
High-throughput data compressor designs using
content addressable memory

C.-Y. Lee
R.-Y. Yang

Indexing terms: Data storage, Content addressable memory

Abstract: The paper presents a novel VLSI archi-
tecture for high-speed data compressor designs
which implement the well known LZ77 algorithm.
The architecture mainly consists of three units,
namely, content addressable memory, match-logic
unit, and output-stage unit. The content-address-
memory unit generates a set of hits signals which
identify those positions whose symbols in a speci-
fied window are the same as the input symbol.
These hits signals are then passed to the match-
logic unit which determines both match length
and location to form the kernel of compressed
data. These two items are then passed to the
output-stage unit for packetisation before being
sent out. Simulation results show that, based on a
0.8 pm CMOS process technology, a clock speed
of up to 50MHz can be achieved for a VLSI
design containing a 2K buffer size. This implies
that the developing data compressor chip can
handle many real-life applications, such as in
high-speed data storage and networking systems.

1 Introduction

Since Lempel and Ziv [l] published the well-known
LZ77 lossless data compression algorithm in 1977, many
different versions have been developed. A good survey of
these compression algorithms can be found in Reference
2. In principle, compression ratio, instead of algorithm
complexity, is the major issue of these algorithms in the
development phase. However, when real-time require-
ments are demanded, a trade-off between algorithm com-
plexity and achievable compression ratio has to be taken
into account. Fortunately, state-of-the-art VLSI tech-
nology offers great advantages in system integration and
can be used to overcome such complexity. Several
research reports on hardware implementation of the
LZ77 algorithm can be found in the literature [3,4,5,6].
Among these hardware solutions, different realisation
approaches have been exploited such as the content
addressable memory or CAM approach [3, 51, the array-
processor approach [4], and the RISC approach [6].
However, these hardware solutions are not suitable for
high-speed applications because of low throughput or
too much hardware overhead.

0 IEE, 1995
Paper 1443G (EIO), first received 28th September 1993 and in revised
form 24th June 1994
The authors are with the Dept. of Electronics Engineering of Institute
of Electronics, National Chiao Tung University, Hsinchu, Taiwan,
Republic of China

IEE Proc.-Circuits Deuices Syst., Vol. 142, No. I , February 1995

We propose a VLSI architecture for single chip imple-
mentation of the LZ77 algorithm. The architecture is
achieved by exploiting partitioning and pipelining tech-
niques based on the CAM approach. Using a 0.8pm
CMOS double-metal technology, a clock rate of up to
50 MHz can be achieved.

2 The LZ77 compression algorithm

The LZ77 algorithm can be briefly illustrated as in Fig.
la which contains a window to buffer a certain amount
of continuous symbols. For each input symbol, the hit
signal will be propagated to the next symbol for the
purpose of stream matching. The input stream will be

input sequence
-window size- moved to right

That is a pen. Those books are mine. .

Th 1- IS IS a book Th at ' IS a pen. Those books are mine. . . .

Thils is a book. Thalt is a pen. Those books are mine. . . .

is a pen. Those books are mine.

match
steps

a

matched stream codeword

modified version original version

" T h (02.0) (0.2,'a')
"a" (1,'a')
no hit (1,'t') (O.O.'t')
"is a" (0.6.0) (0 .6. '~ ')

~~

* codeword for modified version is: (0,start addressmatch length)
or (1,source symbol) while for original version is: (start address,
match length, unmatched symbol).

b

Fig. 1
a LZ77 compression algorithm
b Codword assipnmmt

Illustration offhe LZ77 algorithm

The authors would like to thank their colleagues
within the SI2 group of NCTU for many dis-
cussions and fruitful suggestions.

The work was supported by the National
Science Council of Taiwan, ROC under Grant

69

I I1

continuously processed in this way until no hit signal or
maximum match length is detected. Then a codeword
consisting of match length and start position will be sent
out. However, in some cases, when the matched stream is
less than two symbols, we do not gain compression ratio.
Thus, in this modified version of the LZ77 algorithm, we
define that the input stream will be replaced by a code-
word only when its match length is more than one.
Otherwise, the source symbol together with an identifica-
tion (ID) code will be sent out. This is shown in Fig. lb.
With this method, the compression ratio is improved on
average by 15% [7].

Since the window sue represents the required memory
space and computation complexity in hardware realis-
ation, one has to trade off algorithm complexity and
achievable compression ratio. To find an optimal solu-
tion, we defined two parameters, window size S, and
maximum match length L,. By adjusting these two
parameters and simulating several test files, we can
obtain an optimum set of (S,, L,) under some hardware
constraints. Fig. 2 shows the simulation results for one

output codeword is defined as 16-bit and the pair of (S,,
L,) is assigned to (2K, 32) [A.

3 High-throughput VLSl architecture

A block diagram of the proposed architecture is shown in
Fig. 3. It mainly consists of three blocks. The content

t
I 4 output stage unit (osu)

primary
reset match logic unit (MLU)

hits

input content address memory (CAM)

max. match length:
e 4 -#-8 +I6 2/-32 -64

Fig. 3

addressable memory (CAM) acts as a dynamic moving
window to partially store previous symbols and, in the
meantime, to output hit signals indicating those locations
whose symbols are identical to the current-input symbol.

.- - These hits signals are then passed to the match-logic unit

-: 2.3 such as match length, physical position and synchron-

& 2.1 current-input symbol, are then processed at the output-
stage unit (OSU) to produce a codeword which will be
sent out. In the following, we first discuss the details of
each block, and then present some strategy to overcome
the critical path so that the clock speed can be. enhanced.

Block diagram of the U 7 7 encoder

3.1

2.9

2.7

c (MLU) to produce three items of output information

VI isation. These information items, together with the

8 1.9

2.5

E

1.7

1.5
I28 256 512 1024 2048 4096 8192 16384 32768

a 3.1 Content addressable memory design
The basic structure of this unit is given in Fig. 4. Since
only the hit signal is needed, each CAM bit-cell can be 1.3-

- 1.2- P

n: buffer size

Fig. 4 Structure o f t k content addressable memory 1.05
t-•

I I I I I 1 I I I I A
128 256 512 1024 2048 4096 8192 16384 32768

window size
b

Fig. 2
a Text file of 200 Kbytes
b Image Me with frame size of256 x 256

Compression rotio obtoinedfrom two restfiles

text file and one image file with different window sizes
and maximum match lengths. These results point out
that the value of maximum match length should be more
than four when text files are concerned. However, for
image files, the maximum match length is limited to four
due to their statistics. By adjusting these two parameters
and simulating several test files, as well as trading off
hardware complexity and application requirements, the

70

realised on a 9-transistor cell [8]. However, the address
generation for the CAM should be taken into account to
optimise area and timing. For encoding purposes, input
symbols are cyclically stored and then accessed. This
implies that the ring counter can be exploited. For decod-
ing purposes, start position should be first determined
from rmived compressed data, and cannot be produced
efficiently by a ring counter. Thus the random access
address generator is exploited here.

32 Match-logic unit design
The MLU can further be partitioned into 3 subunits as
shown in Fig. 5. These three subunits are designed to
produce the compressed data according to the hit signals
generated by the CAM.

IEE hoc.-Circuits Deuices Syst., Vol. 142, No. I , February 1995

Match cells: These cells are designed to: (1) detect the hit
signals between input sequences and buffered symbols,

match physicol
position

L

reset

_I

Fig. 6 Structure of the match-logic unit

and (2) conditionally propagate hits signals for stream
matching. As shown in Fig. 6A, the input hit signals are
processed by the match cells to produce the match
signals, indicating the matching status of input streams.

motch[O] match [l] match [n-11
4 4 4

primory

motch
cell [n-I]

hit[O] hit[I] hit [n-I]

Fig. 6A Match-cell array

The internal structure of each match cell is given in Fig.
6B. It consists of two delay elements, one multiplexer and

l one AND gate. The top delay element can be preset in

Output from the OR-gate is then connected to the
counter to calculate the length. The accumulated length
is also compared with a predefined maximum length to
generate the sync signal. This sync is delayed one cycle to
become the mode control signal needed in the match cell.
The detailed structure of this subunit is given in Fig. 7.

sync length
I primory

reset

rnoxirnum
length

OR

l v ’
rnotch [O. .n-I]

Fig. 7 Structure of the length generator

Priority generator: This subunit generates the end
address of the matched stream. Since multiple match
signals may appear simultaneously at match cells, and
only one match signal is needed to produce the corres-
ponding address in the CAM, we use the priority gener-
ation scheme [9] to reach this goal. That is, the match
signal from the lower address has higher priority than
those from the higher addresses.

3.3 Output-stage unit design
This unit is used to packetise the compressed data
according to the sync signal. To improve the compression
ratio, the match length and start position will be
assembled only when the match length is greater than
one. Otherwise, input symbols together with an ID code
will be assembled. In our design, we assume that the start
address is to be sent out, and can be obtained by
subtracting the length from the physical position.

3.4 Strategy to improve clock speed
We first locate the critical path of the architecture design,
and then use partitioning and pipelining strategies to
improve speed. The critical path can be identified from
CAM, MLU, and to OSU. Since a 2K buffer size is sel-
ected to store symbols, it is necessary to partition the
memory into a 64 by 32 structure as shown in Fig. 8a.
Here each row contains 32 symbols whose output, i.e.
match signals, are then OR-ed to generate a row-match
signal. These 64 row-match signals are again OR-ed to
generate the final match signal exploited by other units.
In the meantime, these 64 row-match signals are sent to a
row priority generator and encoder to produce the row
address of the matched position. Also, the output from
the row priority generator is sent to a tristate buffer,
which selects a matched row whose 32 match signals are
again sent to the column priority generator to generate
the column address as shown in Fig. 8b. After this row-
column partitioning, we find that the speed can be
improved. In addition, the layout becomes more feasible
in physical design.

To further enhance clock speed, we then consider the
iterative bound in order to insert the pipeline register.
The recursive loop is only detected from CAM to MLU
which continuously determines the match signals. Thus
we can insert pipeline registers at both row and column

71

priority generation blocks as shown in Fig. 8a. Here pipe-
line registers are inserted at the output of the row priority
generator. In addition, a set of tri-state buffer controls are

I

pipeline
registers

low-wder

high- order
address 1 1 I : I ceik

match

lo column PG lo column PG

lri-stole
buffer S

from
row

r 4 r 4 r 4 r 4
r L i r ’ i j r A i i r L i I
-i-*Ji-* --, 7 - 9

I I I I
b

Fig. 8
a The CAM 18 manfigwed to 64 by 32 and a pplinc d o n ran be mcluded to
lmprovc speed
b Shows that a set of tnstatc buffers are added for row sekctlon

Priority generator for the row and column address

added at each row to select the matched row for column-
address generation. Then these selected match signals are
pipelined at the input to the column priority generator.
According to this arrangement only (64 + 32) pipeline
registers are needed. If we distribute pipeline registers in
another way, say inserted at the input of the row priority
generator, then (64 x 32 + 64) pipeline registers are
needed [A. Although the latter arrangement does out-
perform the former in speed by 5%, its hardware over-
head of pipeline registers is 22 times more than that of
the former. By trading of area cost and speed, the former
arrangement is used in our design.

The complete design is obtained by using a com-
mercial 0.8 p CMOS double metal process technology.
The critical path is estimated to be about 17.9 ns using
an HSPICE simulator. Therefore a clock speed of up to
50 MHz can be achieved.

72

3.5 Decoding process
Although the above mentioned architecture is derived for
encoding purposes, it can also be used for decoding.
When compressed data are to be decoded, it first checks
the ID code and then performs decompression. When the
received ID is ‘l’, its followed data are source symbols,
and can be sent out and stored in the CAM simultan-
eously. On the other hand, if the ID is ‘U, source symbols
can be obtained from the CAM by decomposing the
codeword into start address and match length. Note that
symbols have to be read from the CAM in this case,
therefore the sense amplifier is needed to improve access
time.

(

4 Evaluation and discussions

To evaluate the architecture proposed in this paper, we
give some comparison data, in terms of speed and com-
pression capability, with those available hardware solu-
tions for the LZ77 algorithm found in the literature. In
Reference 4, a systolic array is proposed to obtain speed
and throughput. However, some idle cycles can be allo-
cated in processor elements during the coding process,
leading to some hardware overhead. In addition, each
input sample requires three cycles on average for com-
pression. Also the achievable compression ratio for real-
life applications is hard to achieve because of the limited
number of processor elements. In Reference 6, a RISC
architecture is proposed. However, throughput can only
be up to a few hundred Kbytes per second, which cannot
meet high-speed requirements. In References 3 and 5, the
CAM approach is exploited. However, the compression
ratio in Reference 3 is very low due to the limit of the
CAM size. The architecture proposed in Reference 5
needs one extra cycle to load the input stream from the
buffer into the CAM, and the achievable compression
ratio is not declared.

In terms of speed, our proposed architecture can reach
50 MHz, which also implies that a data rate of up to 50
million samples per second can be handled. This is suffi-
ciently high for current applications with large volumes
of data. In other words, our solution can achieve the
highest throughput of the mentioned solutions. This is
the first feature of our design.

The achievable compression ratio lies in the range of
1.5-3.5 [7], which is competitive with the others.
However, it should be mentioned here that our architec-
ture can be reconfigured for different maximum match
lengths by changing the pre-defined value. This is the
second feature of our design.

In addition, our design can be combined with some
standards (e.g. JPEG and MPEG) for image coding, or
with pre-processing as in Reference 10, or even with tree-
based codes [11] added to the output stage, to further
improve compression ratio.

6 Conclusions

In this paper, we have presented an ASIC architecture for
single chip implementation of the well known LZ77 algo-
rithm. The high-throughput data compressor design is
achieved by exploiting the content addressable memory.
By trading off algorithm complexity and compression
ratio, an optimum set for buffer size and match length
has first been determined in the design process. Then, by
means of design hierarchy, we obtain an efficient VLSI
architecture, and achieve high speed by exploiting par-
titioning and pipelining techniques. Simulation results

IEE Pix.-Circuits Devices Syst., Vol. 142, No. 1, February 1995

have shown that the clock speed can be up to 50 MHz,
which is sufficient for high-speed storage and networking
applications where the data transfer rate is more than
100 Mbits/s.

6 References

1 ZIV, J., and LEMPEL, A.: ‘A universal algorithm for sequential
data compression’, IEEE Trans. lfonn. Theory, 1977, IT-23, pp.
337-343

2 STORER, J.A.: ‘Data compression: methods and theory’ (Computer
Science Press, Rockville, MD, 1988)

3 JONES, S.R.: ‘100 Mbit/s adaptive data compressor design using
selectively shiftable content addressable memory’, IEE Proc. G,
1992,139, (4). pp. 498-502

4 RANGANATHAN, N., and HENRIQUES, S.: ‘High-speed VLSI
designs for Lempel-Ziv-based data compression’, IEEE Trans. Cir-
cuits Syst. 11, Analog Digit. Signal Process., 1993,q (2), pp. 96-106

5 WEI, W.Y., TARVER, R., KIM, J.S., and NG, K.: ‘A sin& chip

IEE hoc.-Circuits Devices Syst., Vol. 142, No. I , February 1995

Lempel-Ziv data compressor’. Roc. ISCAS93, Chicago, May 1993,

6 CHANG, J., JIH, HJ., and LIU, J.W.: ‘A lossless data compression
ur-r’. Proc. of 4th VLSI/CAD Workshop, Nan-Toy Taiwan,

pp. 1953-1955

August 1993, pp. 134-137
7 YANG, R.-Y.: ‘High-speed Lempel-Ziv data compressor designs

using content addressable memory’. NCTU/DEE Master thesis,
Hsinchu, Taiwan, May 1994

8 WESTE, N.H.E., and ESHRAGHIAN, K.: ‘Principles of CMOS
VLSI Design: a systems perspective’ (Addison-Wesley, 1993, 2nd
edn.), pp. 589-590

9 LEE, C.Y., JUAN, S.C., and YANG, W.W.: ‘An area-e%icient
maximum/minimum detection circuit for diaital and video simal
prarssini. Proc. ISCAS93, Chicago, Illin06 May 3-6, 1993,-pp.
223-226

10 VENBRUX, J., YEH, P.S., and LIU, M.N.: ‘A VLSI chip set for
hieh-soeed lossless data comuression’, IEEE Trans. Circuits Syst.
V&o’TechnoL, 1992,2, (4), G. 381-~91

11 MUKHERJEE, A., RANGANATHAN, N, FLIEDER, J.W., and
ACHARYA. T.: ‘MARVLE: a VLSI chi^ for data comurwion
using treebased wdes’, IEEE Trans. V e l Syst., 1993, 1,-(2), pp.
203-214

73

