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Abstract We study the synchronization of general
chaotic systems which satisfy the Lipschitz condition
only, with uncertain variable parameters by linear cou-
pling and pragmatical adaptive tracking. The uncertain
parameters of a system vary with time due to aging,
environment, and disturbances. A sufficient condition
is given for the asymptotical stability of common zero
solution of error dynamics and parameter update dy-
namics by the Ge–Yu–Chen pragmatical asymptotical
stability theorem based on equal probability assump-
tion. Numerical results are studied for a Lorenz sys-
tem and a quantum cellular neural network oscillator
to show the effectiveness of the proposed synchroniza-
tion strategy.
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1 Introduction

The idea of synchronizing two identical chaotic sys-
tems with different initial conditions was introduced
by Pecora and Carroll [1]. Since then, there has
been particular interest in chaotic synchronization,
due to many potential applications in secure com-
munication [2], and chemical and biological sys-
tems [3, 4]. There are many control methods to syn-
chronize chaotic systems, such as linear coupling, for
which the implementation is rather easy, adaptive con-
trol, impulsive control, sliding mode control, and other
methods [5]. Most of them are based on the exact
knowledge of the system structure and parameters.
But in practice, some or all of the system parameters
are uncertain. Moreover, these parameters may change
from time to time and become chaotic because of
chaotic disturbances. For uncertain parameters, a lot of
works have proceeded to solve this problem by adap-
tive synchronization [6–12]. In the current scheme of
adaptive synchronization [13–15], the traditional Lya-
punov stability theorem and Barbalat lemma are used
to prove that the error vector approaches zero as time
approaches infinity. But the question, why the esti-
mated parameters also approach the uncertain parame-
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ters, has remained without answer. From the (Ge–Yu–
Chen) GYC pragmatical asymptotical stability theo-
rem [16–18], the question is strictly answered. In this
paper, the synchronization of general chaotic systems
which satisfy the Lipschitz condition only, with un-
known parameters which are altered under some vari-
able disturbances, by linear coupling and GYC prag-
matical adaptive tracking, is studied first.

As numerical examples, the Lorenz system and
recently developed quantum cellular neural network
Quantum-CNN chaotic oscillator are used. GYC prag-
matical adaptive tracking is used to track variable
parameters in unidirectional coupled systems. Two
Lorenz systems and two Quantum-CNN systems by
GYC pragmatical adaptive tracking are given as sim-
ulation examples. Quantum-CNN oscillator equations
are derived from a Schrödinger equation taking into
account quantum dots cellular automata structures to
which in the last decade a wide interest has been de-
voted with particular attention toward quantum com-
puting [19–21].

This paper is organized as follows: In Sect. 2, by
the GYC pragmatical asymptotical stability theorem
and by using Lipschitz conditions, theoretical analysis
of synchronization is given. In Sect. 3 linear feedback
controllers are used. By GYC pragmatical adaptive
tracking, chaos synchronization of two Lorenz sys-
tems and of two Quantum-CNN oscillator systems are
achieved by numerical simulations. Conclusions are
given in Sect. 4. The GYC pragmatical asymptotical
stability theorem is presented in the Appendix. Intu-
itively, this theorem is different from the traditional
Lyapunov stability theorem in that when the points
in the neighborhood of zero solution initiating trajec-
tories not approaching zero with time are “not too
many,” i.e., in a subset of Lebesque measure 0 in math-
ematical language, [22] we can neglect their existence,
i.e., the zero solution is actually asymptotically stable.

2 Theoretical analyses

Consider a nonautonomous system in the form as fol-
lows:

ẋ = F
(
t, x,B(t)

)
(1)

The slave system is given by

ẏ = F
(
t, y, B̂(t)

) + K̂(x − y) (2)

where x ∈ Rn, y ∈ Rn, B ∈ RM is a vector of
uncertain variable coefficients in F, B̂ ∈ RM is a
vector of estimated coefficients in F , F : Ω1 ⊂
R+ × Rn × RM → Rn satisfies Lipschitz condi-
tions ‖F(t, x1,B) − F(t, x2,B)‖ ≤ G‖x1 − x2‖ and
‖F(t, x,B) − F(t, x, B̂)‖ ≤ G‖B − B̂‖ in Ω1 with
Lipschitz constant G. K̂ = diag[K̂1, . . . , K̂i , . . . , K̂n],
K̂i : Ω2 ⊂ R+ × Rn × Rn → R (i = 1, . . . , n) is the
estimated coupling strength entry. Ω1 and Ω2 are do-
mains containing the origin. For given (t0, x0, y0,B0)

∈ Ω1 ∩Ω2, the solutions [xT (t, t0, x0, y0,B0), y
T (t, t0,

x0, y0,B0)]T of Eqs. (1) and (2) exist for t ≥ t0.
If the synchronization can be accomplished when

t → ∞, the limit of the error vector e(t) = [e1, e2,

. . . , en]T must approach zero:

lim
t→∞ e = 0 (3)

where

e = x − y (4)

From Eqs. (1), (2), and (4), we have

ė = ẋ − ẏ (5)

ė = F(t, x,B) − F(t, x − e, B̂) − K̂(x − y) (6)

A Lyapnuov function V (e, B̃, G̃) is chosen as a posi-
tive definite function

V (e, B̃, G̃) = 1

2
eT e + 1

2
B̃T B̃ + 1

2
G̃2 (7)

where G̃ = G − Ĝ; Ĝ is the estimated Lipschitz con-
stant, B̃ = B − B̂ .

When M = n, the time derivative of V along any
solution of the differential equation system consisting
of Eq. (6) and update differential equations for B̃ and
G̃ is

V̇ (e, B̃, G̃)

= eT
[
F(t, x,B) − F(t, x − e,B) + F(t, x − e,B)

− F(t, x − e, B̂) − K̂e
] + B̃T ˙̃

B + G̃
˙̃
G

= eT
[
F(t, x,B) − F(t, x − e,B) − K̂e

] + G̃
˙̃
G

+ eT
[
F(t, x − e,B) − F(t, x − e, B̂)

] + B̃T ˙̃
B

(8)

where B̃ = B − B̂ .
By Lipschitz condition,

V̇ (e, B̃, G̃) ≤ G‖e‖2 − eT K̂e + G̃
˙̃
G

+ eT
[
F(t, x − e,B) − F(t, x − e, B̂)

]

+ B̃T ˙̃
B (9)
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Since

eT
[
F(t, x − e,B) − F(t, x − e, B̂)

]

≤ |e1| ·
∣∣F1(t, x − e,B) − F1(t, x − e, B̂)

∣∣ + · · ·
+ |en| ·

∣∣Fn(t, x − e,B) − Fn(t, x − e, B̂)
∣∣ (10)

by Schwarz inequality [23] and Lipschitz condition, it
is obtained that

|e1| ·
∣∣F1(t, x − e,B) − F1(t, x − e, B̂)

∣∣ + · · ·
+ |en| ·

∣∣Fn(t, x − e,B) − Fn(t, x − e, B̂)
∣∣

≤ ‖e‖ · ∥∥F(t, x − e,B) − F(t, x − e, B̂)
∥∥

≤ G‖e‖ · ‖B̃‖ (11)

Therefore,

V̇ (e, B̃, G̃)

≤ G‖e‖2 − eT K̂e + G̃
˙̃
G + G‖e‖ · ‖B̃‖

+ B̃1
˙̃
B1 + · · · + B̃n

˙̃
Bn (12)

Choose
˙̃
G = −eT e, K̂ = diag[Ĝ + G] (13)

and

˙̃
B1 = −GB̃1‖e‖/‖B̃‖, . . . , ˙̃

BN

= −GB̃n‖e‖/‖B̃‖ (14)

we have

B̃T ˙̃
B = −G

(
B̃2

1 + · · · + B̃2
N

)‖e‖/‖B̃‖
= −G‖B̃‖2 · ‖e‖/‖B̃‖
= −G‖e‖ · ‖B̃‖ (15)

Introducing Eqs. (15), (13) in and (12), we get

V̇ (e, B̃, G̃) ≤ G‖e‖2 − diag[Ĝ + G]‖e‖2 − G̃‖e‖2

+ G‖e‖ · ‖B̃‖ − G‖e‖ · ‖B̃‖
= −G‖e‖2 = −G

(
e2

1 + · · · + e2
n

)
(16)

V̇ is a negative semidefinite of e, B̃ , G̃, by the GYC
pragmatical asymptotical stability theorem (see the
Appendix), the solution e = 0, B̃ = 0, G̃ = 0 is asymp-
totically stable.

When M 
= n, on the right-hand side of Eq. (9), the
other terms remain unchanged, and we want only to
reduce last two terms

eT
[
F(t, x − e,B) − F(t, x − e, B̂)

] + B̃T ˙̃
B (17)

When M > n, we put

eT = eT = [e1, . . . , en, en+1, . . . , eM ]T (18)

where en+1 = en+2 = · · · = eM = 0. The first term of
Eq. (17) becomes

eT
[
F(t, x − e,B) − F(t, x − e, B̂)

]

≤ |e1| ·
∣∣F1(t, x − e,B) − F1(t, x − e, B̂)

∣∣

+ · · · + |en| ·
∣∣Fn(t, x − e,B) − Fn(t, x − e, B̂)

∣∣

+ |en+1| ·
∣∣Fn+1(t, x − e,B)

− Fn+1(t, x − e, B̂)
∣∣ + · · ·

+ |eM | · ∣∣FM(t, x − e,B)

− FM(t, x − e, B̂)
∣∣

≤ G‖eM‖ · ‖B̃‖ (19)

In Eq. (19), the last term is obtained by Schwarz in-
equality. Similarly, we choose

˙̃
B1 = −GB̃1‖e‖/‖B̃‖, . . . , ˙̃

BM

= −GB̃M‖e‖/‖B̃‖ (20)

Then

B̃T ˙̃
B = −G

(
B̃2

1 + · · · + B̃2
M

)‖e‖/‖B̃‖
= −G‖B̃‖2‖e‖/‖B̃‖ = −G‖e‖ · ‖B̃‖ (21)

Introducing Eqs. (19), (21), in Eq. (9), we can also get
lastly

V̇ (e, B̃, G̃) ≤ −G
(
e2

1 + · · · + e2
n

)
(22)

By the same reasoning as when M = n, the solution
e = 0, B̃ = 0, G̃ = 0 is asymptotically stable.

When M < n, we put

Fi(t, x − e,B) − Fi(t, x − e, B̂) = 0

i = M + 1, . . . , n (23)

since BM+1, . . . ,Bn do not exist,

B̃M+1 = · · · = B̃n = 0 (24)

‖B̃‖2 = B̃2
1 + · · · + B̃2

M + B̃2
M+1 + · · · + B̃2

n (25)

Then by the Schwarz inequality,

eT
[
F(t, x − e,B) − F(t, x − e, B̂)

]

≤ |e1| ·
∣∣F1(t, x − e,B) − F1(t, x − e, B̂)

∣∣

+ · · · + |eM | · ∣∣FM(t, x − e,B)

− FM(t, x − e, B̂)
∣∣ + |eM+1|

· ∣∣FM+1(t, x − e,B)

− FM+1(t, x − e, B̂)
∣∣ + · · ·

+ |en| ·
∣∣Fn(t, x − e,B) − Fn(t, x − e, B̂)

∣∣

≤ G‖e‖ · ‖B̃‖ (26)
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Similarly, choose

˙̃
B1 = −GB̃1‖e‖/‖B̃‖, . . . , ˙̃

BM

= −GB̃M‖e‖/‖B̃‖, ˙̃
BM+1

= −GB̃M+1‖e‖/‖B̃‖, . . . , ˙̃
Bn

= −GB̃n‖e‖/‖B̃‖ (27)

B̃T ˙̃
B = −G

(
B̃2

1 + · · · + B̃2
n

)‖e‖/‖B̃‖
= −G‖B̃‖2‖e‖/‖B̃‖ = −G‖e‖ · ‖B̃‖ (28)

Introducing Eqs. (26), (28) in Eq. (9), we can also get
lastly

V̇ (e, B̃, G̃) ≤ −G
(
e2

1 + · · · + e2
n

) = −GeT e (29)

By the same reasoning as the case M = n, the solution
e = 0, B̃ = 0, G̃ = 0 is asymptotically stable.

Remark In the current scheme of adaptive synchro-
nization [13–15], the traditional Lyapunov stability
theorem and Barbalat lemma are used to prove the
error vector approaches zero, as time approaches in-
finity. But the question, why the estimated parameters
also approach uncertain parameters, remains no an-
swer. By GYC pragmatical asymptotical stability the-
orem, the question can be answered strictly. Moreover,
the asymptotical stability is global; see the Appendix.

3 Numerical examples

Case I Periodic parameters for Lorenz system, M = n

The master Lorenz system with uncertain variable pa-
rameters is
⎧
⎪⎨

⎪⎩

ẋ1 = −A1(t)(x1 − x2)

ẋ2 = A2(t)x1 − x2 − x1x3

ẋ3 = x1x2 − A3(t)x3

(30)

where A1(t), A2(t) and A3(t) are uncertain parame-
ters. In simulation, we take

A1(t) = σ(1 + d1 sin�1t)

A2(t) = γ (1 + d2 sin�2t)

A3(t) = b(1 + d3 sin�3t)

(31)

where σ , γ , b, d1, d2, d3, �1, �2, and �3 are positive
constants.

By Eq. (2), the slave Lorenz system is

⎧
⎪⎨

⎪⎩

ŷ1 = −Â1(t)(y1 − y2) + (Ĝ + G)(x1 − y1)

ŷ2 = Â2(t)y1 − y2 − y1y3 + (Ĝ + G)(x2 − y2)

ŷ3 = y1y2 − Â3(t)y3 + (Ĝ + G)(x3 − y3)
(32)

where K̂ = Ĝ + G. Ĝ is the estimated value of G.
Take σ =10, γ =28, b=8/3, d1 =0.05, d2 =0.01,

d3 = 0.1, �1 = 9, �2 = 15, �3 = 18, and the initial
condition is [xT

0 yT
0 ÂT

0 Ĝ0]T = [111 000 000 0]T .
Subtracting Eq. (32) from Eq. (30), we obtain an

error dynamics.

ė1 = −A1(t)(x1 − x2) + Â1(t)(y1 − y2)

− (Ĝ + G)(x1 − y1)

ė2 = A2(t)x1 − x2 − x1x3 − Â2(t)y1 + y2

+ y1y3 − (Ĝ + G)(x2 − y2)

ė3 = x1x2 − A3(t)x3 − y1y2 + Â3(t)y3

− (Ĝ + G)(x3 − y3)

(33)

where e1 = x1 − y1, e2 = x2 − y2, e3 = x3 − y3.
Our aim is

lim
t→∞ ei = lim

t→∞(xi − yi) = 0, i = 1,2,3 (34)

Let adaptive law be

˙̃
G = Ġ − ˙̂

G = − ˙̂
G = −eT e (35)

since G is constant, Ġ = 0. Define

Ã(t) = [
Ã1(t) Ã2(t) Ã3(t)

]T (36)

Ã1(t) = A1(t) − Â1(t)

Ã2(t) = A2(t) − Â2(t)

Ã3(t) = A3(t) − Â3(t)

(37)

then

˙̃
A1(t) = σd1�1 cos�1t − ˙̂

A1(t)

˙̃
A2(t) = γ d2�2 cos�2t − ˙̂

A2(t)

˙̃
A3(t) = bd3�3 cos�3t − ˙̂

A3(t)

(38)

Choose ˙̃
A1(t),

˙̃
A2(t), and ˙̃

A3(t) as

˙̃
A1 = −GÃ1‖e‖/‖Ã‖
˙̃
A2 = −GÃ2‖e‖/‖Ã‖ (39)
˙̃
A3 = −GÃ3‖e‖/‖Ã‖
Choose a Lyapunov function is given in the form of
positive definite function:
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V (e1, e2, e3, Ã1, Ã2, Ã3, G̃)

= 1

2

(
e2

1 + e2
2 + e2

3 + Ã2
1 + Ã2

2 + Ã2
3 + G̃2) (40)

Its time derivative along any solution of Eqs. (33),
(35), and (39) is

V̇ = e1
[−A1(t)(x1 − x2) + Â1(t)(y1 − y2)

− (Ĝ + G)(x1 − y1)
] + e2

[
A2(t)x1 − x2 − x1x3

− Â2(t)y1 + y2 + y1y3 − (Ĝ + G)(x2 − y2)
]

+ e3
[
x1x2 − A3(t)x3 − y1y2 + Â3(t)y3

− (Ĝ + G)(x3 − y3)
] + Ã1

˙̃
A1 + Ã2

˙̃
A2 + Ã3

˙̃
A3

− G̃
˙̂
G

V̇ = e1
[−A1(t)(x1 − x2) + A1(t)(y1 − y2)

− (Ĝ + G)(x1 − y1)
] + e2

[
A2(t)x1 − x2 − x1x3

− A2(t)y1 + y2 + y1y3 − (Ĝ + G)(x2 − y2)
]

+ e3
[
x1x2 − A3(t)x3 − y1y2 + A3(t)y3

− (Ĝ + G)(x3 − y3)
] + Ã1(y1 − y2)e1 − Ã2y1e2

− Ã3y3e3 − G‖e‖(Ã2
1 + Ã2

2 + Ã2
3

)
/‖Ã‖ − G̃

˙̂
G

V̇ ≤ G‖e‖2 − (Ĝ + G)‖e‖2 + G‖e‖‖Ã‖
− G‖e‖(Ã2

1 + Ã2
2 + Ã2

3

)
/‖Ã‖ − G̃

˙̂
G

V̇ can be rewritten as

V̇ ≤ −G‖e‖2 (41)

V̇ is negative semidefinite function of e, Ã, G̃. The
Lyapunov asymptotical stability theorem is not satis-
fied. We cannot obtain that the common origin of er-
ror dynamics (33), adaptive laws (35), and parameter
dynamics (39) is asymptotically stable. Now, D is a 4-
manifold, n = 7 and the number of error state variables
p = 3. When ei = 0 (i = 1,2,3) and Ãi , G̃ take arbi-
trary values, V̇ = 0, so X is a 4-manifold, m = n−p =
7 − 3 = 4. m + 1 < n is satisfied. By GYC pragmat-
ical asymptotical stability theorem, error vector e ap-
proaches zero and the estimated parameters also ap-
proach the uncertain parameters. The GYC pragmati-
cal generalized synchronization is obtained. The equi-
librium point ei = Ãi = G̃ = 0 (i = 1,2,3) is asymp-
totically stable. Moreover, the result is global asymp-
totically stable (see the Appendix). The numerical re-
sults are shown in Figs. 1, 2 and 3. The chaos syn-
chronization is accomplished. The coupling strength
required is K = 2G = 38.26.

Fig. 1 Phase portrait for Lorenz with σ = 10, γ = 28, b = 8/3

Fig. 2 Phase portrait for Eq. (30) with A1(t) =
σ(1 + d1 sin�1t), A2(t) = γ (1 + d2 sin�2t) and A3(t) =
b(1 + d3 sin�3t)

Case II Exponentially increasing and decreasing pa-
rameters for Quantum-CNN system, M = n For a
two-cell Quantum-CNN, the following differential
equations are obtained [1–3]:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = −2a1

√
1 − x2

1 sinx2

ẋ2 = −ω1(x1 − x3) + 2a1
x1√

1 − x2
1

cosx2

ẋ3 = −2a2

√
1 − x2

3 sinx4

ẋ4 = −ω2(x3 − x1) + 2a2
x3√

1 − x2
3

cosx4

(42)

where x1, x3 are polarizations, x2, x4 are quantum
phase displacements, a1 and a2 are proportional to
the interdot energy inside each cell, and ω1 and ω2

are parameters that weigh effects on the cell of the
difference of the polarization of neighboring cells,
like the cloning templates in traditional CNNs. When
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Fig. 3 Time histories of states, state errors, A1, A2, A3, Â1, Â2, Â3, and estimated Lipschitz constant Ĝ for Case I
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a1 = 6.8, a2 = 4.3, ω1 = 4.7, and ω2 = 3.9, the sys-
tem is chaotic.

The master Quantum-CNN system with uncertain
variable parameters is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = −2A1(t)

√
1 − x2

1 sinx2

ẋ2 = −A3(t)(x1 − x3) + 2A1(t)
x1√

1 − x2
1

cosx2

ẋ3 = −2A2(t)

√
1 − x2

3 sinx4

ẋ4 = −A4(t)(x3 − x1) + 2A2(t)
x3√

1 − x2
3

cosx4

(43)

where A1(t), A2(t), A3(t), and A4(t) are uncertain pa-
rameters. In simulation, we take

A1(t) = a1
[
1 + c1

(
1 − e−b1t

)]

A2(t) = a2
[
1 + c2

(
1 − e−b2t

)]

A3(t) = ω1
[
1 + c3

(
1 − e−b3t

)]

A4(t) = ω2
[
1 + c4

(
1 − e−b4t

)]

(44)

where b1, b2, b3, b4, c1, c2, c3, and c4 are constants.
Take b1 = 0.05, b2 = 0.004, b3 = 0.004, b4 = 0.005,
c1 = −0.25, c2 = 0.15, c3 = −0.2, and c4 = 0.1.

By Eq. (2), the slave Quantum-CNN system is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ1 = −2â1

√
1 − y2

1 siny2

+ (Ĝ + G)(x1 − y1)

ẏ2 = −ω̂1(y1 − y3) + 2â1
y1√

1 − y2
1

cosy2

+ (Ĝ + G)(x2 − y2)

ẏ3 = −2â2

√
1 − y2

3 siny4 + (Ĝ + G)(x3 − y3)

ẏ4 = −ω̂2(y3 − y1) + 2â2
y3√

1 − y2
3

cosy4

+ (Ĝ + G)(x4 − y4)

(45)

where K̂ = Ĝ+G. Ĝ is the estimated value of G. The
initial values are taken as x1(0) = 0.8, x2(0) = −0.77,
x3(0) = −0.72, x4(0) = 0.57, y1(0) = −0.2, y2(0) =
0.41, y3(0) = 0.25, y4(0) = −0.81 and
[â10 â20 ω̂10 ω̂20 Ĝ0]T = [0 0 0 0 0]T . The error dy-
namic is

ė1 = −2A1(t)

√
1 − x2

1 sinx2 + 2â1

√
1 − y2

1 siny2

− (Ĝ + G)e1

ė2 = −A3(t)(x1 − x3) + 2A1(t)
x1√

1 − x2
1

cosx2

+ ω̂1(y1 − y3) − 2â1
y1√

1 − y2
1

cosy2

− (Ĝ + G)e2

ė3 = −2A2(t)

√
1 − x2

3 sinx4 + 2â2

√
1 − y2

3 siny4

− (Ĝ + G)e3

ė4 = −A4(t)(x3 − x1) + 2A2(t)
x3√

1 − x2
3

cosx4

+ ω̂2(y3 − y1) − 2â2
y3√

1 − y2
3

cosy4

− (Ĝ + G)e4

(46)

where e1 = x1 − y1, e2 = x2 − y2, e3 = x3 − y3, e4 −
x4 − y4.

Our aim is

lim
t→∞ ei = lim

t→∞(xi − yi) = 0, i = 1,2,3,4 (47)

Let adaptive law be

˙̃
G = Ġ − ˙̂

G = − ˙̂
G = −eT e (48)

since G is constant, Ġ = 0. Define

ã1 = A1(t) − â1, ã2 = A2(t) − â2

ω̃1 = A3(t) − ω̂1, ω̃2 = A4(t) − ω̂2

(49)

then
˙̃a1 = a1b1c1e

−b1t − ˙̂a1

˙̃a2 = a2b2c2e
−b2t − ˙̂a2

˙̃ω1 = ω1b3c3e
−b3t − ˙̂ω1

˙̃ω2 = ω2b4c4e
−b4t − ˙̂ω2

(50)

Let

Ã = [ã1 ã2 ω̃1 ω̃2] (51)

Choose ˙̃a1, ˙̃a2, ˙̃ω1, and ˙̃ω2 as

˙̃a1 = −Gã1‖e‖/‖Ã‖
˙̃ω1 = −Gω̃1‖e‖/‖Ã‖
˙̃a2 = −Gã2‖e‖/‖Ã‖ and

˙̃ω2 = −Gω̃2‖e‖/‖Ã‖

(52)
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A Lyapunov function is given in the form of posi-
tive definite function:

V (e1, e2, e3, e4, ã1, ã2, ω̃1, ω̃2, G̃)

= 1

2

(
e2

1 + e2
2 + e2

3 + e2
4 + ã2

1 + ã2
2 + ω̃2

1 + ω̃2
2 + G̃2)

(53)

Its time derivative along any solution of Eqs. (46),
(48), and (52) is

V̇ = e1

[
−2A1(t)

√
1 − x2

1 sinx2 + 2â1

√
1 − y2

1 siny2

− (Ĝ + G)e1

]
+ e2

[
−A3(t)(x1 − x3)

+ 2A1(t)
x1√

1 − x2
1

cosx2 + ω̂1(y1 − y3)

− 2â1
y1√

1 − y2
1

cosy2 − (Ĝ + G)e2

]

+ e3

[
−2A2(t)

√
1 − x2

3 sinx4

+ 2â2

√
1 − y2

3 siny4 − (Ĝ + G)e3

]

+ e4

[
−A4(t)(x3 − x1) + 2A2(t)

x3√
1 − x2

3

cosx4

+ ω̂2(y3 − y1) − 2â2
y3√

1 − y2
3

cosy4

− (Ĝ + G)e4

]
+ ã1 ˙̃a1 + ã2 ˙̃a2 + ω̃1 ˙̃ω1 + ω̃2 ˙̃ω2

− G̃
˙̂
G

V̇ = e1

[
−2A1(t)

√
1 − x2

1 sinx2

+ 2A1(t)

√
1 − y2

1 siny2 − (Ĝ + G)e1

]

+ e2

[
−A3(t)(x1 − x3) + 2A1(t)

x1√
1 − x2

1

cosx2

+ A3(t)(y1 − y3) − 2A1(t)
y1√

1 − y2
1

cosy2

− (Ĝ + G)e2

]
+ e3

[
−2A2(t)

√
1 − x2

3 sinx4

+ 2A2(t)

√
1 − y2

3 siny4 − (Ĝ + G)e3

]

+ e4

[
−A4(t)(x3 − x1) + 2A2(t)

x3√
1 − x2

3

cosx4

+ A4(t)(y3 − y1) − 2A2(t)
y3√

1 − y2
3

cosy4

− (Ĝ + G)e4

]
+ ã1

[
2
√

1 − y2
1 siny2e1

− 2y1√
1 − y2

1

cosy2e2

]
+ ω̃1

[
(y1 − y3)e2

]

+ ã2

[
2
√

1 − y2
3 siny4e3 − 2y3√

1 − y2
3

cosy4e4

]

+ ω̃2
[
(y3 − y1)e4

]

− G‖e‖(ã2
1 + ã2

2 + ω̃2
1 + ω̃2

2

)
/‖Ã‖ − G̃

˙̂
G

V̇ ≤ G‖e‖2 − (Ĝ + G)‖e‖2 + G‖e‖‖Ã‖
− G‖e‖(ã2

1 + ã2
2 + ω̃2

1 + ω̃2
2

)
/‖Ã‖ − G̃

˙̂
G

V̇ can be rewritten as

V̇ ≤ −G
(
e2

1 + e2
2 + e2

3 + e2
4

)
(54)

V̇ is a negative semidefinite function of ei , ãj , ω̃j ,
G̃ (i = 1,2,3,4; j = 1,2). The Lyapunov asymptoti-
cal stability theorem is not satisfied. We cannot obtain
that the common origin of error dynamics (46), adap-
tive laws (48), and parameter dynamics (52) is asymp-
totically stable. Now, D is a 5-manifold, n = 9 and the
number of error state variables p = 4. When ei = 0
(i = 1,2,3,4) and ãj , ω̃j , G̃ (j = 1,2) take arbitrary
values, V̇ = 0, so X is a 5-manifold, m = n − p =
9 − 4 = 5. m + 1 < n is satisfied. By the GYC prag-
matical asymptotical stability theorem, error vector e

approaches zero and the estimated parameters also ap-
proach the uncertain parameters. The GYC pragmati-
cal generalized synchronization is obtained. The equi-
librium point ei = ãj = ω̃j = G̃ = 0 (i = 1,2,3,4;
j = 1,2) is asymptotically stable. Moreover, the re-
sult is global asymptotically stable (see the Appendix).
The numerical results are shown in Figs. 4, 5 and 6.
The chaos synchronization is accomplished. The cou-
pling strength required is K = 2G = 5.54.

Case III Periodically and exponentially increasing
and decreasing parameters for Quantum-CNN system,
M < n The master Quantum-CNN system with un-
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Fig. 4 Phase portrait for chaotic system (42)

certain variable parameters is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = −2A1(t)

√
1 − x2

1 sinx2

ẋ2 = −A3(t)(x1 − x3) + 2A1(t)
x1√

1 − x2
1

cosx2

ẋ3 = −2A2(t)

√
1 − x2

3 sinx4

ẋ4 = −A4(t)(x3 − x1) + 2A2(t)
x3√

1 − x2
3

cosx4

(55)

where A1(t), A2(t), A3(t), and A4(t) are uncertain pa-
rameters. In simulation, we take

A1(t) = a1
[
1 + c1

(
1 − e−b1t sin�1t

)]

A2(t) = a2
[
1 + c2

(
1 − e−b2t sin�2t

)]

A3(t) = ω1
[
1 + c3

(
1 − e−b3t sin�3t

)]

A4(t) = ω2
[
1 + c4

(
1 − e−b4t sin�4t

)]

(56)

where b1, b2, b3, b4, c1, c2, c3, c4, �1, �2, �3, and

�4 are constants. Take b1 = 0.001, b2 = 0.002, b3 =
0.004, b4 = 0.005, c1 = −0.25, c2 = 0.15, c3 = −0.2,

c4 = 0.1, �1 = 5, �2 = 1, �3 = 3, and �4 = 6. Sys-

tem (55) is chaotic.

By Eq. (2), the slave Quantum-CNN system is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ1 = −2â1

√
1 − y2

1 siny2 − (Ĝ + G)(y1 − x1)

ẏ2 = −ω̂1(y1 − y3) + 2â1
y1√

1 − y2
1

cosy2

− (Ĝ + G)(y2 − x2)

ẏ3 = −2â2

√
1 − y2

3 siny4 − (Ĝ + G)(y3 − x3)

ẏ4 = −A4(t)(y3 − y1) + 2â2
y3√

1 − y2
3

cosy4

− (Ĝ + G)(y4 − x4)

(57)
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Fig. 5 Phase portrait for chaotic system (43)

where K̂ = Ĝ+G. Ĝ is the estimated value of G. The
error dynamic is

ė1 = −2A1(t)

√
1 − x2

1 sinx2 + 2â1

√
1 − y2

1 siny2

− (Ĝ + G)e1

ė2 = −A3(t)(x1 − x3) + 2A1(t)
x1√

1 − x2
1

cosx2

+ ω̂1(y1 − y3) − 2â1
y1√

1 − y2
1

cosy2

− (Ĝ + G)e2

ė3 = −2A2(t)

√
1 − x2

3 sinx4 + 2â2

√
1 − y2

3 siny4

− (Ĝ + G)e3

ė4 = −A4(t)(x3 − x1) + 2A2(t)
x3√

1 − x2
3

cosx4

+ A4(t)(y3 − y1)

− 2â2
y3√

1 − y2
3

cosy4 − (Ĝ + G)e4

(58)

where e1 = x1 − y1, e2 = x2 − y2, e3 = x3 − y3, e4 −
x4 − y4.

Our aim is

lim
t→∞ ei = lim

t→∞(xi − yi) = 0, i = 1,2,3,4 (59)

Let adaptive law be

˙̃
G = Ġ − ˙̂

G = − ˙̂
G = −eT e (60)

since G is constant, Ġ = 0. Define

ã1 = A1(t) − â1, ã2 = A2(t) − â2

ω̃1 = A3(t) − ω̂1

(61)

then
˙̃a1 = a1b1c1e

−b1t sin�1t

− a1c1�1e
−b1t cos�1t − ˙̂a1

˙̃ω1 = ω1b3c3e
−b3t sin�3t

− ω1c3�3e
−b3t cos�3t − ˙̂ω1

˙̃a2 = a2b2c2e
−b2t sin�2t

− a2c2�2e
−b2t cos�2t − ˙̂a2

(62)



Synchronization of chaotic system with uncertain variable parameters by linear coupling 2197

Fig. 6 Time histories of states, state errors, A1, A2, A3, A4, â1, â2, ŵ1, ŵ2, and estimated Lipschitz constant Ĝ for Case II
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Let

Ã = [ã1 ã2 ω̃1] (63)

Choose ˙̃a1, ˙̃a2, and ˙̃ω1 as
˙̃a1 = −Gã1‖e‖/‖Ã‖
˙̃ω1 = −Gω̃1‖e‖/‖Ã‖ and
˙̃a2 = −Gã2‖e‖/‖Ã‖

(64)

A Lyapunov function is given in the form of a positive
definite function:

V (e1, e2, e3, e4, ã1, ã2, ω̃1, G̃)

= 1

2

(
e2

1 + e2
2 + e2

3 + e2
4 + ã2

1 + ã2
2 + ω̃2

1 + G̃2) (65)

Its time derivative along any solution of Eqs. (58),
(60), and (64) is

V̇ = e1
[−2A1(t)

√
1 − x2

1 sinx2 + 2â1

√
1 − y2

1 siny2

− (Ĝ + G)e1
] + e2

[
−A3(t)(x1 − x3)

+ 2A1(t)
x1√

1 − x2
1

cosx2 + ω̂1(y1 − y3)

− 2â1
y1√

1 − y2
1

cosy2 − (Ĝ + G)e2

]

+ e3
[−2A2(t)

√
1 − x2

3 sinx4

+ 2â2

√
1 − y2

3 siny4

− (Ĝ + G)e3
] + e4

[
−A4(t)(x3 − x1)

+ 2A2(t)
x3√

1 − x2
3

cosx4 + A4(t)(y3 − y1)

− 2â2
y3√

1 − y2
3

cosy4 − (Ĝ + G)e4

]

+ ã1 ˙̃a1 + ã2 ˙̃a2 + ω̃1 ˙̃ω1 − G̃
˙̂
G

V̇ = e1
[−2A1(t)

√
1 − x2

1 sinx2

+ 2A1(t)

√
1 − y2

1 siny2

− (Ĝ + G)e1
] + e2

[
−A3(t)(x1 − x3)

+ 2A1(t)
x1√

1 − x2
1

cosx2 + A3(t)(y1 − y3)

− 2A1(t)
y1√

1 − y2
1

cosy2 − (Ĝ + G)e2

]

+ e3
[−2A2(t)

√
1 − x2

3 sinx4

+ 2A2(t)

√
1 − y2

3 siny4 − (Ĝ + G)e3
]

+ e4

[
−A4(t)(x3 − x1) + 2A2(t)

x3√
1 − x2

3

cosx4

+ A4(t)(y3 − y1) − 2A2(t)
y3√

1 − y2
3

cosy4

− (Ĝ + G)e4

]
+ ã1

[
2
√

1 − y2
1 siny2e1

− 2y1√
1 − y2

1

cosy2e2

]
+ ω̃1

[
(y1 − y3)e2

]

+ ã2

[
2
√

1 − y2
3 siny4e3 − 2y3√

1 − y2
3

cosy4e4

]

− G‖e‖(ã2
1 + ã2

2 + ω̃2
1

)/‖Ã‖ − G̃
˙̂
G

V̇ ≤ G‖e‖2 − (Ĝ + G)‖e‖2 + G‖e‖‖Ã‖
− G‖e‖(ã2

1 + ã2
2 + ω̃2

1

)/‖Ã‖ − G̃
˙̂
G

V̇ can be rewritten as

V̇ ≤ −G
(
e2

1 + e2
2 + e2

3 + e2
4

)
(66)

V̇ is a negative semidefinite function of ei , ãj , ω̃1,
G̃ (i = 1,2,3,4; j = 1,2). The Lyapunov asymptoti-
cal stability theorem is not satisfied. We cannot obtain
that the common origin of error dynamics (58), adap-
tive laws (60) and parameter dynamics (64) is asymp-
totically stable. Now, D is a 4-manifold, n = 8 and the
number of error state variables p = 4. When ei = 0
(i = 1,2,3,4) and ãj , ω̃1, G̃ (j = 1,2) take arbitrary
values, V̇ = 0, so X is a 4-manifold, m = n − p =
8 − 4 = 4. m + 1 < n is satisfied. By GYC pragmat-
ical asymptotical stability theorem, error vector e ap-
proaches zero and the estimated parameters also ap-
proach the uncertain parameters. The GYC pragmati-
cal generalized synchronization is obtained. The equi-
librium point ei = ãj = ω̃1 = G̃ = 0 (i = 1,2,3,4;
j = 1,2) is asymptotically stable. Moreover, the re-
sult is global asymptotically stable (see the Appendix).
The numerical results are shown in Figs. 7 and 8. The
chaos synchronization is accomplished. The coupling
strength required is K = 2G = 6.34.

4 Conclusions

Using the Lipschitz condition, the synchronization of
Lorenz chaotic systems and of Quantum-CNN chaotic
oscillator systems with uncertain variable parame-
ters by linear coupling and GYC pragmatical adap-
tive tracking is implemented by the GYC pragmat-
ical asymptotical stability theorem. Tracking uncer-
tain variable parameters is firstly studied in this pa-
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Fig. 7 Phase portrait for chaotic system (54)

per. This is more reasonable, because system param-
eters always vary due to aging, environment, and dis-
turbances. Two Lorenz systems are synchronization in
one case: with oscillating parameters. Two Quantum-
CNN systems are the synchronization in two cases:
(1) with exponentially increasing and decreasing pa-
rameters (2) with periodically and exponentially in-
creasing and decreasing parameters. The computer
simulation results imply that the present scheme is
very satisfactory.
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Appendix: GYC pragmatical asymptotical
stability theorem

The stability for many problems in real dynamical
systems is actual asymptotical stability, although may

not be mathematical asymptotical stability. The math-
ematical asymptotical stability demands that trajecto-
ries from all initial states in the neighborhood of zero
solution must approach the origin as t → ∞. If there
are only a small part or even a few of the initial states
from which the trajectories do not approach the ori-
gin as t → ∞, the zero solution is not mathematically
asymptotically stable. However, when the probability
of occurrence of an event is zero, it means the event
does not occur actually. If the probability of occur-
rence of the event that the trajectories from the initial
states are that they do not approach zero when t → ∞,
i.e., these trajectories are not asymptotical stale for the
zero solution is zero, the stability of the zero solution
is actual asymptotical stability though it is not mathe-
matical asymptotical stability. In order to analyze the
asymptotical stability of the equilibrium point of such
systems, the GYC pragmatical asymptotical stability
theorem is used.

Let X and Y be two manifolds of dimensions m and
n (m < n), respectively, and ϕ be a differentiable map
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Fig. 8 Time histories of states, state errors, A1, A2, A3, â1, â2, ŵ1, and estimated Lipschitz constant Ĝ for Case III
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from X to Y ; then ϕ(X) is subset of Lebesque measure
0 of Y [22]. For an autonomous system

ẋ = f (x1, . . . , xn) (67)

where x = [x1, . . . , xn]T is a state vector, the func-
tion f = [f1, . . . , fn]T is defined on D ⊂ Rn, an n-
manifold.

Let x = 0 be an equilibrium point for the sys-
tem (67). Then

f (0) = 0 (68)

For a nonautonomous system,

ẋ = f (x1, . . . , xn+1) (69)

where x = [x1, . . . , xn+1]T , the function f = [f1, . . . ,

fn]T is defined on D ⊂ Rn×R+, here t = xn+1 ⊂ R+.
The equilibrium point is

f (0, xn+1) = 0 (70)

Definition The equilibrium point for the system is
pragmatically asymptotically stable provided that with
initial points on C which is a subset of Lebesque mea-
sure 0 of D, the behaviors of the corresponding trajec-
tories cannot be determined, while with initial points
on D − C, the corresponding trajectories behave as
that agree with traditional asymptotical stability [19,
20].

Theorem Let V = [x1, x2, . . . , xn]T : D → R+ be
positive definite and analytic on D, where x1, x2,

. . . , xn are all space coordinates such that the deriva-
tive of V through Eqs. (67) or (69), V̇ , is negative
semidefinite of [x1, x2, . . . , xn]T .

For the autonomous system, let X be the m-
manifold consisting of the point set for which ∀x 
= 0,
V̇ (x) = 0 and D is a n-manifold. If m + 1 < n, then
the equilibrium point of the system is pragmatically
asymptotically stable.

For the nonautonomous system, let X be the
m + 1-manifold consisting of the point set for which
∀x 
= 0, V̇ (x1, x2, . . . , xn) = 0 and D is an
n + 1-manifold. If m + 1 + 1 < n + 1, i.e., m + 1 < n,
then the equilibrium point of the system is pragmat-
ically asymptotically stable. Therefore, for both the
autonomous and nonautonomous system, the formula
m + 1 < n is universal. So, the following proof is only
for the autonomous system. The proof for the nonau-
tonomous system is similar.

Proof Since every point of X can be passed by a tra-
jectory of Eq. (67), which is one-dimensional, the col-
lection of these trajectories, C, is a (m + 1)-manifold
[16, 17].

If m + 1 < n, then the collection C is a subset of
Lebesque measure 0 of D. By the above definition,
the equilibrium point of the system is pragmatically
asymptotically stable.

If an initial point is ergodicly chosen in D, the prob-
ability of that the initial point falls on the collection
C is zero. Here, equal probability is assumed for ev-
ery point chosen as an initial point in the neighbor-
hood of the equilibrium point. Hence, the event that
the initial point is chosen from collection C does not
occur actually. Therefore, under the equal probabil-
ity assumption, pragmatical asymptotical stability be-
comes actual asymptotical stability. When the initial
point falls on D −C, V̇ (x) < 0, the corresponding tra-
jectories behave as that agree with traditional asymp-
totical stability because by the existence and unique-
ness of the solution of initial-value problem, these tra-
jectories never meet C.

For Eq. (7), the Lyapunov function is a positive def-
inite function of n variables, i.e., p error state vari-
ables and n − p = m differences between unknown
and estimated parameters, while V̇ = eT Ce is a neg-
ative semidefinite function of n variables. Since the
number of error state variables is always more than
one, p > 1, m+ 1 < n is always satisfied, by pragmat-
ical asymptotical stability theorem we have

lim
t→∞ e = 0 (71)

and the estimated parameters approach the uncertain
parameters. The pragmatical adaptive control theorem
is obtained. Therefore, the equilibrium point of the
system is pragmatically asymptotically stable. Under
the equal probability assumption, it is actually asymp-
totically stable for both error state variables and pa-
rameter variables. �
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