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Abstract: The paper presents a novel VLSI archi- 
tecture for high-speed data compressor designs 
which implement the well known LZ77 algorithm. 
The architecture mainly consists of three units, 
namely, content addressable memory, match-logic 
unit, and output-stage unit. The content-address- 
memory unit generates a set of hits signals which 
identify those positions whose symbols in a speci- 
fied window are the same as the input symbol. 
These hits signals are then passed to the match- 
logic unit which determines both match length 
and location to form the kernel of compressed 
data. These two items are then passed to the 
output-stage unit for packetisation before being 
sent out. Simulation results show that, based on a 
0.8 pm CMOS process technology, a clock speed 
of up to 50MHz can be achieved for a VLSI 
design containing a 2K buffer size. This implies 
that the developing data compressor chip can 
handle many real-life applications, such as in 
high-speed data storage and networking systems. 

1 Introduction 

Since Lempel and Ziv [l] published the well-known 
LZ77 lossless data compression algorithm in 1977, many 
different versions have been developed. A good survey of 
these compression algorithms can be found in Reference 
2. In principle, compression ratio, instead of algorithm 
complexity, is the major issue of these algorithms in the 
development phase. However, when real-time require- 
ments are demanded, a trade-off between algorithm com- 
plexity and achievable compression ratio has to be taken 
into account. Fortunately, state-of-the-art VLSI tech- 
nology offers great advantages in system integration and 
can be used to overcome such complexity. Several 
research reports on hardware implementation of the 
LZ77 algorithm can be found in the literature [3,4,5,6]. 
Among these hardware solutions, different realisation 
approaches have been exploited such as the content 
addressable memory or CAM approach [3, 51, the array- 
processor approach [4], and the RISC approach [6]. 
However, these hardware solutions are not suitable for 
high-speed applications because of low throughput or 
too much hardware overhead. 
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We propose a VLSI architecture for single chip imple- 
mentation of the LZ77 algorithm. The architecture is 
achieved by exploiting partitioning and pipelining tech- 
niques based on the CAM approach. Using a 0.8pm 
CMOS double-metal technology, a clock rate of up to 
50 MHz can be achieved. 

2 The LZ77 compression algorithm 

The LZ77 algorithm can be briefly illustrated as in Fig. 
la  which contains a window to buffer a certain amount 
of continuous symbols. For each input symbol, the hit 
signal will be propagated to the next symbol for the 
purpose of stream matching. The input stream will be 
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Fig. 1 
a LZ77 compression algorithm 
b Codword assipnmmt 

Illustration offhe LZ77 algorithm 
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continuously processed in this way until no hit signal or 
maximum match length is detected. Then a codeword 
consisting of match length and start position will be sent 
out. However, in some cases, when the matched stream is 
less than two symbols, we do not gain compression ratio. 
Thus, in this modified version of the LZ77 algorithm, we 
define that the input stream will be replaced by a code- 
word only when its match length is more than one. 
Otherwise, the source symbol together with an identifica- 
tion (ID) code will be sent out. This is shown in Fig. lb. 
With this method, the compression ratio is improved on 
average by 15% [7]. 

Since the window sue represents the required memory 
space and computation complexity in hardware realis- 
ation, one has to trade off algorithm complexity and 
achievable compression ratio. To find an optimal solu- 
tion, we defined two parameters, window size S, and 
maximum match length L,. By adjusting these two 
parameters and simulating several test files, we can 
obtain an optimum set of (S,, L,) under some hardware 
constraints. Fig. 2 shows the simulation results for one 

output codeword is defined as 16-bit and the pair of (S,, 
L,) is assigned to (2K, 32) [A. 

3 High-throughput VLSl architecture 

A block diagram of the proposed architecture is shown in 
Fig. 3. It mainly consists of three blocks. The content 

t 
I 4 output stage unit (osu) 

primary 
reset match logic unit (MLU) 

hits 

input content address memory (CAM) 

max. match length: 
e 4  -#-8 +I6 2/-32 -64 

Fig. 3 

addressable memory (CAM) acts as a dynamic moving 
window to partially store previous symbols and, in the 
meantime, to output hit signals indicating those locations 
whose symbols are identical to the current-input symbol. 

.- - These hits signals are then passed to the match-logic unit 

-: 2.3 such as match length, physical position and synchron- 

& 2.1 current-input symbol, are then processed at the output- 
stage unit (OSU) to produce a codeword which will be 
sent out. In the following, we first discuss the details of 
each block, and then present some strategy to overcome 
the critical path so that the clock speed can be. enhanced. 
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a 3.1 Content addressable memory design 
The basic structure of this unit is given in Fig. 4. Since 
only the hit signal is needed, each CAM bit-cell can be 1.3- 
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Fig. 2 
a Text file of 200 Kbytes 
b Image Me with frame size of256 x 256 

Compression rotio obtoinedfrom two restfiles 

text file and one image file with different window sizes 
and maximum match lengths. These results point out 
that the value of maximum match length should be more 
than four when text files are concerned. However, for 
image files, the maximum match length is limited to four 
due to their statistics. By adjusting these two parameters 
and simulating several test files, as well as trading off 
hardware complexity and application requirements, the 
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realised on a 9-transistor cell [8]. However, the address 
generation for the CAM should be taken into account to 
optimise area and timing. For encoding purposes, input 
symbols are cyclically stored and then accessed. This 
implies that the ring counter can be exploited. For decod- 
ing purposes, start position should be first determined 
from rmived compressed data, and cannot be produced 
efficiently by a ring counter. Thus the random access 
address generator is exploited here. 

32 Match-logic unit design 
The MLU can further be partitioned into 3 subunits as 
shown in Fig. 5. These three subunits are designed to 
produce the compressed data according to the hit signals 
generated by the CAM. 
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Match cells: These cells are designed to: (1) detect the hit 
signals between input sequences and buffered symbols, 

match physicol 
position 

L 

reset 

_I 

Fig. 6 Structure of the match-logic unit 

and (2) conditionally propagate hits signals for stream 
matching. As shown in Fig. 6A, the input hit signals are 
processed by the match cells to produce the match 
signals, indicating the matching status of input streams. 

motch[O] match [l] match [n-11 
4 4 4 

primory 

motch 
cell [n-I] 

hit[O] hit[I] hit [n-I] 

Fig. 6A Match-cell array 

The internal structure of each match cell is given in Fig. 
6B. It consists of two delay elements, one multiplexer and 

l one AND gate. The top delay element can be preset in 

Output from the OR-gate is then connected to the 
counter to calculate the length. The accumulated length 
is also compared with a predefined maximum length to 
generate the sync signal. This sync is delayed one cycle to 
become the mode control signal needed in the match cell. 
The detailed structure of this subunit is given in Fig. 7. 

sync length 
I primory 

reset 

rnoxirnum 
length 
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l v ’  
rnotch [O. .n-I]  

Fig. 7 Structure of the length generator 

Priority generator: This subunit generates the end 
address of the matched stream. Since multiple match 
signals may appear simultaneously at match cells, and 
only one match signal is needed to produce the corres- 
ponding address in the CAM, we use the priority gener- 
ation scheme [9] to reach this goal. That is, the match 
signal from the lower address has higher priority than 
those from the higher addresses. 

3.3 Output-stage unit design 
This unit is used to packetise the compressed data 
according to the sync signal. To improve the compression 
ratio, the match length and start position will be 
assembled only when the match length is greater than 
one. Otherwise, input symbols together with an ID code 
will be assembled. In our design, we assume that the start 
address is to be sent out, and can be obtained by 
subtracting the length from the physical position. 

3.4 Strategy to improve clock speed 
We first locate the critical path of the architecture design, 
and then use partitioning and pipelining strategies to 
improve speed. The critical path can be identified from 
CAM, MLU, and to OSU. Since a 2K buffer size is sel- 
ected to store symbols, it is necessary to partition the 
memory into a 64 by 32 structure as shown in Fig. 8a. 
Here each row contains 32 symbols whose output, i.e. 
match signals, are then OR-ed to generate a row-match 
signal. These 64 row-match signals are again OR-ed to 
generate the final match signal exploited by other units. 
In the meantime, these 64 row-match signals are sent to a 
row priority generator and encoder to produce the row 
address of the matched position. Also, the output from 
the row priority generator is sent to a tristate buffer, 
which selects a matched row whose 32 match signals are 
again sent to the column priority generator to generate 
the column address as shown in Fig. 8b. After this row- 
column partitioning, we find that the speed can be 
improved. In addition, the layout becomes more feasible 
in physical design. 

To further enhance clock speed, we then consider the 
iterative bound in order to insert the pipeline register. 
The recursive loop is only detected from CAM to MLU 
which continuously determines the match signals. Thus 
we can insert pipeline registers at both row and column 
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priority generation blocks as shown in Fig. 8a. Here pipe- 
line registers are inserted at the output of the row priority 
generator. In addition, a set of tri-state buffer controls are 
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Fig. 8 
a The CAM 18 manfigwed to 64 by 32 and a pplinc d o n  ran be mcluded to 
lmprovc speed 
b Shows that a set of tnstatc buffers are added for row sekctlon 

Priority generator for the row and column address 

added at each row to select the matched row for column- 
address generation. Then these selected match signals are 
pipelined at the input to the column priority generator. 
According to this arrangement only (64 + 32) pipeline 
registers are needed. If we distribute pipeline registers in 
another way, say inserted at the input of the row priority 
generator, then (64 x 32 + 64) pipeline registers are 
needed [A. Although the latter arrangement does out- 
perform the former in speed by 5%, its hardware over- 
head of pipeline registers is 22 times more than that of 
the former. By trading of area cost and speed, the former 
arrangement is used in our design. 

The complete design is obtained by using a com- 
mercial 0.8 p CMOS double metal process technology. 
The critical path is estimated to be about 17.9 ns using 
an HSPICE simulator. Therefore a clock speed of up to 
50 MHz can be achieved. 
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3.5 Decoding process 
Although the above mentioned architecture is derived for 
encoding purposes, it can also be used for decoding. 
When compressed data are to be decoded, it first checks 
the ID code and then performs decompression. When the 
received ID is ‘l’, its followed data are source symbols, 
and can be sent out and stored in the CAM simultan- 
eously. On the other hand, if the ID is ‘U, source symbols 
can be obtained from the CAM by decomposing the 
codeword into start address and match length. Note that 
symbols have to be read from the CAM in this case, 
therefore the sense amplifier is needed to improve access 
time. 

( 

4 Evaluation and discussions 

To evaluate the architecture proposed in this paper, we 
give some comparison data, in terms of speed and com- 
pression capability, with those available hardware solu- 
tions for the LZ77 algorithm found in the literature. In 
Reference 4, a systolic array is proposed to obtain speed 
and throughput. However, some idle cycles can be allo- 
cated in processor elements during the coding process, 
leading to some hardware overhead. In addition, each 
input sample requires three cycles on average for com- 
pression. Also the achievable compression ratio for real- 
life applications is hard to achieve because of the limited 
number of processor elements. In Reference 6, a RISC 
architecture is proposed. However, throughput can only 
be up to a few hundred Kbytes per second, which cannot 
meet high-speed requirements. In References 3 and 5, the 
CAM approach is exploited. However, the compression 
ratio in Reference 3 is very low due to the limit of the 
CAM size. The architecture proposed in Reference 5 
needs one extra cycle to load the input stream from the 
buffer into the CAM, and the achievable compression 
ratio is not declared. 

In terms of speed, our proposed architecture can reach 
50 MHz, which also implies that a data rate of up to 50 
million samples per second can be handled. This is suffi- 
ciently high for current applications with large volumes 
of data. In other words, our solution can achieve the 
highest throughput of the mentioned solutions. This is 
the first feature of our design. 

The achievable compression ratio lies in the range of 
1.5-3.5 [7], which is competitive with the others. 
However, it should be mentioned here that our architec- 
ture can be reconfigured for different maximum match 
lengths by changing the pre-defined value. This is the 
second feature of our design. 

In addition, our design can be combined with some 
standards (e.g. JPEG and MPEG) for image coding, or 
with pre-processing as in Reference 10, or even with tree- 
based codes [11] added to the output stage, to further 
improve compression ratio. 

6 Conclusions 

In this paper, we have presented an ASIC architecture for 
single chip implementation of the well known LZ77 algo- 
rithm. The high-throughput data compressor design is 
achieved by exploiting the content addressable memory. 
By trading off algorithm complexity and compression 
ratio, an optimum set for buffer size and match length 
has first been determined in the design process. Then, by 
means of design hierarchy, we obtain an efficient VLSI 
architecture, and achieve high speed by exploiting par- 
titioning and pipelining techniques. Simulation results 
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have shown that the clock speed can be up to 50 MHz, 
which is sufficient for high-speed storage and networking 
applications where the data transfer rate is more than 
100 Mbits/s. 
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