results show
that the states errors and parametric errors approach
to zero much more exactly and efficiently, which are
compared with the original one. Two cases are pre-
sented in the simulation results to show the effective-
ness and feasibility of our new strategy.

Keywords BGYC · Synchronization · Chaotic
system

1 Introduction

A synchronized mechanism that enables a system to
maintain a desired dynamical behavior (the goal or
target) even when intrinsically chaotic have many ap-
plications ranging from biology to engineering [1–4].
Thus, it is of considerable interest and potential util-
ity, to devise control techniques capable of achieving
the desired type of behavior in nonlinear and chaotic
systems. The control of chaos and bifurcation is con-
cerned with using some designed control input(s) to
modify the characteristics of a parameterized nonlin-
ear system.

The control can be static or dynamic feedback con-
trol, or open-loop control. The objective can be the
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stabilization and reduction of the amplitude of bifur-
cation orbital solutions, optimization of a performance
index near bifurcation, reshaping of the bifurcation di-
agram, or a combination of these. Many approaches
and techniques have been proposed for the synchro-
nization of chaos such as the OGY method [5], bang-
bang control [6], optimal control [7, 8], active con-
trol [9–11], feedback linearization [12–20], differen-
tial geometric method [21], adaptive control [22–34],
H∞ control method [35–42], and sliding mode control
(SMC) [25, 43–45].

A pragmatical asymptotically stability theorem is
proposed to achieve adaptive synchronization in this
paper. In current scheme of adaptive synchronization,
the traditional Lyapunov stability theorem and Bar-
balat lemma are used to prove that the error vector
approaches zero as time approaches infinity, but the
question as to why those estimated parameters also
approach the uncertain values has no answer [46–48].
In this article, the pragmatical asymptotically stabil-
ity theorem and an assumption of equal probability for
ergodic initial conditions [49, 50] are used to prove
strictly that those estimated parameters approach the
uncertain values.

In this paper, a new adaptive synchronizing strat-
egy—backstepping with the Ge, Yao, and Chen par-
tial region stability theory [51, 52] (which is called
BGYC) is proposed. Via using this effective approach,
the control Lyapunov function can be designed as a
simple linear homogeneous function of states, the cor-
responding controllers and parametric update laws are
much simpler, and introduce less simulation error.

The layout of the rest of this paper is as follows.
In Sect. 2, the adaptive synchronization with BGYC
scheme is presented. In Sect. 3, the simulation results
are given. In Sect. 4, the traditional backstepping con-
trol and the new approach are presented for compari-
son. In Sect. 5, conclusions are given.

2 Adaptive synchronization scheme

There are two identical nonlinear dynamical systems,
and the master system controls the slave system. The
master system is given by

ẋ = Ax + f (x,B) (2.1)

where x = [x1, x2, . . . , xn]T ∈ Rn denotes a state vec-
tor, A is an n×n uncertain constant coefficient matrix,

f is a nonlinear vector function, and B is a vector of
uncertain constant coefficients in f .

The slave system is given by

ẏ = Ây + f (y, B̂) + u(t) (2.2)

where y = [y1, y2, . . . , yn]T ∈ Rn denotes a state vec-
tor, Â is an n × n estimated coefficient matrix, B̂ is
a vector of estimated coefficients in f , and u(t) =
[u1(t), u2(t), . . . , un(t)]T ∈ Rn is a control input vec-
tor.

Our goal is to design a controller u(t) via BGYC so
that the state vector of the chaotic system (2.1) asymp-
totically approaches the state vector of the master sys-
tem (2.2).

The chaos synchronization can be accomplished
in the sense that the limit of the error vector e(t) =
[e1, e2, . . . , en]T approaches zero:

lim
t→∞ e = 0 (2.3)

where

e = x − y + K (2.4)

where K is a positive constant by which the error
dynamics occurs in the first quadrant of state space
of e [23].

From Eq. (2.4) we have

ė = ẋ − ẏ (2.5)

ė = Ax − Ây + f (x,B) − f (y, B̂) − u(t) (2.6)

A Lyapnuov function V (e, Ã, B̃) is chosen as a
positive definite function in the first quadrant of state
space of e, Ã, B̃ .

We have

V (e, Ã, B̃) = e + Ã + B̃ (2.7)

where Ã = A − Â, B̃ = B − B̂ , Ã and B̃ are two col-
umn matrices whose elements are all the elements of
matrix Â and of matrix B̂ , respectively.

Its derivative along any solution of the differential
equation system consisting of Eq. (2.6) and update pa-
rameter differential equations for Ã and B̃ is

V̇ (e, Ã, B̃) = [
Ax − Ây + Bf (x) − B̂f (y) − u(t)

]

+ ˙̃
A + ˙̃

B (2.8)
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Fig. 1 Projections of phase
portrait of chaotic
Chen–Lee system with
a1 = 5, b1 = −10 and
c1 = −3.8

where u(t), ˙̃
A, and ˙̃

B are chosen so that V̇ = Ce,
C is a diagonal negative definite matrix, and V̇ is
a negative semidefinite function of e and param-
eter differences Ã and B̃ . In the current scheme
of adaptive control of chaotic motion [18–20], the
traditional Lyapunov stability theorem and Babalat
lemma are used to prove that the error vector ap-
proaches zero, as time approaches infinity. But the
question, why the estimated or given parameters also
approach to the uncertain or goal parameters, remains
no answer. By the pragmatical asymptotical stabil-
ity theorem [21, 22], the question can be strictly an-
swered.

3 Adaptive synchronization of chaotic systems via
BGYC

In this section, Chen–Lee and Newton–Leipnik sys-
tems are illustrated for examples to show the effective-
ness and flexibility of BGYC in simulation results. In
Case I, synchronization of the master and slave Chen–
Lee systems is achieved via the controllers designed
by BGYC. In Case II, the slave Newton–Leipink sys-
tem is chosen to trace the master Newton–Leipink sys-
tem through BGYC design.

Case I Adaptive synchronization of master and slave
Chen–Lee systems Chen and Lee reported a new

chaotic system [16] in 2004, which is now called
the Chen–Lee system [17]. The master and slave
systems are described by the following nonlinear
differential equations, which are denoted as mas-
ter Chen–Lee system (3.1) and slave Chen–Lee sys-
tem (3.2).

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = −x2x3 + a1x1

ẋ2 = x1x3 + b1x2

ẋ3 = x1x2/3 + c1x3

(3.1)

⎧
⎪⎪⎨

⎪⎪⎩

ẏ1 = −y2y3 + â1y1 + u1

ẏ2 = y1y3 + b̂1y2 + u2

ẏ3 = y1y2/3 + ĉ1y3 + u3

(3.2)

where x1, x2, x3, y1, y2, and y3 are state variables,
and a1, b1, and c1 are three system parameters, â1,
b̂1, and ĉ1 are estimated parameters. u1, u2, and u3

are controllers, which shall be designed via BGYC to
synchronize the slave Lorenz system to master one.
When (a1, b1, c1) = (5,−10,−3.8), initial conditions
are chosen as (x1, x2, x3) = (0.2,0.2,0.2) systems
(3.1) are chaotic attractors, which are demonstrated
in Fig. 1. In this case, the initial conditions of the slave
system (3.2) are chosen as (y1, y2, y3) = (20,10,15)

and the estimated parameters are (â1, b̂1, ĉ1) = (1,

−20,−5.2).
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The error can be described as

e = [
e1(t) e2(t) e3(t)

]

= [x1 − y1 + K x2 − y2 + K x3 − y3 + K]
> 0 (3.3)

where K = 100, the addition of K = 100 makes the
error dynamics always happen in the first quadrant.

From Eq. (3.3), we have the following error dynam-
ics:

ė1 = −x2e3 − y3e2 + a1e1 + ã1y1

+ (x2 + y3)K − u1

ė2 = x1e3 + y3e1 + b1e2 + b̃1y2

− (x1 + y3)K − u2

ė3 = x1e2/3 + y2e1/3 + c1e3 + c̃1y3

− (
(x1 + y2)/3

)
K − u3

(3.4)

where ã1 = a1 − â1 > 0, b̃1 = b1 − b̂1 > 0 and c̃1 =
c1 − ĉ1 > 0 are the error of parameters, which are pos-
itive numbers.

Step 1 For the first equation of Eq. (3.6), we choose
the Lyapunov function as

V1 = e1 + ã1 (3.5)

Its time derivative is

V̇1 = ė1 + ˙̃a1

= −x2e3 − y3e2 + a1e1 + ã1y1

+ (x2 + y3 − a1)K − u1 + ˙̃a1 (3.6)

We assume e2 as the virtual controller, and choose
the update laws of parameters and controller u1 as
⎧
⎪⎨

⎪⎩

e2 = αe1 = 0 (α = 0)

˙̃a1 = −˙̂a1 = −y1ã1

u1 = −x2e3 + 2a1e1 + (x2 + y3 − a1)K

(3.7)

Then we can obtain

V̇1 = −a1e1 < 0 (3.8)

This means that e1 = 0 is asymptotically stable.
Step 2 For studying the (e1,w1) system:

According to e2 = αe1 = 0, we have

w1 = e2 − αe1 = e2 (3.9)

then the (e1,w2) system (3.10) can be described as

follows:

ė1 = a1e1 + ã1y1

ẇ1 = x1e3 + y3e1 + b1w1 + b̃1y2 − u2

(3.10)

Choose the Lyapunov function as

V2 = V1 + w1 + b̃1 (3.11)

Its time derivative is

V̇2 = V̇1 + ẇ1 + ˙̃
b1

= V̇1 + x1e3 + y3e1 + b1w1 + b̃1y2

− (x1 + y3 + b1)K − u2 + ˙̃
b1 (3.12)

We assume e3 as the virtual controller, and choose

the update laws of parameters and controller u2 as
⎧
⎪⎨

⎪⎩

e3 = βe2 = 0
˙̃
b1 = − ˙̂

b1 = −b̃1y2

u2 = y3e1 − (x1 + y3 + b1)K

(3.13)

Then we can obtain

V̇2 = −a1e1 + 2b1w1 < 0, where b1 = −10 (3.14)

This means that e2 = 0 is asymptotically stable.

Step 3 For studying the (e1,w1,w2) system:

According to e3 = βe2 = 0, we have

w2 = e3 − βe2 = e3 (3.15)

then the (e1,w2) system (3.10) can be described as

follows:

ė1 = −a1e1 + ã1y1

ẇ1 = b1w1 + b̃1y2

ẇ2 = x1e2/3 + y2e1/3 + c1w2 + c̃1y3

− (
(x1 + y2)/3 + c1

)
K − u3

(3.16)

Choose the Lyapunov function as

V3 = V1 + V2 + w1 + c̃1 (3.17)

Its time derivative is

V̇3 = V̇1 + V̇2 + ẇ2 + ˙̃c1

= V̇1 + V̇2 + x1e2/3 + y2e1/3 + c1w2 + c̃1y3

− (
(x1 + y2)/3 + c1

)
K − u3 + ˙̃c1 (3.18)
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Fig. 2 Time histories of
errors for Case I

We choose the update laws of parameters and con-
troller u3 as

⎧
⎪⎨

⎪⎩

˙̃c1 = −˙̂c1 = −c̃1y3

u3 = x1e2/3 + y2e1/3

− (
(x1 + y2)/3 + c1

)
K

(3.19)

Then we can obtain

V̇3 = −a1e
2
1 + b1w

2
1 + c1w

2
2 < 0,

where a1 = 5, b1 = −10 and c1 = −3.8 (3.20)

This means that e3 = 0 is asymptotically stable.
The Lyapunov asymptotical stability theorem is not
satisfied here. We cannot obtain that the common
origin of error dynamics and parameter dynamics is
asymptotically stable. By the pragmatical asymptot-
ically stability theorem [49, 50], D is a 6-manifold,
n = 6, and the number of error state variables p = 3.
When e1 = e2 = e3 = 0 and â, b̂, ĉ take arbitrary val-
ues, V̇ = 0, so X is of 3 dimensions, m = n−p = 6−
3 = 3, m + 1 < n is satisfied. According to the prag-
matical asymptotically stability theorem, error vec-
tor e approaches zero and the estimated parameters
also approach the uncertain parameters. The equi-
librium point is pragmatically asymptotically stable.

Under the assumption of equal probability, it is actu-
ally asymptotically stable. The simulation results are
shown in Figs. 2 and 3.
However, our goal is to synchronize the slave system
(y1, y2, y3) to trace the master system (x1, x2, x3). As
a result, all we have to do is shift the simulation re-
sults from (y1 + K,y2 + K,y3 + K) to (y1, y2, y3),
where K is constant designed via BGYC.

Case II Adaptive synchronization of the master and
slave Newton–Leipink systems The master and slave
Newton–Leipnik system is described by

⎧
⎪⎨

⎪⎩

ẋ1 = −ax1 + x2 + 10x2x3

ẋ2 = −x1 − 0.4x2 + 5x1x3

ẋ3 = bx3 − 5x1x2

(3.21)

⎧
⎪⎨

⎪⎩

ẏ1 = −ây1 + y2 + 10y2y3 + u1

ẏ2 = −y1 − 0.4y2 + 5y1y3 + u2

ẏ3 = b̂y3 − 5y1y2 + u3

(3.22)

where a, b are positive parameters. The Newton–
Leipnik system in Eq. (3.21) is a chaotic system with
two strange attractors, which is shown in Fig. 4. For
the two system parameter a =0.4, b=0.175, and ini-
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Fig. 3 Time histories of
parametric errors for Case I

tial states (0.349,0,−0.160) and (20,10,15).

e = [
e1(t) e2(t) e3(t)

]

= [x1 − y1 + K x2 − y2 + K x3 − y3 + K] > 0

(3.23)

where K = 20, the addition of K = 20 makes the error
dynamics always happen in the first quadrant.

From Eq. (3.23), we have the following error dy-
namics:

ė1 = −ax1 + x2 + 10x2x3 + ây1 − y2 − 10y2y3 − u1

ė2 = −x1 − 0.4x2 + 5x1x3 + y1 + 0.4y2

− 5y1y3 − u2

ė3 = bx3 − 5x1x2 − b̂y3 + 5y1y2 − u3

(3.24)

Equation (3.24) can be rearranged as follows:

ė1 = −ae1 − ãy1 + e2 + 10x2e3 + 10y3e2

+ (a − 10x2 − 10y3 − 1)K − u1

ė2 = −e1 − 0.4e2 + 5x1e3 + 5y3e1

+ (1.4 − 5x1 − 5y3)K − u2

ė3 = be3 + b̃y3 − 5x1e2 − 5y2e1

+ (5x1 + 5y2 − b)K − u3

(3.25)

where ã = a − â and b̃ = b − b̂ are the error of param-
eters.

Step 1 For the first equation of Eq. (3.25), we choose
the Lyapunov function as

V1 = e1 + ã (3.26)

Its time derivative is

V̇1 = ė1 + ˙̃a
= (−ae1 − ãy1 + e2 + 10x2e3 + 10y3e2

+ (a − 10x2 − 10y3 − 1)K − u1
) + ˙̃a (3.27)

We assume e2 as the virtual controller, and choose
the update laws of parameters and controller u1 as

⎧
⎪⎨

⎪⎩

e2 = αe1 = 0 (α = 0)

˙̃a1 = −˙̂a1 = ãy1

u1 = 10x2e3 + (a − 10x2 − 10y3 − 1)K

(3.28)

Then we can obtain

V̇1 = −ae1 < 0 (3.29)

This means that e1 = 0 is asymptotically stable.
Step 2 For studying the (e1,w1) system:

According to e2 = αe1 = 0, we have

w1 = e2 − αe1 = e2 (3.30)
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Fig. 4 Projections of phase
portrait of chaotic
Newton–Leipink system
with a = 0.4, b = 0.175

then the (e1,w2) system (3.31) can be described as
follows:

ė1 = −ae1 − ãy1

ẇ1 = −e1 − 0.4w1 + 5x1e3 + 5y3e1

+ (1.4 − 5x1 − 5y3)K − u2

(3.31)

Choose the Lyapunov function as

V2 = V1 + w1 (3.32)

Its time derivative is

V̇2 = V̇1 + w1ẇ1

= V̇1 + −e1 − 0.4w1 + 5x1e3 + 5y3e1

+ (1.4 − 5x1 − 5y3)K − u2 (3.33)

We assume e3 as the virtual controller, and choose
the update laws of parameters and controller u2 as

{
e3 = βe2 = 0 (β = 0)

u2 = −e1 + 5y3e1 + (1.4 − 5x1 − 5y3)K
(3.34)

Then we can obtain

V̇2 = −ae1 − 0.4w1 < 0 (3.35)

This means that e2 = 0 is asymptotically stable.

Step 3 For studying the (e1,w1,w2) system:
According to e3 = βe2 = 0, we have

w2 = e3 − βe2 = e3 (3.36)

then the (e1,w2) system (3.37) can be described as
follows:

ė1 = −a1e1 − ãy1

ẇ1 = −0.4w1

ẇ2 = bw2 + b̃y3 − 5x1e2 − 5y2e1

+ (5x1 + 5y2 − b)K − u3

(3.37)

Choose the Lyapunov function as

V3 = V1 + V2 + w2 + b̃ (3.38)

Its time derivative is

V̇3 = V̇1 + V̇2 + ẇ2 + ˙̃
b

= V̇1 + V̇2 + (
bw2 + b̃y3 − 5x1e2 − 5y2e1

+ (5x1 + 5y2 − b)K − u3
) + ˙̃

b (3.39)

We choose the update laws of parameters and con-
troller u3 as
⎧
⎪⎨

⎪⎩

˙̃
b = − ˙̂

b = −b̃y3

u3 = (b + 1)w2 − 5x1e2 − 5y2e1

+ (5x1 + 5y2 − b)K

(3.40)
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Fig. 5 Time histories of
errors for Case II

Fig. 6 Time histories of
parametric errors for
Case II

Then we can obtain

V̇3 = −a1e1 − 0.4w1 − w2 < 0,

where a = 0.4 and b = 0.175 (3.41)

This means that e3 = 0 is asymptotically stable.

The Lyapunov asymptotical stability theorem is not
satisfied here. We cannot obtain that common origin of
error dynamics and parameter dynamics is asymptoti-
cally stable. By the pragmatical asymptotically stabil-

ity theorem [49, 50], D is a 5-manifold, n = 5 and the
number of error state variables p = 3. When e1 = e2 =
e3 = 0 and â, b̂, ĉ take arbitrary values, V̇ = 0, so X is
of 3 dimensions, m = n − p = 5 − 3 = 2, m + 1 < n

is satisfied. According to the pragmatical asymptoti-
cally stability theorem, error vector e approaches zero
and the estimated parameters also approach the un-
certain parameters. The equilibrium point is pragmat-
ically asymptotically stable. Under the assumption of
equal probability, it is actually asymptotically stable.
The simulation results are shown in Figs. 5, 6, and 7.
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Fig. 7 Time histories of
parametric errors for
Case II-2

Again, our goal is to synchronize the slave system
(y1, y2, y3) to trace the master system (x1, x2, x3). As
a result, all we have to do is shift the simulation results
from (y1 + K,y2 + K,y3 + K) to (y1, y2, y3), where
K is constant designed via BGYC.

4 Comparison

In this section, the simulation results of adaptive
synchronizations with the traditional backstepping
method for the two cases discussed in Sect. 3 are fur-
ther given to demonstrate the effectiveness and the
power of BGYC. The simulation results are investi-
gated by the time history of errors and the time his-
tory of parametric errors which are shown in the fig-
ures.

In Case I, the controllers and update laws designed
via the traditional method can be concluded as fol-
lows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 = −x2e3 + 2a1e1

u2 = y3e1

u3 = x1e2/3 + y2e1/3

˙̃a1 = −˙̂a1 = −y1e1

˙̃
b1 = − ˙̂

b1 = −y2w1

˙̃c1 = −˙̂c1 = −y3w2

(4.1)

then, through simulation via the MATLAB/Simulink,
we have the simulation results of time history of the
errors and time history of parametric errors which are
given in Figs. 8 and 9. The red dash lines refer to the
simulation results of BGYC and the blue lines present
the simulation results of the traditional one. It is ob-
vious that the performance of adaptive synchroniza-
tion is hugely raised up, especially in the parameters
adapting, which are reaching the goal of parameters in
0.5 sec.

In Case II, the controllers and update laws de-
signed via traditional method can be derived as fol-
lows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃a = −˙̂a = y1e1 + ãe1

˙̃
b = − ˙̂

b = −y3w2 + b̃w2

u1 = 10x2e3 + ã2

u2 = −e1 + 5y3e1

u3 = (b + 1)w2 − 5x1e2 − 5y2e1 + b̃2

(4.2)

the simulation results of time history of errors and the
time history of parametric errors, which are given in
Figs. 10 and 11. The errors achieve the original points
in 20 s via BGYC and in 50 s via the traditional one.
On the other hand, the parametric errors achieve the
original points within 0.4 s via BGYC and in 60 s
via the traditional one. The efficiency of adaptive syn-
chronization is truly increasing through the BGYC de-
sign.
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Fig. 8 Comparison of
errors in Case I

Fig. 9 Comparison of
parametric errors in Case I

Through the comparison of figures in simulation re-
sults, our new approach—backstepping with the GYC
partial region stability theory (BGYC) is demonstrated
as an effective and powerful tool. It is not only increas-
ing the converging speed to our goal enormously, but
also having no complicated controller and update laws
of parameters.

5 Conclusions

In this paper, a new strategy—backstepping with the
GYC partial region stability theory (BGYC) is pro-
posed to achieve adaptive synchronization. There three
main contributions in this new approach: (1) the new
Lyapunov function can be designed as a simple linear
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Fig. 10 Comparison of
errors in Case II

Fig. 11 Comparison of
parametric errors in Case II

homogeneous function of states; (2) the update laws
of parameters shall be simpler; (3) the performance
of the adaptive synchronization is enormously raised
up, especially in parameters adapting. This study gives
another new strategy to achieve adaptive synchroniza-
tion, and it can also be applied to various kinds of ap-
plications about parameters adapting or synchroniza-
tion problems in advance.
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Appendix

For Case I: The error can be described as

e = [
e1(t) e2(t) e3(t)

]
. (A.1)
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From Eq. (A.1), we have the following error dynamics:

ė1 = −x2e3 − y3e2 + a1e1 + ã1y1 − u1

ė2 = x1e3 + y3e1 + b1e2 + b̃1y2 − u2

ė3 = x1e2/3 + y2e1/3 + c1e3 + c̃1y3 − u3

(A.2)

where ã1 = a1 − â1, b̃1 = b1 − b̂1 and c̃1 = c1 − ĉ1 are
the error of parameters.

Step 1 For the first equation of Eq. (A.2), we choose
the Lyapunov function as

V1 = 1

2

(
e2

1 + ã2
1

)
(A.3)

Its time derivative is

V̇1 = e1ė1 + ã ˙̃a
= e1(−x2e3 − y3e2 + a1e1 + ã1y1 − u1)

+ ã1 ˙̃a1 (A.4)

We assume e2 as the virtual controller, choose the
update laws of parameters and controller u1 as

⎧
⎪⎨

⎪⎩

e2 = αe1 = 0 (α = 0)

˙̃a1 = −˙̂a1 = −y1e1

u1 = −x2e3 + 2a1e1

(A.5)

Then we can obtain

V̇1 = −a1e
2
1 < 0 (A.6)

This means that e1 = 0 is asymptotically stable.
Step 2 For studying the (e1,w1) system:

According to e2 = αe1 = 0, we have

w1 = e2 − αe1 = e2 (A.7)

then the (e1,w2) system (A.8) can be described as
follows:

ė1 = −a1e1 + ã1y1

ẇ1 = x1e3 + y3e1 + b1w1 + b̃1y2 − u2

(A.8)

Choose the Lyapunov function as

V2 = V1 + 1

2

(
w2

1 + b̃2
1

)
(A.9)

Its time derivative is

V̇2 = V̇1 + w1ẇ1 + b̃1
˙̃
b1

= V̇1 + w1(x1e3 + y3e1 + b1w1 + b̃1y2 − u2)

+ b̃1
˙̃
b1 (A.10)

We assume e3 as the virtual controller, and choose
the update laws of parameters and controller u2 as

⎧
⎪⎨

⎪⎩

e3 = βe2 = 0
˙̃
b1 = − ˙̂

b1 = −y2w1

u2 = y3e1

(A.11)

Then we can obtain

V̇2 = −a1e
2
1 + b1w

2
1 < 0, where b1 = −10 (A.12)

This means that e2 = 0 is asymptotically stable.
Step 3 For studying the (e1,w1,w2) system:

According to e3 = βe2 = 0, we have

w2 = e3 − βe2 = e3 (A.13)

then (e1,w2) system (A.14) can be described as fol-
low:

ė1 = −a1e1 + ã1y1

ẇ1 = b1w1 + b̃1y2

ẇ2 = x1e2/3 + y2e1/3 + c1w2 + c̃1y3 − u3

(A.14)

Choose the Lyapunov function as

V3 = V1 + V2 + 1

2

(
w2

2 + c̃2
1

)
(A.15)

Its time derivative is

V̇3 = V̇1 + V̇2 + w2ẇ2 + c̃1 ˙̃c1

= V̇1 + V̇2 + w2(x1e2/3 + y2e1/3 + c1w2

+ c̃1y3 − u3) + c̃1 ˙̃c1 (A.16)

We choose the update laws of parameters and con-
troller u3 as
{ ˙̃c1 = −˙̂c1 = −y3w2

u3 = x1e2/3 + y2e1/3
(A.17)

Then we can obtain

V̇3 = −a1e
2
1 + b1w

2
1 + c1w

2
2 < 0,

where b1 = −10 and c1 = −3.8 (A.18)

This means that e3 = 0 is asymptotically stable.
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For Case II: The error can be described as

e = [
e1(t) e2(t) e3(t)

]
. (A.19)

From Eq. (A.19), we have the following error dynam-
ics:

ė1 = −ae1 − ãy1 + e2 + 10x2e3 + 10y3e2 − u1

ė2 = −e1 − 0.4e2 + 5x1e3 + 5y3e1 − u2

ė3 = be3 + b̃y3 − 5x1e2 − 5y2e1 − u3

(A.20)

where ã = a − â and b̃ = b − b̂ are the error of param-
eters.

Step 1 For the first equation of Eq. (A.20), we choose
the Lyapunov function as

V1 = 1

2

(
e2

1 + ã2) (A.21)

Its time derivative is

V̇1 = e1ė1 + ã ˙̃a
= e1(−ae1 − ãy1 + e2 + 10x2e3 + 10y3e2 − u1)

+ ã ˙̃a (A.22)

We assume e2 as the virtual controller, and choose
the update laws of parameters and controller u1 as
⎧
⎪⎨

⎪⎩

e2 = αe1 = 0 (α = 0)

˙̃a = −˙̂a = y1e1 + ãe1

u1 = 10x2e3 + ã2

(A.23)

Then we can obtain

V̇1 = −ae2
1 < 0 (A.24)

This means that e1 = 0 is asymptotically stable.
Step 2 For studying the (e1,w1) system:

According to e2 = αe1 = 0, we have

w1 = e2 − αe1 = e2 (A.25)

then the (e1,w2) system (A.26) can be described as
follows:

ė1 = −ae1 − ãy1 − ã2

ẇ1 = −e1 − 0.4e2 + 5x1e3 + 5y3e1 − u2

(A.26)

Choose the Lyapunov function as

V2 = V1 + 1

2
w2

1 (A.27)

Its time derivative is:

V̇2 = V̇1 + w1ẇ1

= V̇1 + w1(−e1 − 0.4w1 + 5x1e3 + 5y3e1 − u2)

(A.28)

We assume e3 as the virtual controller, and choose
the update laws of parameters and controller u2 as
{

e3 = βe2 = 0 (β = 0)

u2 = −e1 + 5y3e1
(A.29)

Then we can obtain

V̇2 = −ae2
1 − 0.4w2

1 < 0 (A.30)

This means that e2 = 0 is asymptotically stable.
Step 3 For studying the (e1,w1,w2) system:

According to e3 = βe2 = 0, we have

w2 = e3 − βe2 = e3 (A.31)

then the (e1,w2) system (A.32) can be described as
follows:

ė1 = −ae1 − ãy1 − ã2

ẇ1 = −0.4w1

ẇ2 = bw2 + b̃y3 − 5x1e2 − 5y2e1 − u3

(A.32)

Choose the Lyapunov function as

V3 = V1 + V2 + 1

2

(
w2

2 + b̃2) (A.33)

Its time derivative is

V̇3 = V̇1 + V̇2 + w2ẇ2 + b̃
˙̃
b

= V̇1 + V̇2 + w2(bw2 + b̃y3 − 5x1e2

− 5y2e1 − u3) + b̃
˙̃
b (A.34)

We choose the update laws of parameters and con-
troller u3 as
{ ˙̃

b = −˙̂c1 = −y3w2 + b̃w2

u3 = (b + 1)w2 − 5x1e2 − 5y2e1 + b̃2
(A.35)

Then we can obtain

V̇3 = −a1e
2
1 − 0.4w2

1 − w2
2 < 0,

where a = 0.4 and b = 0.175 (A.36)

This means that e3 = 0 is asymptotically stable.
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