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Abstract: The authors consider distributed estimation using sensor network with coherent multiple access channel model and
LMMSE fusion rule. The sensors in the network are divided into a number of clusters. Sensors within the same cluster are
allowed to collaborate through an amplification matrix to form a message this then transmitted. They formulate the problem
of choosing the amplification matrices as an optimal power allocation problem under a total power constraint. The solution
gives the optimal amplification matrices as scaled outer products of the observation gain and the channel gain vectors. The
authors show that collaboration improves performance and, in simulations, demonstrate that the amount of improvement is
closely related to the amount of collaboration.
1 Introduction

Distributed estimation has attracted much attention in signal
processing research for sensor networks [1]. In distributed
estimation scenario, a certain parameter is measured by
spatially distributed sensors and the measurements are sent
to a fusion centre (FC) where a final estimate is formed.
Owing to energy constraints, power efficiency is an
important issue since it is closely related to the network
lifetime. To enhance power efficiency, many research
works focus on cluster-based sensor networks in which the
problem is to efficiently organise sensors into clusters so
that network lifetime can be improved [2, 3]. For example,
Wimalajeewa and Jayaweera [4] introduced sensor
selection schemes to minimise the estimation distortion,
whereas Heinzelman et al. [5] developed a communication
protocol to save power. Recently, analogue transmission
schemes aiming at minimising the estimation distortion by
optimally allocating power for each sensor have been
studied based on the coherent multiple access channel
(MAC) model [6–9], the orthogonal MAC model [10–15],
as well as the hybrid MAC model [16]. Among them,
some works consider distributed estimation of a scalar
parameter [13, 14] or a vector parameter [9, 10] with
spatially correlated sensor observations. The work in [15]
addresses robust estimation that takes account of the
uncertainty in the local observing noise variance. Fang and
Li [12] considered a cluster-based network architecture in
which closely located sensors are able to collaborate to
form local messages for transmission through the
orthogonal MAC.

In this paper, we consider distributed estimation of a scalar
parameter by optimally allocating power based on cluster-
based wireless sensor networks with the coherent MAC
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model. We assume that the sensors in the network are
already divided into a number of clusters. The sensors in
the same cluster are allowed to collaborate, while
collaboration is prohibited for sensors in different clusters.
The collaboration is through an amplification matrix, for
each cluster, that forms a message from the measurements
for transmission to the FC. In other words, collaboration
means the measurements within a cluster are linearly
combined locally. At the FC, the parameter is estimated
based on the linear minimum mean-squared error (LMMSE)
rule. The mean-squared error (MSE) depends on the choice
of the amplification matrices. We study the problem of
choosing the amplification matrices so that the
corresponding MSE is minimised. We formulate the
problem as one of optimal power allocation under a total
power constraint. The solution shows that the optimal
amplification matrices are scaled outer products of the
observation gain and the channel gain vectors. For
comparison, two special cases are also considered: the full
collaboration case, in which all sensors are in the same
cluster, and the non-collaboration case, in which each
cluster has only one sensor. We show that with the optimal
amplification matrices, collaboration indeed improves
performance in terms of MSE. We demonstrate through
simulation results that the amount of improvement is
closely related to the amount of collaboration.

The rest of this paper is organised as follows. In Section 2,
we describe the model of cluster-based sensor network and
the problem we address. In Section 3, we solve the
optimisation problem to obtain the optimal amplification
matrices and show that with optimal amplification matrices,
collaboration indeed improves performance. In Section 4,
simulation results are given to verify the analytical result.
Section 5 is a brief conclusion.
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2 System model and problem formulation

We consider a wireless sensor network consisting of K
spatially deployed sensors for estimating a random source
signal u. The sensors in the network are divided into L
clusters, as shown in Fig. 1. The lth cluster has Kl sensors
and the measurement at the kth sensor is given by

xl,k = fl,ku+ nl,k , 1 ≤ l ≤ L, 1 ≤ k ≤ Kl (1)

where fl,k is the observation gain and nl,k is the measurement
noise. In vector form, (1) becomes

xl = f lu+ nl , 1 ≤ l ≤ L (2)

where xl = [xl,1 · · · xl,Kl
]T, f l = [fl,1 · · · fl,Kl

]T and nl = [nl,1
· · · nl,Kl

]T. The collaboration between sensors in the lth
cluster is through an amplification matrix Al [ RNl×Kl ,
which takes xl [ RKl to form the message vector
Alxl [ RNl . The messages are then sent to the FC and the
signal y received at the FC can be expressed as

y =
∑L

l=1

gT
l Al(flu+ nl) + n (3)

where gl = [gl,1 · · · gl,Nl
]T is the channel gain vector and n is

the additive noise at the receiver. In practice, the sensors
which are geographically closely located can compose a
cluster. The collaboration between sensors in the same
cluster can be implemented by choosing one sensor as the
cluster head whose task is to collect and process
information sent from other sensors to form a message
vector and transmit it to the FC.

In this paper, we assume that (i) E[u] ¼ 0 and E[u 2] = s2
u,

(ii) the measurement noises are zero-mean and mutually
uncorrelated, specifically E[nl] ¼ 0, E[nln

T
l ] = s2

nIKl
and

E[nln
T
m] = 0Kl×Km

for l = m, (iii) E[n] ¼ 0 and E[n2] = s2
n,

(iv) the source signal, the measurement noises, and the
receiver noise are uncorrelated, that is, E[unl] ¼ 0,
E[un] ¼ 0 and E[nnl] ¼ 0, and (v) the observation gain
vectors fl and the channel gain vectors gl are known to the FC.

For a given set of amplification matrices Al, the LMMSE
estimate of u using the received signal y in (3) is [17, p. 382]

û = E[uy]

E[ y2]
y

= s2
u

∑L
l=1 gT

l Al fl

s2
u

∑L
l=1 gT

l Al fl

( )2+ s2
n

∑L
l=1 gT

l AlA
T
l gl + s2

n

y (4)

Fig. 1 Cluster-based sensor network with coherent MAC
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and the corresponding MSE is

J = E[(u− û )2] = s2
u −

(E[uy])2

E[ y2]

= 1

s2
u

+
∑L

l=1 gT
l Al fl

( )2

s2
n

∑L
l=1 gT

l AlA
T
l gl + s2

n

( )−1

(5)

The problem is to minimise the MSE in (5) by choosing
optimal amplification matrices Al under a total power
constraint. The total transmitted power of the L clusters is∑L

l=1 E[xT
l AT

l Alxl]. Hence if P is the amount of power that
the clusters together can used, then we have the following
constraint

∑L

l=1

tr(E[Alxlx
T
l AT

l ]) =
∑L

l=1

tr(s2
uAl fl f T

l AT
l + s2

nAlA
T
l ) ≤ P

(6)

where tr(.) denotes the trace of a matrix and we use
E[xlx

T
l ] = s2

u ff T + s2
nIKl

. From (5) and (6), the
optimisation problem under consideration can be written as

min
Al ,1≤l≤L

J

subject to
∑L

l=1

tr(s2
uAl fl f T

l AT
l + s2

nAlA
T
l ) ≤ P

(7)

where J is given in (5).

Remarks: We had assumed that the measurement noises are
mutually uncorrelated across all sensors. If the measurement
noises are correlated within the same cluster but
uncorrelated across different clusters, the problem can still
be formulated in the same form as (7). To see this, suppose
E[nln

T
l ] = Rnl

, where Rnl
= RT

nl
[ RKl×Kl is positive

definite and E[nln
T
m] = 0Kl×Km

for l = m. Let

Rnl
= Unl

Lnl
UT

nl
be the eigenvalue decomposition with

Lnl
= diag(s2

nl,1
, . . . , s2

nl,Kl
) . 0, where diag(x1, . . . , xM ) is

a diagonal matrix whose mth diagonal element is xm.
By setting Ãl = AlUnl

L1/2
nl

and f̃ l = L−1/2
nl

UT
nl

f l, the
corresponding optimisation problem has the same form as
(7) with Al, fl and s2

n replaced by Ãl, f̃ l and 1, respectively.

3 Optimal amplification matrices

In this section, we consider the solution of the optimisation
problem (7) with the goal of obtaining a closed form
expression for the optimal amplification matrices Al. We
first make the following observations:

1. In problem (7), if the ‘ ≤ ’ sign in the constraint is replaced
by the ‘¼’ sign, the solution does not change. Hence we could
consider the optimisation problem with equality constraint.
The argument is as follows. Since the constraint function is
quadratic in the elements of Al, if a set of Al is such that
strict inequality holds, we can equally scale up each Al so
that equality holds. In addition, if we equally scale up each
Al, we obtain a lower function value of J because in (5)
the second term inside the parentheses becomes larger.
Consequently, with optimal Al, the inequality constraint
must be active.
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2. Consider the optimal MSE in (7), say, J∗ as a function of
the power P, then J∗ is a strictly decreasing function of P, that
is, if P2 . P1, then J∗(P2) , J∗(P1). The argument is similar:
if the power level increases, we can equally scale up Al to
obtain a lower value of J and thus a lower value of optimal
MSE J∗ can be obtained.
3. Since the function J∗(P) is 1–1 and decreasing, the inverse
function P( J∗) is also 1–1 and decreasing. Hence instead of
finding the matrices Al that minimise J in (5) under an
equality constraint on power level, we can find the matrices
Al that minimise the power level subject to an equality
constraint on MSE. If the constraint value on MSE is such
that the resulting minimum power level matches the given
value P in (7), the corresponding matrices Al are the
optimal ones we set out to find. We thus consider the
following optimisation problem

min
Al ,1≤l≤L

∑L
l=1

tr(s2
uAl f l f T

l AT
l + s2

nAlA
T
l )

subject to
1

s2
u

+
∑L

l=1 gT
l Al fl

( )2

s2
n

∑L
l=1 gT

l AlA
T
l gl + s2

n

( )−1

= J ∗

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(8)

where 0 , J ∗ ≤ s2
u. We note that both the objective function

and the constraint function in (8) are quadratic in the elements
of Al. This problem is considerably easier to solve than the
original one (7). The main result based on solving (8) is in
the following proposition whose proof is given in Appendix 1.

Proposition 1: Consider the sensor network model described
by (2) and (3). Suppose the total transmitted power from all
sensors is no greater than P, then using the LMMSE
estimator, the optimal amplification matrix of the lth cluster
is given by

Aopt
l =

������������������������������������������∑L

i=1

‖ f i‖2‖gi‖2(s2
u‖ f i‖2 + s2

n)

f2
i

( )−1
P

f2
l

√√√√ gl f T
l ,

l = 1, . . . , L

(9)

where fi = s2
n(s2

u‖ f i‖2 + s2
n) + s2

n‖gi‖2P and ‖x‖ =
����
xTx

√
,

and the corresponding minimum MSE is

JM = 1

s2
u

+
∑L

l=1

‖ f l‖2‖gl‖2P

s2
n(s2

u‖ f l‖2 + s2
n) + s2

n‖gl‖2P

( )−1

(10)

The optimal amplification matrix Aopt
l is a rank one matrix,

which is a scaled outer product of gl and fl. As expected the
optimal MSE JM decreases as P increases. Moreover, as
P � 1, we have

lim
P�1

JM = s2
u

1 + (s2
u/s

2
n)
∑L

l=1 ‖ fl‖2
(11)

The limit does not go to zero but approaches a finite value
which depends on the signal-to-noise ratio s2

u

∑L
l=1 ‖ fl‖2/s2

n,
since the measured signal flu+ nl is amplified by Al,
1 ≤ l ≤ L.

For comparison, we consider two special cases: L ¼ 1 and
L ¼ K. When L ¼ 1, there is full collaboration among the K
sensors. The observation gain is f [ RK and the channel
628
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gain is g [ RN , N ≤ K. With the optimal amplification
matrix Aopt [ RN×K given by (9), the minimum MSE in
(10) becomes

JC = 1

s2
u

+ ‖ f ‖2‖g‖2P

s2
n(s2

u‖ f ‖2 + s2
n) + s2

n‖g‖2P

( )−1

(12)

When L ¼ K, each sensor is a cluster and no collaboration
between sensor exists. The scalar observation gains and
channel gains are respectively fk and gk, 1 ≤ k ≤ K. With
the K scalar amplification gains given by (9), the minimum
MSE becomes

JN = 1

s2
u

+
∑K

k=1

f 2
k g2

k P

s2
n(s2

u f 2
k + s2

n) + s2
n g2

k P

( )−1

(13)

To compare the performance of the general case and the two
special cases, we assume Nl ¼ Kl, 1 ≤ l ≤ L, in (10) and
N ¼ K in (12), that is, the number of measurements is
equal to the number of transmitters in each cluster.
Hence the observation gain and the channel gain vectors
can be written as f = [ f T

1 f T
2 · · · f T

L]T = [ f1f2 · · · fK ]T and
g = [gT

1 gT
2 · · · gT

L]T = [g1 g2 · · · gK ]T, respectively, where
f l, gl [ RKl and K1 + · · · + KL ¼ K. In terms of the
MSE, it is not unexpected that collaboration improves
performance. Indeed, we have the following proposition.

Proposition 2: The minimum MSEs JM in (10), JC in (12),
and JN in (13) satisfy

JC ≤ JM ≤ JN (14)

The proof of Proposition 2 is based on the following lemma.

Lemma 1: For x = [xT
1 xT

2 · · · xT
L]T [ Rn and y =

[ yT
1 yT

2 · · · yT
L]T [ Rn, where xi and yi are non-zero vectors of

dimension ≥1, we have

‖x‖2‖y‖2

‖x‖2 + ‖y‖2 ≥
∑L

i=1

‖xi‖2‖yi‖2

‖xi‖2 + ‖yi‖2 (15)

Proof: Please see Appendix 2.
We now establish Proposition 2. Let x =

���
s2
u

√
f , y =�����������

(s2
n/s

2
n)P

√
g, xi =

���
s2
u

√
f i and yi =

�����������
(s2

n/s
2
n)P

√
gi. Then by

Lemma 1, we obtain

‖ f ‖2‖g‖2

s2
u‖ f ‖2 + (s2

n/s
2
n)P‖g‖2 + s2

n

≥
∑L

i=1

‖ f i‖2‖gi‖2

s2
u‖ f i‖2 + (s2

n/s
2
n)P‖gi‖2 + s2

n

and thus J−1
C ≥ J−1

M , or equivalently, JC ≤ JM. The second
inequality in (14) follows similarly: apply Lemma 1 to each
xi, yi, and their respective scalar components, and their
sums give the desired inequality.

4 Numerical results

In this section, we use numerical simulations to verify the
analytical result established in Section 3. In all simulations,
the random parameters, u, nl, k and n, are zero-mean
IET Signal Process., 2012, Vol. 6, Iss. 7, pp. 626–632
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Gaussian, and we assume that s2
u = s2

n = 1. The observation
gains fl,k are assumed to be uniformly distributed in the
interval [0.5, 1]. The channel gains are taken as cgd23.5,
where d is uniformly drawn from the interval [1, 10] and
cg ¼ 22.6 is a normalisation constant to make E[ gl,n] ¼ 1
as in [7].

We first consider the effect of different numbers of
transmitters N, where N ≤ K, in the full collaboration case.
We set K ¼ 10 and s2

n = 0.4. In Fig. 2, we plot the average
MSE against N with power levels P ¼ 0, 5 and 10 dB. We
note that as N increases, the MSEs decrease; also, large
power levels result in smaller MSEs.

In all the simulations to follow, the number of sensors and
the number of transmitters are set equal. Fig. 3 shows the
average MSE against P for the full collaboration and non-
collaboration cases with different observation noises,
s2

n = 0.4 and s2
n = 0.8. We set K ¼ 20. For s2

n = 0.4, the
case with full collaboration performs better than the non-
collaboration case. Moreover, as the transmitted power
increases, the MSEs for both two cases decrease. In fact,
from (11), these two cases approach identical MSE as

Fig. 2 MSE of full collaboration case with different numbers of
transmitters

Fig. 3 MSE of full collaboration and non-collaboration cases
with different power levels
IET Signal Process., 2012, Vol. 6, Iss. 7, pp. 626–632
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Fig. 4 MSE of full collaboration and non-collaboration cases
with different power levels

Fig. 5 MSEs for Kl ¼ 1, 4, 8, and K with different number of
sensors

Fig. 6 Comparison of the coherent MAC model to that of the
orthogonal MAC model
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Table 1 Different number of sensors in clusters

K ¼ 30 P ¼ 0 dB

clusters, L 4 5 5 6 6 6 7 7 8 9

number of entries 252 226 218 218 200 184 184 166 162 124

MSE, JM 0.0566 0.0603 0.0617 0.0635 0.0642 0.0659 0.0687 0.0690 0.0704 0.0790
P � 1. We also see that the MSE of the case with s2
n = 0.4

is smaller than that of the case with s2
n = 0.8, that is, a large

signal-to-noise ratio results in a good performance.
Fig. 4 shows the comparison for the full collaboration case

and two non-collaboration cases. The first non-collaboration
case uses the optimal power allocation scheme and the
second case uses equal power allocation scheme, in which
the amplification gains are chosen as ak =

�����
P/K

√
,

1 ≤ k ≤ K. We set K ¼ 50 and s2
n = 0.4. Clearly, optimal

power allocation improves performance over equal power
allocation. The reduction in MSE by full collaboration with
optimal power allocation is about 10 dB compared with the
equal power allocation scheme.

We now consider two multiple cluster cases: in case 1, each
cluster consists of 4 sensors, and in case 2, each cluster
consists of eight sensors. Hence for a fixed number of
sensors K, case 1 has K/4 clusters and case 2 has K/8
clusters. We compare their performance with the full
collaboration and non-collaboration cases. We set P ¼ 0 dB
and s2

n = 0.4. Fig. 5 shows that MSE of case 2 is less than
that of case 1 since for a fixed K, case 2 has a smaller
number of clusters and thus more collaboration among
sensors. That the full collaboration has the lowest MSE and
the non-collaboration case has the highest MSE is as
predicted by (14).

For comparison, we also simulate the scheme proposed in
[12] based on the orthogonal MAC model, where the
measurement vector for lth cluster is xl ¼ flu+ nl which
then transmits to the lth receiver through a diagonal channel
gain matrix Dl after multiplying by an amplification matrix
Al; at the FC, the received signal vector from the lth cluster
is yl ¼ Dl Al xl + nl, l ¼ 1, . . ., L, where the additive noise
nl is assumed to be E[nl] ¼ 0, E[nln

T
l ] = s2

nIKl
, E[nln

T
j ] =

0Kl×Kl
for j = l. After collecting L signal vectors at

the FC, the LMMSE fusion rule is used for estimating the
source signal. The performance comparison for the
orthogonal and coherent MAC models is plotted in Fig. 6,
in which we take P ¼ 10 dB, Kl ¼ 3 for all clusters, and
s2

n = 1. We see that the MSE of the coherent MAC model
performs better than that of the orthogonal MAC model.
This is because by using the orthogonal MAC model, the
number of receiver noises increases as the number of
clusters increases. However, by using the coherent MAC
model, there is only one receiver noise regardless of the
number of clusters.

Finally to see quantitatively the relation between
collaboration and MSE, we consider a network with 30
sensors and P ¼ 0 dB. We perform ten simulations with the
number of cluster ranging from 4 to 9. The number of
sensors in each cluster is randomly chosen from 1 to 10. In
each case, we count the total number of entries in the
amplification matrices Al. For example, in the first case
there are four clusters, the numbers of sensors in the
clusters are respectively 9, 9, 9 and 3, and the number of
entries is 92 + 92 + 92 + 32 ¼ 252. Table 1 shows the
number of cluster, the number of entries, and the
corresponding MSE for each case. From the table, we see
that the MSE decreases as the number of entries increases.
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For comparison, the MSE for the two special cases are
respectively JN ¼ 0.1689 and JC ¼ 0.0392.

5 Conclusion

We study optimal collaboration for distributed estimation in
cluster-based wireless sensor network. We show that the
optimal amplification matrix of each cluster is a rank one
matrix obtained as a scaled outer product of the observation
gain and the channel gain vectors. We also show that with
optimal amplification matrices, estimation performance is
improved compared with the non-collaboration case. We
demonstrate, through simulation results, that the amount of
improvement is closely related to the amount of collaboration.
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8 Appendix 1: Proof of Proposition 1

Write AT
l = [al,1al,2 · · · al,Nl

], where al,j [ RKl . Define slack

variables tl = gT
l Alf l =

∑Nl
n=1 gl,naT

l,nf l, 1 ≤ l ≤ L. The
problem (8) is rewritten as (see (16))

The Lagrangian function for (16) is

L(al,n, tl, ll , l0) =
∑L

l=1

s2
u

∑Nl

n=1

(aT
l,n fl)

2 + s2
n

∑Nl

n=1

(aT
l,nal,n)

( )

+
∑L

l=1

ll tl −
∑Nl

n=1

gl,naT
l,n fl

( )

+ l0 s2
n

∑L

l=1

∑Nl

n=1

gl,naT
l,n

( ) ∑Nl

m=1

gl,mal,m

( )[

+ s2
n −

1

J ∗ −
1

s2
u

( )−1 ∑L

l=1

tl

( )2
⎤
⎦

where ll, l0 [ R, and the associated necessary conditions for
optimality are

∂L

∂al,n

= 2aT
l,n(s2

u fl f T
l + s2

nIKl
) − llgl,n f T

l

+ 2l0s
2
n gl,ngT

l Al = 0T
1×Kl

, 1 ≤ n ≤ Nl, 1 ≤ l ≤ L

⇒ 2Al(s
2
u fl f T

l + s2
nIKl

) − llgl f T
l

+ 2l0s
2
nglg

T
l Al = 0Nl×Kl

, 1 ≤ l ≤ L (17)

∂L

∂tl
= ll − 2l0

1

J ∗ −
1

s2
u

( )−1 ∑L

i=1

ti

( )
= 0,

1 ≤ l ≤ L

(18)
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∂L

∂ll

= tl − gT
l Al f l = 0, 1 ≤ l ≤ L (19)

∂L

∂l0

= s2
n

∑L

l=1

gT
l AlA

T
l gl + s2

n −
1

J ∗ −
1

s2
u

( )−1 ∑L

l=1

tl

( )2

= 0

⇒ s2
n

∑L

l=1

gT
l AlA

T
l gl + s2

n =
1

J ∗ −
1

s2
u

( )−1 ∑L

l=1

tl

( )2

(20)

It follows from (18) that l1 ¼ . . . ¼ lL. Let ll ¼ l, ∀l. It
follows from (17) that

Al + l0s
2
nglg

T
l Al(s

2
u fl f T

l + s2
nIKl

)−1

= l

2
gl f T

l (s2
u f l f T

l + s2
nIKl

)−1

⇒ Al + l0glg
T
l Al −

s2
ul0tl

s2
n + s2

u‖ f l‖2 gl f T
l

= l

2(s2
n + s2

u‖ f l‖2)
gl f T

l

⇒ Al =
s2
ul0tl

s2
n + s2

u‖ f l‖2 (INl
+ l0glg

T
l )−1gl f T

l

+ l

2(s2
n + s2

u‖ f l‖2)
(INl

+ l0glg
T
l )−1gl f T

l

⇒ Al =
s2
ul0tl

(s2
n + s2

u‖ f l‖2)(1 + l0‖gl‖2)
gl f T

l

+ l

2(s2
n + s2

u‖ f l‖2)(1 + l0‖gl‖2)
gl f T

l (21)

where in the second equation we use the matrix inversion
lemma [18, p. 45] and tl = gT

l Al f l. Substituting (21)
into (19), we obtain tl = l‖gl‖2‖ fl‖2/(2wl), where wl =
s2
u‖ f l‖2 + s2

n + l0s
2
n‖gl‖2, and thus from (21), we obtain

Al = l/(2wl)gl f T
l . From (18) and tl = l‖gl‖2‖ f l‖2/2wl,

we have

1

J ∗ −
1

s2
u

=
∑L

i=1

l0‖gi‖2‖f i‖2

wi

(22)

Substituting tl = l‖gl‖2‖ f l‖2/(2wl), Al = l/(2wl)gl f T
l , and

(22) into (20), we have

l

2
=

���������������������������������������������∑L

i=1

‖gi‖2‖ f i‖2(s2
u‖ f i‖2 + s2

n)

wi

( )−1

snl0

√√√√ (23)
min
al,n,tl

∑L
l=1

s2
u

∑Nl

n=1
(aT

l,n fl)
2 + s2

n

∑Nl

n=1
(aT

l,nal,n)

( )

subject to
∑Nl

n=1
gl,naT

l,n fl = tl, 1 ≤ l ≤ L

s2
n

∑L
l=1

∑Nl

n=1
gl,naT

l,n

( ) ∑Nl

m=1
gl,mal,m

( )
+ s2

n =
1

J ∗ −
1

s2
u

( )−1 ∑L
l=1

tl

( )2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)
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From (23) and Al = l/(2wl)gl f T
l , the minimum total power

can be written as follows:

Pmin =
∑L

l=1

tr(s2
uAl f l f T

l AT
l + s2

nAlA
T
l ) = l0s

2
n

It follows that

l0 = Pmin/s
2
n (24)

and thus from (22), we obtain

1

J ∗ −
1

s2
u

=
∑L

i=1

Pmin‖gi‖2‖ f i‖2

s2
n(s2

u‖ f l‖2 + s2
n) + Pmins

2
n‖gl‖2 (25)

Equation (25) gives the relation between the achieved
minimum power and the constraint J∗ on MSE. The optimal
amplification matrices are Al = l/(2wl)gl f T

l , where l and
wl depends on Pmin through (24). In view of observation
(iii) in Section 3, if we set Pmin ¼ P, the corresponding
MSE is given in (10) and the corresponding amplification
matrices is in (9). A

9 Appendix 2: Proof of Lemma 1

We first show that for x = [x1 · · · xn]T [ Rn and
y = [y1 · · · yn]T [ Rn, the following inequality holds

‖x‖2‖y‖2

‖x‖2 + ‖y‖2 ≥
∑n

i=1

x2
i y2

i

x2
i + y2

i

(26)
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or equivalently,

∑n
i=1 x2

i

∑n
j=1 y2

j∑n
j=1 (x2

j + y2
j )

≥
∑n

i=1 x2
i y2

i

∏n
k=i (x2

k + y2
k)

( )∏n
k=1 (x2

k + y2
k )

⇔
∑n

i=1

x2
i

( ) ∑n

j=1

y2
j

( )∏n

k=1

(x2
k + y2

k )

−
∑n

j=1

(x2
j + y2

j )

[ ] ∑n

i=1

x2
i y2

i

∏n

k=i

(x2
k + y2

k )

( )[ ]
≥ 0

The left-hand side of the above inequality can be written as
follows: (see equation at the bottom of the page)

Thus, we obtain (26). Now, let x = [xT
1 · · · xT

L]T =
[x1 · · · xn]T and ‖xl‖2 = x̃2

l , then we have

‖x‖2 =
∑n

i=1

x2
i =

∑L

l=1

‖xl‖2 =
∑L

l=1

x̃2
l = ‖x̃‖2 (27)

where x̃ = [x̃1 · · · x̃L]T. By the same way, we have

‖y‖2 =
∑n

i=1

y2
i =

∑L

l=1

‖yl‖2 =
∑L

l=1

ỹ2
l = ‖ỹ‖2 (28)

From (26)–(28), we have

‖x‖2‖y‖2

‖x‖2 + ‖y‖2 = ‖x̃‖2‖ỹ‖2

‖x̃‖2 + ‖ỹ‖2 ≥
∑L

l=1

x̃2
l ỹ2

l

x̃2
l + ỹ2

l

=
∑L

l=1

‖xl‖2‖yl‖2

‖xl‖2 + ‖yl‖2

and the result follows. A
∑n

i=1

∑n

j=1

x2
i y2

j

[ ]∏n

k=1

(x2
k + y2

k) −
∑n

i=1

∑n

j=1

x2
i y2

i (x2
j + y2

j )

[ ]∏n

k=i

(x2
k + y2

k)

=
∑n

i=1

∑n

j=i

x2
i y2

j

[ ]∏n

k=1

(x2
k + y2

k) −
∑n

i=1

x2
i y2

i

[ ]∏n

k=1

(x2
k + y2

k) −
∑n

i=1

∑n

j=i

x2
i y2

i (x2
j + y2

j )

[ ]∏n

k=i

(x2
k + y2

k )

=
∑n

i=1

∑n

j=i

x2
i y2

j

[ ]∏n

k=1

(x2
k + y2

k) −
∑n

i=1

∑n

j=i

x2
i y2

i (x2
j + y2

j )

[ ]∏n

k=i

(x2
k + y2

k)

=
∑n

i=1

∑n

j=i

x2
i y2

j (x2
i + y2

i ) −
∑n

i=1

∑n

j=i

x2
i y2

i (x2
j + y2

j )

[ ]∏n

k=i

(x2
k + y2

k ) =
∑n

i=1

∑n

j=i

x2
i (x2

i y2
j − x2

j y2
i )

[ ]∏n

k=i

(x2
k + y2

k )

=
∑n

i=1

∑n

j.i

x2
i (x2

i y2
j − x2

j y2
i )

[ ]∏n

k=i

(x2
k + y2

k ) +
∑n

i=1

∑n

j,i

x2
i (x2

i y2
j − x2

j y2
i )

[ ]∏n

k=i

(x2
k + y2

k )

=
∑n

i=1

∑n

j.i

x2
i (x2

i y2
j − x2

j y2
i )

[ ]∏n

k=i

(x2
k + y2

k ) +
∑n

i=1

∑n

j.i

x2
j (x2

j y2
i − x2

i y2
j )

[ ]∏n

k=j

(x2
k + y2

k )

=
∑n

i=1

∑n

j.i

x2
i (x2

j + y2
j )(x2

i y2
j − x2

j y2
i ) − x2

j (x2
i + y2

i )(x2
i y2

j − x2
j y2

i )

[ ] ∏n

k=i, j

(x2
k + y2

k )

=
∑n

i=1

∑n

j.i

(x2
i y2

j − x2
j y2

i )2
∏n

k=i, j

(x2
k + y2

k) ≥ 0
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