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Abstract: Transmission of convolutionally encoded multiple descriptions over noisy channels can benefit from the use of iterative
source-channel decoding. The authors first modified the BCJR algorithm in a way that symbol a posteriori probabilities can be
derived and used as extrinsic information to improve the iterative decoding between the source and channel decoders. The authors
also formulate a recursive implementation for the source decoder that processes reliability information received on different
channels and combines them with inter-description correlation to estimate the transmitted quantiser index. Simulation results
are presented for two-channel scalar quantisation of Gauss–Markov sources which demonstrate the error-resilience
capabilities of symbol-based iterative decoding.
1 Introduction

With the rapid development of wireless multimedia
communications, reliable transmission of speech and video
signals over bandlimited noisy channels is becoming more
and more widespread. Multiple description (MD) coding [1]
is a method of representing a source with multiple
correlated descriptions such that any subset of the
descriptions can be used to decode the source with a
fidelity that increases with the number of received
descriptions. The output symbols of an MD encoder exhibit
considerable residual redundancy in terms of both non-
uniformity of distribution and their dependencies. This
redundancy is because of the non-optimality of the
practically designed source encoder in the presence of
complexity and delay constraints, or by path diversity as a
result of MD coding. The ability to exploit path diversity
and source residual redundancy for error robustness makes
MD coding an attractive option for the multimedia
transmission over unreliable IP networks. A typical example
is the MD scalar quantisation (MDSQ) [1, 2] which splits
source samples into two descriptions by using scalar
quantiser and index assignment. The index assignment can
be represented by a mapping of each reproduction level of
the scalar quantiser to a unique element in an index
assignment matrix. The choice of the index assignment
matrix determines the correlation between the descriptions
and is key to realise an MDSQ. Design algorithms for good
index assignments are presented in [2]. In these, the inter-
description correlation is controlled by choosing the number
of diagonals covered by the index assignment. The MDSQ
has been extensively studied for noiseless channels with
packet loss, assuming that there exists multiple independent
channels that either provide error-free transmission or
experience total failure. In many practical situations,
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however, MDs of the source signals are transmitted over
channels subject to noise and packet loss. In this work, we
account for these random noises by representing the non-
erasure state of the channel using an additive white
Gaussian noise (AWGN) channel. Some recent works have
been presented in [3–5], where sequential Monte Carlo
methods are used to perform signal processing in the non-
Gaussian additive noise scenario.

For MD communication over noisy channels, a channel
encoder may be used on each description to deal with
random bit errors. When the MDSQ is concatenated with
convolutional codes, iterative source-channel decoding
(ISCD) [6, 7] inspired by turbo principle has been shown
effective using the source residual redundancy and assisted
with the reliability information provided by the soft-output
channel decoder. In the so-called MD-ISCD schemes [8, 9],
source residual redundancy and channel-code redundancy
are exploited alternatively by exchanging extrinsic
information between the constituent decoders. An iterative
decoder consisting of two maximum a posteriori probability
(MAP) detectors is proposed in [8] for joint decoding of
MDSQ and convolutional codes. In [9], a cross decoding
strategy was stated that exploits not only the reliability
information of every bit in one description, but also the
extrinsic information from the other description according
to the chosen index assignment. In the decoding procedure,
MAP detectors operating on soft channel outputs were used
for each of the two descriptions in such a way that the
output of one MAP detector is combined with inter-
description correlation to compute the a priori information
for the other detector.

With respect to an implementation of MD-ISCD, previous
works in [8, 9] are expected to show two limitations. Firstly,
as the source decoder uses two separate MAP detectors with
each detector operating on one description, it may report
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invalid codeword combinations corresponding to the empty
cells of the index assignment matrix. In dealing with such
situations, an invalid codeword combination is treated as an
uncorrectable error and the mean of the source is
reconstructed. Secondly, the major part of the iterative
decoding process runs on bit-level, but the source decoder
itself is realised on symbol level. This is in part due to the
fact that binary convolutional codes are commonly used, so
the soft-output channel decoding can be implemented
efficiently by the BCJR algorithm [10, 11]. It causes the
problem that only bitwise source a priori knowledge can be
exploited by the channel decoder, since the BCJR algorithm
is derived based on a bit-level code trellis. For the purpose
of applicability, it requires the symbol-to-bit and bit-to-
symbol probability conversion in each passing of the
extrinsic information between the source and channel
decoders. This processing step destroys the bit-correlations
within a symbol, thus reducing the effectiveness of iterative
decoding. Recognising this, we focus on symbol-based
trellis decoding algorithms throughout this paper since they
allows to exchange between the source and channel
decoders the whole symbol extrinsic information. The first
step toward realisation is to use sectionalised code trellises
rather than bit-level trellises as the bases for soft-output
channel decoding of binary convolutional codes.
Performance is further improved by using a joint MAP
source decoder that processes reliability information
received on different channels and combines them with
inter-description correlation to provide a better estimate of
the transmitted quantiser index.

2 System description

The two-channel transmission of autocorrelated sources over
AWGN channels is considered, in which an MDSQ is used
for source coding and convolutional codes are used for
channel coding of individual descriptions. Fig. 1 shows our
model of a two-channel transmission system. The MDSQ
encoder can be decomposed into a scalar quantiser followed
by an index assignment. Suppose at time t, the input sample
vt is quantised by the M-bit index ut that, after index
assignment, is represented by two descriptions uI,t ¼ dI(ut)
and uJ,t ¼ dJ(ut) at an average rate of R bits per symbol per
channel. For the scalar quantiser, the reproduction level
corresponding to an index ut ¼ l is denoted by cl, where
l [ G ¼ {0,1, . . ., 2M 2 1}. We can generally assume that
there is a certain amount of residual redundancy remaining
in the index sequence due to delay and complexity
constraints for the quantisation stage. In the following, the
time-correlations of quantiser indexes are modelled by a
first-order stationary Markov process with index-transition
probabilities P (ut|ut21). The two descriptions resulting from
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MDSQ can be interpreted as the row and column indexes of
an 2R × 2R matrix, in which the (dI(l ), dJ(l ))th location is
placed with a specified quantiser index ut ¼ l. Since
2M , 22R, these two descriptions contain redundancy and
the correlation properties of each possible pair (dI(l ), dJ(l ))
can be computed from the knowledge of index assignment.
The amount of inter-description correlation decreases as M
becomes larger and more diagonals are occupied by the
quantiser indexes. In describing the index assignment
matrix, let Rk ¼ {l|dI(l ) ¼ k} and Cm ¼ {l|dJ(l ) ¼ m}
represent the subset of quantiser indexes located in row k
and in column m of the matrix, respectively. We will
denote the output symbols of MDSQ by uD,t, where for
simplicity, D [ {I, J} stands for one of the descriptions.
After MDSQ encoding a block of T symbols of description
D, written as UT

D,1 = (uD,1, . . . , uD,t , . . . , uD,T ), are
interleaved by a symbol interleaver F. The interleaved
symbol sequence, denoted by XT

D,1 = (xD,1, . . . , xD,t,
. . . , xD,T ), is then processed by a binary convolutional
channel encoder with a code rate of 1/2. If a systematic
channel encoder is used, the codeword corresponding to
each symbol xD,t can be written as yD,t ¼ {xD,t, zD,t}, where
xD,t and zD,t represent the systematic and parity symbol of
the code, respectively. The code sequences are modulated
with a binary phase shift keying modulator and then
transmitted over an AWGN channel. For brevity, denote the
input and output sequence of the AWGN channel by

Y T
D,1 = {XT

D,1, ZT
D,1} and Ỹ

T
D,1 = {X̃

T
D,1, Z̃

T
D,1}, respectively.

Goal of the MD-ISCD is to jointly exploit the channel
information and source a priori information for improved
estimation of the transmitted quantiser index. When MDSQ is
concatenated with a channel coder, the turbo-like evaluation
of source residual redundancy and of artificial channel-code
redundancy makes step-wise quality gains possible by
iterative decoding. As shown in Fig. 2, the receiver consists
of two separate channel decoders and an MD source decoder
with soft-inputs and soft-outputs (SISO). In the first step,
identical for both descriptions, a channel decoder processes
the received code sequence Ỹ

T
D,1 and combines them with

source a priori information to compute the extrinsic
information L[ext]

CD (xD,t) on individual systematic symbol xD,t.
The MD-SISO source decoder combines the extrinsic
information provided by the two channel decoders to provide
a more accurate estimate of the transmitted quantiser index.
Joint decoding of the two descriptions produces the a
posteriori probability (APP) for each of possibly transmitted

quantiser index ut, which is denoted by P(ut|Ỹ
T
I ,1, Ỹ

T
J ,1).

Given the knowledge of the index assignment and source
encoder statistics, it also generates a symbol-level extrinsic
information L[ext]

SD (uD,t) for each description which will be
used as a priori information of the corresponding channel
Fig. 1 Block diagram of a two-channel MD communication system
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Fig. 2 MD-ISCD scheme for the concatenation of MDSQ and convolutional codes
decoder in the next iteration. Exchanging extrinsic information
between the source and channel decoders is iteratively repeated
until the reliability gain becomes insignificant. After the last
iteration, the index APPs are used to determine the MAP
signal estimates as follows

v̂t = cl∗ , l∗ = max
l[G

P(ut = l|Ỹ T
I ,1Ỹ

T
J ,1) (1)

3 Symbol decoding of binary convolutional
codes

For transmission schemes with channel coding, a SISO
channel decoders may be used to provide both estimated
bits and their reliability information for further processing.
In many practical systems bit-based channel decoders are
used for which the BCJR algorithm [10] is available for
efficient decoding of binary convolutional codes. Proper
sectionalisation of a bit-level code trellis [12] allows us to
devise MAP symbol decoding algorithms which takes into
account the symbol-level extrinsic information obtained
from the source decoder. To proceed with this, we propose
a modified BCJR algorithm which parses the received code-
bit sequence into R-bit blocks and computes the APP on a
symbol-by-symbol basis. By parsing the code-bit sequence
into R-bit symbols, we are in essence merging R stages of
the original bit-level code trellis into one. Having defining
the trellis structure as such, there will be 2R branches
leaving and entering each state and each branch is
associated with one APP corresponding to a particular
symbol. For convenience, we say that the sectionalised
trellis diagram forms a finite-state machine defined by its
state transition function Fs(xD,t,st) and output function
Fp(xD,t, st). Specifically, the code-symbol associated with
the branch from state st to state st+1 ¼ Fs(xD,t, st) can be
written as yD,t ¼ (xD,t, zD,t), where zD,t ¼ Fp(xD,t, st) is the
parity symbol given state st and systematic symbol xD,t.

We next apply sectionalised code trellises to formulate a
recursive implementation for computing the APP of a
systematic symbol xD,t, given the received code sequence

Ỹ
T
D,1 = {ỹD,1, ỹD,2, . . . , ỹD,T }. Let lD ¼ dD(l ) represent the

symbol of description D corresponding to a specified
quantiser index xt ¼ l. Taking the trellis state st into
consideration, we rewrite the symbol APP as follows

P(xD,t = lD|Ỹ
T
D,1) = C

∑

st

P(xD,t = lD, st, Ỹ
T
D,1)/P(Ỹ

T
D,1)

= C
∑

st

ax
t (lD, st)b

x
t (lD, st)/P(Ỹ

T
D,1) (2)
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where ax
t (lD, st) = P(xD,t = lD, st, Ỹ

t
D,1) and bx

t (lD, st) =
P(Ỹ

T
D,t+1|xD,t = lD, st, Ỹ

t
D,1). For the recursive

implementation, the forward and backward recursions are to
compute the following metrics:

ax
t (lD,st)=

∑

st−1

∑

kD

P(xD,t= lD,st,xD,t−1=kD,st−1, ỹD,tỸ
t−1
D,1 )

=
∑

st−1

∑

kD

ax
t−1(kD,st−1)glD ,kD

(ỹD,t,st,st−1) (3)

bx
t (lD,st)=

∑

st+1

∑

kD

P(Ỹ
T
D,t+1,st+1,xD,t+1=kD|xD,t= lD,st, Ỹ

t
D,1)

=
∑

st+1

∑

kD

bx
t+1(kD,st+1)gkD,lD

(ỹD,t+1,st+1,st) (4)

where

glD,kD
(ỹD,t, st, st−1)

= P(xD,t = lD, st, ỹD,t|xD,t−1 = kD, st−1, Ỹ
t−1
D,1 )

= P(st|xD,t−1 = kD, st−1)P(xD,t = lD|xD,t−1 = kD)

× P(ỹD,t|xD,t = lD, st) (5)

and

gkD ,lD
(ỹD,t+1, st+1, st)

= P(st+1|xD,t = lD, st)P(xD,t+1 = kD|xD,t = lD)

× P(ỹD,t+1|xD,t+1 = kD, st+1) (6)

The computation of the branch metric glD ,kD
(ỹD,t, st, st−1) can

be further simplified as follows. First, making use of the
merged code trellis, the value of P (st|xD,t21 ¼ kD,st21) is
either one or zero depending on whether symbol kD is
associated with transition from state st21 to state
st ¼ Fs(xD,t21 ¼ kD,st21). The second term in (5) is reduced
to P (xD,t ¼ lD) under the assumption that xD,t is
uncorrelated with xD,t21, which is indeed the case as xD,t is
the interleaved version of symbols uD,t. For AWGN
channels, the third term in (5) can be computed by

P(ỹD,t|xD,t = lD, st) = P(x̃D,t|xD,t = lD)

× P(z̃D,t|zD,t = Fp(xD,t = lD, st)) (7)
IET Commun., 2012, Vol. 6, Iss. 13, pp. 1868–1875
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The MAP algorithm is likely to be considered too complex for
real-time implementation in a practical system. To avoid the
number of complicated operations and also numerical
representation problems, realisations of the MAP algorithm
in the logarithmic domain have been proposed in [13, 14].
We define the reliability of each non-zero symbol xD,t ¼ lD,
lD ¼ 1, 2, . . ., 2R 2 1, with respect to xD,t ¼ 0, by
considering log-likelihood ratio (LLR) of the following type

L(xD,t = lD|Ỹ
T
D,1) = log

P(xD,t = lD|Ỹ
T
D,1)

P(xD,t = 0|Ỹ T
D,1)

(8)

This definition for the LLR values allow for easy conversion
between the a posteriori LLRs and APPs. The next step is to
reduce the large computational burden complexity which is
required for computing the logarithmic values of the
ax

t (lD, st) and bx
t (lD, st) terms in (2). This task can be

accomplished by using the Jacobian logarithm function [14]
defined by the property

log(ed1 + ed2 ) = max{d1, d2}+ log (1+ e−|d2−d1|) (9)

For brevity, we use the following shorthand notation
max∗j {dj} = log(

∑l
j=1 edj ). By taking the logarithm of

ax
t (lD, st) in (3), we have

â x
t (lD, st) = logax

t (lD, st)

= max
st−1

∗max
kD

∗{â x
t−1(kD, st−1)+ ĝlD,kD

(ỹD,t, st, st−1)}

(10)

and similarly

b̂ x
t (lD, st)= logbx

t (lD, st)

=max
st+1

∗max
kD

∗{b̂ x
t+1(kD, st+1)+ ĝkD ,lD

(ỹD,t+1, st+1, st)}

(11)

ĝlD ,kD
(ỹD,t, st, st−1)= logglD ,kD

(ỹD,t, st, st−1)

= logP(st|xD,t−1=kD, st−1)

+ logP(xD,t= lD)

+ logP(x̃D,t|xD,t= lD)

+ logP(z̃D,t|zD,t=Fp(xD,t= lD, st))

(12)

An iterative process using the log-MAP channel decoder as a
constituent decoder is realisable, if the a posteriori LLR
L(xD,t = lD|Ỹ

T
D,1) can be separated into three additive terms:

the a priori term La(xD,t ¼ lD) ¼ log[P (xD,t ¼ lD)/
P (xD,t ¼ 0)], the channel-related term Lc(xD,t = lD) =
log [P(x̃D,t|xD,t = lD)/P(x̃D,t|xD,t = 0)], and an extrinsic term

L[ext]
CD (xD,t = lD). Substituting (10) and (12) into (8) leads to

L(xD,t = lD|Ỹ
T
D,1) = La(xD,t = lD)

+ Lc(xD,t = lD)+ L[ext]
CD (xD,t = lD)

(13)
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with the extrinsic LLR

L[ext]
CD (xD,t= lD)

=max
st

∗{logP(z̃D,t|xD,t= lD, st)+bx
t (lD, st)}

+max
st−1

∗{max
kD

∗{logP(st|xD,t−1=kD, st−1)+ax
t−1(kD, st−1)}}

−max
st

∗{logP(z̃D,t|xD,t=0, st)+bx
t (0, st)}

+max
st−1

∗{max
kD

∗{logP(st|xD,t−1=0, st−1)+ax
t−1(kD, st−1)}}

(14)

Notice that the a priori LLR in (13) is initialised to be
La(xD,t ¼ lD) in terms of the source distribution
P (xD,t ¼ lD). Within iterations the precision of the APP
estimation can be enhanced by replacing La(xD,t ¼ lD) with
the interleaved extrinsic LLR L[ext]

SD (xD,t = lD) provided by
the source decoder. Therefore the extrinsic LLR resulting
from the channel decoding can be calculated by

L[ext]
CD (xD,t = lD) = L(xD,t = lD|Ỹ

T
D,1)

− L[ext]
SD (xD,t = lD)− Lc(xD,t = lD) (15)

and used as new a priori information for the source decoder.

4 MD-SISO source decoder

Goal of the MD-SISO source decoder is to compute the APPs
of transmitted quantiser indexes by jointly exploiting the
channel information, the source residual redundancy and
the inter-description correlation induced by the MDSQ. In
previous work related to this problem [8, 9], the source
decoder uses two separate MAP detectors with each

detector operating on a single description Ỹ
T
D,1 to compute

the APP P(uD,t|Ỹ
T
D,1) for a decoded systematic symbol

uD,t ¼ lD. Afterwards the source decoder makes an MAP
decision on the two symbols {l∗I , l∗J } and uses their
combination to locate the corresponding quantiser index
from the index assignment matrix. As the two MAP symbol
estimates are decoded separately, it may report invalid
codeword combinations corresponding to the empty cells of
the index assignment matrix. To compensate for this
shortage, we propose a joint MAP decoding algorithm
which combines reliability information received on different
channels and computes the APP for each of possibly
transmitted quantiser index ut ¼ l. For the purpose of
applicability, the algorithm of MD-SISO source decoding is
separated into two parts. The first algorithmic step consists

in the computation of the APP P(ut|Ỹ
T
I ,1, Ỹ

T
J ,1) for a

decoded quantiser index ut, given the two received code-

symbol sequences {Ỹ
T
I ,1, Ỹ

T
J ,1}. In the second step, identical

for both descriptions, these index APPs are combined with
a priori knowledge of the index assignment to extract the
extrinsic information L[ext]

SD (uD,t) on every symbol uD,t of
description D. It contains the new part of information
resulting from MD-SISO source decoding and will be
delivered back to the corresponding channel decoder as new
a priori information for the next iteration.
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The source decoding algorithm starts by computing the
APP for a decoded quantiser index ut ¼ l as follows

P(ut = l|Ỹ T
I ,1, Ỹ

T
J ,1) = P(ut = l, Ỹ

T
I ,1, Ỹ

T
J ,1)/P(Ỹ

T
I ,1, Ỹ

T
J ,1)

(16)

Since the received sequence of systematic symbols are de-
interleaved and then processed by the source decoder, we

have P(ut = l, Ỹ
T
I ,1, Ỹ

T
J ,1) = P(ut = l, Ũ

T
I ,1, Z̃

T
I ,1, Ũ

T
J ,1, Z̃

T
J ,1),

where Ũ
T
D,1 = F−1(X̃

T
D,1). These probabilities can be further

decomposed by using the Bayes theorem as

P(ut = l, Ũ
T
I ,1, Z̃

T
I ,1, Ũ

T
J ,1, Z̃

T
J ,1)

= P(ut = l, Ũ
T
I ,1, Ũ

T
J ,1)P(Z̃

T
I ,1, Z̃

T
J ,1|ut = l, Ũ

T
I ,1, Ũ

T
J ,1)

= au
t (l)bu

t (l)
∏

D[{I ,J}

P(Z̃
T
D,1|uD,t = lD, Ũ

T
D,1) (17)

where au
t (l) = P(ut = l, Ũ

t
I ,1, Ũ

t
J ,1) and bu

t (l) =
P(Ũ

T
I ,t+1, Ũ

T
J ,t+1|ut = l, Ũ

t
I ,1, Ũ

t
J ,1). Using the Markov

property of the indexes and the memoryless assumption of
the channel, the forward-backward recursions of the
algorithm in the logarithmic domain can be expressed as

âu
t (l)= logau

t (l)

= log
∑

k

P(ut= l, ut−1= k, Ũ
t
I ,1, Ũ

t
J ,1)

= log
∑

k

P(ũI ,t, ũJ ,t|ut= l, ut−1= k, Ũ
t−1
I ,1 , Ũ

t−1
J ,1 )

×P(ut= l|ut−1= k, Ũ
t−1
I ,1 , Ũ

t−1
J ,1 )P(ut−1= k, Ũ

t−1
I ,1 , Ũ

t−1
J ,1 )

=max
k

∗{ĝ t
l,k(ũI ,t, ũJ ,t)+ âu

t−1(k)} (18)

b̂ u
t (l)= logbu

t (l)

= log
∑

k

P(ut= l, ut+1= k, Ũ
T
I ,1, Ũ

T
J ,1)/

×P(ut= l, Ũ
t
I ,1, Ũ

t
J ,1)

=max
k

∗{ĝ t+1
k,l (ũI ,t+1, ũJ ,t+1)+ b̂ u

t+1(k)} (19)

and in (18)

ĝ t
l,k(ũI ,t, ũJ ,t) = log P(ũI ,t|uI ,t = lI )+ log P(ũJ ,t|uJ ,t = lJ )

+ log P(ut = l|ut−1 = k) (20)

With these metrics, the a posteriori LLR corresponding to the

index APP P(ut = l|Ỹ T
I ,1, Ỹ

T
J ,1) can be expressed as

L(ut = l|Ỹ T
I ,1, Ỹ

T
J ,1) = âu

t (l)+ b̂ u
t (l)− âu

t (0)− b̂ u
t (0)

+
∑

D[{I ,J}

{L[ext]
CD (uD,t = lD)− L[ext]

CD (uD,t = 0D)} (21)

In the next step, the APP of each decoded symbol in every
description is calculated from the temporary values of the
1872
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index APPs and used for computing the extrinsic
information of the source decoder. From the properties of
the index assignment matrix, this task was accomplished by
summing together the APPs of quantiser indexes being
assigned to a certain description. For example, the APP for
a decoded symbol uI,t ¼ lI of description I is given by

P(uI ,t = lI |Ỹ
T
I ,1, Ỹ

T
J ,1) =

∑

n[RlI

P(ut = n|Ỹ T
I ,1, Ỹ

T
J ,1) (22)

where RlI
= {n|dI (n) = lI } represents the subset of quantiser

indexes located in column lI of the matrix. Substituting (18)
and (20) into (22) leads to

log P(uI ,t = lI |Ỹ
T
I ,1, Ỹ

T
J ,1)

= log P(ũI ,t|uI ,t = lI )+ log P(Z̃
T
I ,1|uI ,t = lI , Ũ

T
I ,1)

+ max
n[RlI

∗{log P(ũJ ,t|uJ ,t = nJ )

+ log P(Z̃
T
J ,1|uJ ,t = nJ , Ũ

T
J ,1)

+ b̂ u
t (n)+max

k

∗{log P(ut = n|ut−1 = k)+ âu
t−1(k)}}

(23)

This allows us to decompose the a posteriori LLR

L(uI ,t = lI |Ỹ
T
I ,1, Ỹ

T
J ,1) into three additive terms: a priori term

La(uI,t), the channel-related term Lc(uI,t ¼ lI), and an
extrinsic term L[ext]

SD (uI ,t = lI ). In order to determine each
of the three terms, we rewrite (23) in log-likelihood
algebra as

L(uI ,t = lI |Ỹ
T
I ,1, Ỹ

T
J ,1) = log

∑
n[RlI

P(ut = n|Ỹ T
I ,1, Ỹ

T
J ,1)

∑
m[R0

P(ut = m|Ỹ T
I ,1, Ỹ

T
J ,1)

= La(uI ,t = lI )+ Lc(uI ,t = lI )+ L[ext]
SD (uI ,t = lI )

(24)

where

La(uI ,t = lI )

= log [P(Z̃
T
I ,1|uI ,t = lI , Ũ

T
I ,1)/P(Z̃

T
I ,1|uI ,t = 0, Ũ

T
I ,1)]

(25)

Lc(uI ,t = lI ) = log [P(ũI ,t|uI ,t = lI )/P(ũI ,t|uI ,t = 0)] (26)

and

L[ext]
SD (uI ,t = lI )

=max
n[RlI

∗{logP(ũJ ,t|uJ ,t = nJ )+ logP(Z̃
T
J ,1|uJ ,t = nJ , Ũ

T
J ,1)

+ b̂ u
t (n)+max

k

∗{logP(ut = n|ut−1= k)+ âu
t−1(k)}}

−max
m[R0

∗{logP(ũJ ,t|uJ ,t =mJ )+ logP(Z̃
T
J ,1|uJ ,t =mJ , Ũ

T
J ,1)

+ b̂ u
t (m)+max

k

∗{logP(ut =m|ut−1= k)+ âu
t−1(k)}}

(27)
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As shown in the Appendix, the a priori LLR in (25) is equal
to the de-interleaved sequence of extrinsic information
resulting from the channel decoding, that is, La(uI ,t = lI ) =
L[ext]

CD (uI ,t = lI ). The extrinsic LLR L[ext]
SD (uI ,t = lI ) contains

the new part of information which has been determined by
the source decoder by exploiting the residual source
redundancy as well as the inter-description correlation
induced by the MDSQ. With respect to (24), the extrinsic
LLR resulting from the source decoding can be calculated by

L[ext]
SD (uI ,t = lI ) = L(uI ,t = lI |Ỹ

T
I ,1, Ỹ

T
J ,1)

− L[ext]
CD (uI ,t = lI )− Lc(uI ,t = lI ) (28)

which is used after interleaving as a priori information in the
next channel decoding round. Finally, we summarise the
proposed MD-ISCD scheme as follows:

1. Initialisation: Set the extrinsic information of source
decoding to L[ext]

SD (xI ,t) = L[ext]
SD (xJ ,t) = 0. Set the iteration

counter to n ¼ 0 and define an exit condition nmax.
2. Read series of received sequences Ỹ

T
D,1 and map all

received systematic symbols x̃D,t to channel-related LLR
Lc(xD,t).
3. Perform log-MAP channel decoding on each description
to compute the extrinsic LLR L[ext]

CD (xD,t) using (15).
4. Perform MD-SISO source decoding by inserting the de-
interleaved extrinsic LLR L[ext]

CD (uI ,t) and L[ext]
CD (uJ ,t) into (21)

to compute the index a posteriori LLR L(ut|Ỹ
T
I ,1, Ỹ

T
J ,1) and

into (24) to compute the symbol a posteriori LLR

L(uI ,t|Ỹ
T
I ,1, Ỹ

T
J ,1). Then, the extrinsic LLR L[ext]

SD (uI ,t) is
computed by (28) and is forwarded to the channel decoder
as a priori information. Joint decoding of the two received

sequences to extract the extrinsic LLR L[ext]
SD (uJ ,t) of

description J operates in a similar manner.
5. Increase the iteration counter n� n+ 1. If the exit
condition n ¼ nmax is fulfilled, then continue with step 6,
otherwise proceed with step 3.
6. Compute the APP for each decoded index ut ¼ l as
follows

P(ut = l|Ỹ T
I ,1, Ỹ

T
J ,1) = eL(ut=l|ỸT

I ,1,Ỹ
T
J ,1)/

∑2M−1

j=0

eL(ut=j|Ỹ T
I ,1,Ỹ

T
J ,1)

(29)

7. Estimate the decoder output signals v̂t by (1) using the
index APPs obtained from step 6.

5 Experimental results

Computer simulations were conducted to compare the
performance of various MD-ISCD schemes for transmission
of convolutionally encoded MDs over AWGN channels.
First a bit-level iterative decoding scheme MD-ISCD1 [9] is
considered for error mitigation using the classical BCJR
algorithm for soft-output channel decoding and assisted
with the bit reliability information provided by the soft-bit
source decoding [15]. For the MD-ISCD1 scheme with bit
interleaving, the source decoder applies two separate MAP
detectors and performs turbo cross decoding to exploit the
inter-description correlation [9]. Two approaches to symbol-
level iterative decoding, denoted by MD-ISCD2 and MD-
ISCD3, are presented and investigated. They both applied a
IET Commun., 2012, Vol. 6, Iss. 13, pp. 1868–1875
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symbol interleaver and performed log-MAP symbol
decoding of binary convolutional codes based on
sectionalised code trellises. Unlike the MD-ISCD1 and
MD-ISCD2 which use two MAP detectors with each
detector decoding one description, the MD-ISCD3 applies
a joint MAP source decoder to improve the estimation of
transmitted quantiser indexes by combining reliability
information received on different channels. Specifically, the

APP to be computed for the MD-ISCD3 is P(ut|Ỹ
T
I ,1, Y T

J ,1)

in (15), and {P(uI ,t|Ỹ
T
I ,1), P(uJ ,t|Ỹ

T
J ,1)} for the other two

schemes. The input signals considered here include are first
order Gauss–Markov sources described by vt ¼ rvt21+ wt,
where wt is a zero-mean, unit-variance white Gaussian
noise, with correlation coefficients of r ¼ 0.8 and 0.95. As
indicated in [16], a value of r ¼ 0.95 can be found for
scale factors determined in the MPEG audio codec for
digital audio broadcasting. On the other hand, r ¼ 0.8
provides a good fit to the long-time-averaged
autocorrelation function of 8 kHz-sampled speech that is
bandpass-filtered to the range (300 and 3400 Hz) [17]. A
total of 3 000 000 input samples is processed by a scalar M-
bit Lloyd–Max quantiser and each quantiser index is
mapped to two descriptions, each with R bits per symbol
per channel. For each of the two descriptions, the bitstreams
were spread by an interleaver of length 300 bits and
afterwards they were channel encoded by a rate-1/2
recursive systematic convolutional code with a memory
order 2 and generator polynomial G(D) ¼ (1, (1+D2)/
(1+D+D2)).

A preliminary experiment was first performed to examine
the step-wise quality gains because of the turbo-like
evaluation of channel-code and source-code redundancies.
For quality evaluation we consider the parameter signal-to-
noise ratio (SNR), calculated according to∑

t v2
t /

∑
t (vt − ṽt)

2. Here, vt represents the input sample
and ṽt represents the systems’s output sample. The variation
of parameter SNR as a function of the channel SNR Es/N0

for MD-ISCD3 simulation of Gauss–Markov sources with
r ¼ 0.95 and (M, R) ¼ (5, 3) is shown in Fig. 3. The
results indicate that a turbo-like refinement of the extrinsic
information from both constituent decoders makes
substantial quality improvements possible. The full gain in
parameter SNR is reached after three iterations. The

Fig. 3 MD-ISCD3 performance for Gauss–Markov sources with
r ¼ 0.95 and (M, R) ¼ (5, 3)
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investigation further showed that the improved performance
achievable using MD-ISCD3 is more noticeable for lower
channel SNR. To elaborate further, SNR performances of
various MD-ISCD schemes were examined for Gauss–
Markov sources with r ¼ 0.8 and 0.95. We provide results
for experiments on MDSQ with (M, R) ¼ (4, 3) and (5, 3)
in Figs. 4 and 5, respectively. Three iterations of the
algorithm were performed by each decoder as further
iterations did not result in a significant improvement. The
results clearly demonstrate the improved performance
achievable using symbol decoders MD-ISCD2 and MD-
ISCD3 in comparison to that of bit-based MD-ISCD1.
Furthermore, the improvement has a tendency to increase
for lower channel SNR and for more heavily correlated
Gaussian sources. This indicates that the extrinsic
information between source and channel decoders is better
to be exploited at the symbol level. The investigation
further showed that there is a considerable gap between
the MD-ISCD2 and MD-ISCD3 schemes. Moreover, the
performance gain achievable using MD-ISCD3 increases as
more and more diagonals are included in the index

Fig. 4 SNR performance of different decoders for (M, R) ¼ (4, 3)
and Gauss–Markov sources (r ¼ 0.8, 0.95)

Fig. 5 SNR performance of different decoders for (M, R) ¼ (5, 3)
and Gauss–Markov sources (r ¼ 0.8, 0.95)
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assignment. For the case of (M, R) ¼ (4, 3) and r ¼ 0.95,
the MD-ISCD3 yields about 1.97 dB improvement at Eb/
N0 ¼ 22 dB relative to the MD-ISCD2. For the case of (M,
R) ¼ (5, 3), the parameter SNR can further be improved by
up to 9.91 dB. The difference between them is due to the
fact that MD-ISCD2 only accounts for the information
received on a single description through the knowledge of

symbol APP P(uD,t|Ỹ
T
D,1). On the other hand, the MD-

ISCD3 uses in its APP computation the total channel

outputs {Ỹ
T
I ,1, Ỹ

T
J ,1) and makes the final decision by

incorporating the inter-description correlation as a result of
the MDSQ.

6 Conclusions

This study presents a new MD-ISCD technique which allows to
exploit the source residual redundancy as well as the inter-
description correlation to the fullest extent. First a log-MAP
symbol decoding scheme is proposed to decode binary
convolutional codes and is shown to be superior to the
bit-level BCJR algorithm. Performance of the MD-ISCD is
further enhanced by exchanging between its constituent
decoders the whole symbol extrinsic information. Also
proposed is a joint MAP source decoder which processes the
total channel outputs and combines them with inter-
description correlation to improve the estimation of
transmitted quantiser indexes. Experimental results indicate
that the combined use of a symbol-based channel decoder and
a joint MAP source decoder allows the proposed MD-ISCD
scheme to achieve high robustness against channel noises.

7 Acknowledgment

This study was supported by the National Science Council,
Republic of China, under contract NSC 98-2221-E-009-
090-MY3.

8 References

1 Goyal, V.K.: ‘Multiple description coding: compression meets the
network’, IEEE Signal Process. Mag., 2001, 18, (5), pp. 74–93

2 Vaishampayan, V.A.: ‘Design of multiple description scalar quantizers’,
IEEE Trans. Inf. Theory, 1993, 39, pp. 821–834

3 Dong, B., Wang, X., Doucet, A.: ‘A new class of soft MIMO
demodulation algorithms’, IEEE Trans. Commun., 2003, 51, (11),
pp. 2752–2763

4 Doucet, A., Wang, X.: ‘Monte Carlo methods for signal processing:
a review in the statistical signal processing context’, IEEE Signal
Process. Mag., 2005, 22, (6), pp. 152–170

5 Cappe, O., Godsill, S.J., Moulines, E.: ‘An overview of existing
methods and recent advances in sequential Monte Carlo’, Proc. IEEE,
2007, 95, (5), pp. 899–924

6 Gortz, N.: ‘A generalized framework for iterative source-channel
decoding’. Annals of Telecommunications, Special Issue on Turbo
Codes, July/August 2001, pp. 435–446

7 Adrat, M., Vary, P., Spittka, J.: ‘Iterative source-channel decoder using
extrinsic information from softbit source decoding’. Proc. IEEE Int.
Conf. Acoustics, Speech, and Signal Processing, Salt Lake City, UT,
USA, May 2001, vol. 4, pp. 2653–2656

8 Srinivasan, M.: ‘Iterative decoding of multiple descriptions’. Proc. IEEE
ICC, March 1999, pp. 3–12

9 Barros, J., Hagenauer, J., Gortz, N.: ‘Turbo cross decoding of multiple
descriptions’. Proc. IEEE ICC, 2002, vol. 3, pp. 1398–1402

10 Bahl, L.R., Cocke, J., Jelinek, F., Raviv, J.: ‘Optimal decoding of linear
codes for minimizing symbol error rate’, IEEE Trans. Inf. Theory, 1974,
IT-20, pp. 284–287

11 Lin, S., Costello, D.J.: ‘Error control coding’ (Prentice-Hall, New Jersey,
2004)

12 Liu, Y., Lin, S., Fossorier, M.P.C.: ‘MAP algorithms for decdoing linear
block codes based on sectionalised trellis diagrams’, IEEE Trans.
Commun., 2000, 48, pp. 577–587
IET Commun., 2012, Vol. 6, Iss. 13, pp. 1868–1875
doi: 10.1049/iet-com.2011.0268



www.ietdl.org
13 Erfanian, J.A., Pasupathy, S., Gulak, G.: ‘Reduced complexity symbol
detectors with parallel structures for ISI channels’, IEEE Trans.
Commun., 1994, 42, pp. 1661–1671

14 Robertson, P., Villebrun, E., Hoeher, P.: ‘A comparison of optimal and
sub-optimal MAP decoding algorithms operating in the log domain’.
Proc. IEEE Int. Conf. on Communication, June 1995, vol. 2,
pp. 1009–1013

15 Fingscheidt, T., Vary, P.: ‘Softbit speech decoding: a new approach to
error concealment’, IEEE Trans. Speech Audio Process., 2011, 9, (3),
pp. 240–251

16 Gortz, N.: ‘On the iterative approximation of optimal joint source-
channel decoding’, IEEE J. Select. Areas Commun., 2001, 19, (9),
pp. 1662–1670

17 Jayant, N.S., Noll, P.: ‘Digital coding of waveforms’ (Prentice-Hall,
Englewood Cliffs, NJ, 1984)

9 Appendix

In this Appendix we shall show that the a priori LLR in (24) is
equal to the de-interleaved sequence of extrinsic information
provided by the SISO channel decoder, that is,

La(uI ,t = lI ) = L[ext]
CD (uI ,t = lI ). The APP of a systematic

symbol xD,t ¼ lD, given the received code sequences

Ỹ
T
D,1 = (X̃

T
D,1, Z̃

T
D,1), can be decomposed by using the

Bayes theorem as

P(xD,t = lD|Ỹ
T
D,1)

= P(xD,t = lD, X̃
T
D,1)

· P(Z̃
T
D,1|xD,t = lD, X̃

T
D,1)/P(Ỹ

T
D,1)

= P(x̃D,t|xD,t = lD, X̃
t−1
D,1 , X̃

T
D,t+1)

· P(xD,t = lD, X̃
t−1
D,1 , X̃

T
D,t+1)

× P(Z̃
T
D,1|xD,t = lD, X̃

T
D,1)/P(Ỹ

T
D,1)
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= C · P(x̃D,t|xD,t = lD) · P(xD,t = lD)

· P(Z̃
T
D,1|xD,t = lD, X̃

T
D,1) (30)

where C = P(X̃
t−1
D,1 , X̃

T
D,t+1)/P(Ỹ

T
D,1). We rewrite (29) in log-

likelihood algebra as

L(xD,t = lD|Ỹ
T
D,1)

= La(xD,t = lD)+ Lc(xD,t = lD)+ L[ext]
CD (xD,t = lD) (31)

with

L[ext]
CD (xD,t = lD) = log

P(Z̃
T
D,1|xD,t = lD, X̃

T
D,1)

P(Z̃
T
D,1|xD,t = 0, X̃

T
D,1)

(32)

Since the de-interleaved sequence of L[ext]
CD (xD,t = lD) is used

by the source decoder, we have

L[ext]
CD (uD,t = lD) = log

P(Z̃
T
D,1|uD,t = lD, Ũ

T
D,1)

P(Z̃
T
D,1|uD,t = 0, Ũ

T
D,1)

(33)

where Ũ
T
D,1 = F

−1(X̃
T
D,1). Once the LLR L[ext]

CD (uD,t = lD) has
been determined, we can compute the probability as follows

P(Z̃
T
D,1|uD,t = lD, Ũ

T
D,1) = eL[ext]

CD
(uD,t=lD)/

∑2R−1

j=0

eL[ext]
CD

(uD,t=j)

(34)
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