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Abstract: Polling schemes have been widely used 
in LANs, MANs, and distributed systems. The 
authors design a polling network (system) in 
which each station is finite-buffered and is served 
according to a mixed service discipline and a 
general service order sequence. They first analyse 
the network by means of an imbedded Markov 
chain approach to obtain probability generating 
functions (PGFs) for the number of customers in 
stations at four observation points: customer- 
service beginning, customer-service ending, 
server’s arrival, and server’s departure. Two per- 
formance measures of mean waiting time and 
blocking probability are then derived. Finally, the 
authors search for an optimal pattern of the mixed 
service discipline and service order sequence for a 
polling network via a genetic algorithm. The 
results show that a polling network with an 
optimal pattern of mixed service discipline and 
service order sequence offers a great improvement 
in performance over a polling network with a 
unique service discipline and cyclic service order 
sequence; a polling network has different optimal 
patterns for different traftic intensities; and a near- 
optimal pattern could exist for all traffic loads. 

1 Introduction 

Polling schemes have been widely used in local area net- 
works (LANs), metropolitan area networks (MANs), and 
distributed communication systems. In the past, these 
networks or systems were generally designed using a 
unique service discipline and a cyclic service order 
sequence for all stations. As customer demand for multi- 
media services increases, however, the above networks 
can be improved by increasing the transmission speed or 
redesigning the medium access control (MAC) protocol 
to support multiple classes of services. In addition, the 
network should be designed in such a way that each 
station is assigned an appropriate service discipline and a 
suitable polling number and polling order in the 
sequence. 

$> IEE, 1995 
Paper 15371 (E7, C3), first received 18th October 1993 and in revised 
form 19th July 1994 
The authors are with the Department of Communication Engineering 
and Center for Telecommunications Research, National Chiao Tung 
University, Hsinchu, Taiwan 300, Republic of China 

IEE Proc.-Commun., Vol. 142, No. I .  February 1995 

Many sorts of service disciplines and service order 
sequences have been proposed for use in polling net- 
works. In Reference 1, Takagi presented a very good 
survey of these techniques. Previous discussions of service 
disciplines for cyclic service order sequence can be found 
in References 2 to 6. Ferguson and Aminetzah [2] 
studied exhaustive and gated service disciplines; Fuhr- 
mann and Wang 131 studied a limited discipline; Tran- 
Gia and Raith [4] and Tran-Cia [S] studied a 
nonexhaustive service discipline; and Takagi [6] studied 
exhaustive, gated, and limited service disciplines. Pre- 
vious research on service disciplines for general service 
order sequence can be found in References 7 to 1 1 .  Eisen- 
berg [7] studied exhaustive and gated service disciplines; 
Baker and Rubin [SI studied an exhaustive service disci- 
pline; Choudhury [SI studied a gated service discipline; 
and Chang and Hwang [lo] studied a gated-limited 
service discipline. Boxma et al. [ll] have studied the 
optimal service order sequence for a polling network with 
infinite buffer. 

In this paper, we design a finite-buffered polling 
network with a mixed service discipline and general 
service order sequence. The mixed service discipline 
means that any stage (a turn in the service order 
sequence) in the network can be served using the limited, 
exhaustive, or gated service discipline. We analyse the 
polling network to obtain the mean waiting time and the 
blocking probability by means of a Markov chain 
approach and operators representing various service dis- 
ciplines. We then use the genetic algorithm to search for 
an optimal pattern of the mixed service discipline and 
service order sequence for a polling network. 

2 Analysis 

The polling network is assumed to contain R stations 
and P stages in the service order sequence. We use r and i 
to represent the indexes of the station and stage, respect- 
ively, and use the notation ri to represent the underlying 
station of stage i. Note that in the following the index of 
the stage uses modulo-P arithmetic and is equal to P if 
the remainder is zero. 

The arrival process for station r is assumed to be an 
independent Poisson process with rate I , ,  1 < r < R ;  the 
service discipline for stage i is assumed to be limited 
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(exhaustive-limited, gated-limited, or nonexhaustive), 
exhaustive, or gated. If stage i adopts exhaustive-limited 
(E-limited) service discipline, the server will serve ki 
customers or serve until the stage empty, which happens 
first, at stage i. If stage i adopts gated-limited (G-limited) 
service discipline, the server will serve k i  customers or all 
the customers in the stage seen at the server's arrival 
epoch, which happens lirst, at stage i. k i  is a positive 
integer number. If stage i adopts nonexhaustive service 
discipline. the server will serve one customer at stage i if 
stage i is not empty at the server's arrival epoch. If stage i 
adopts exhaustive service discipline, the server will serve 
stage i until it is empty. If stage i adopts gated service 
discipline, the server will serve all the customers in stage i 
seen at the server's arrival epoch. For the following 
analysis, we first define the notations below. 

S, = the service time of  a customer in station r 
with mean s, 

s^,(z) = the PGF of the number of customers 
arriving at  station r during S, 

E, = the buffer size for station r 
L, = the mean system size of station r 
1, = the effective arrival rate of station r 
w, = the mean waiting time of the customer 

served at station r 
q,(n) = the probability that there are n customers 

in station r observed at the arrival point 
of a customer in station r ,  0 < n < B, 

n,(n) = the probability that there are n customers 
in station r observed at  the departure 
point of a customer from station r, 0 < 
n<B,-l 

U j  = the walking time for the server to switch 
over from stage i to stage i + 1 with mean 
ui 

pi  = the mean number of customers served in 
stage i during a whole cycle 

ei(n)(bi(n)) = the probability that there are n customers 
in station r ,  when an i customer ends 
(begins) service, where i-customer is the 
customer served at stage i 

C , ( Z ) ( ~ J Z ) )  = the PGF of the random variable with 
probability mass function ei(n)(bi(n)) 

d,(n)(a,(n)) = the probability that there are n customers 
in station r ,  when the server departs from 
(arrives at) stage i 

di(z)(diz)) = the PGF of the random variable with 
probability mass function di(nHaXn)). 

Similar to Reference 7, the relation among cii(z). 6 ~ 2 1 ,  &z), 
and adz) can be obtained by 

c = the mean whole cycle time 

pi 6 L Z )  + 4 2 )  = pi + Cii(Z) (1) 
Note that ail), 6.411, & I ) ,  and i d ] )  are all equal to 1. 
Moreover, the number of customers in station ri when an 
i-customer (i.e. customer served at stage i) ends service is 
equal to the number of customers in station ri when the 
i-customer begins service plus the number of customers 
arriving at station ri during the service time of this i- 
customer (the summation cannot be greater than the 
finite buffer size B,j) minus one (the served i-customer). 
This results in 

e ,@)  = 93,j[bi(z)9,,(z)]z (2) 
where G?,, is an operator on the PGF that adds the coeffi- 
cients of the high-order z terms whose powers are greater 
7 

than E,, to the coefficient of zErt and then truncates the 
high-order z terms. Mathematically, the operator 8, on 
PGFf(z) = f(n)z' can be expressed as 

8,-  I 

= 1 f (n)z" + 1 f(n)z" (3) 
" = U  " = B .  

Substituting eqn. 2 into eqn. I yields 

pi b,(z) - #,,[pi &z)~ , , (z ) ]z  ~ = 6.4~) - &z) (4) 
If cii(z) and &z) are found, pibi(z) can be obtained by 
comparing the coefficients of the right-hand side and left- 
hand side of eqn. 4. Then biz )  is obtained by normalising 
bib i (z )  with p i  which is equal to pi6,(1) and Ci(z) is 
obtained by eqn. 2 for all i. Consequently, the mean 
whole cycle time, c, can be obtained by 

P 

c = c (Pis,, + Ui)  ( 5 )  

and the effective arrival rate for station r ,  1,. is obtained 
i =  I 

by 

Using 1, and I, yields blocking probability for station r, 

(7) 

q,(B,), as 
1 

q,(E,) = 1 ~ f 
4 

1 < r < R 

Furthermore, n,(n), for all r ,  can be obtained by 

Using q,(E,) and n,(n), we obtain q,(n), for all r ,  by [12, 
Section 5.1.81 

(9) 
Then, owing to Poisson arrivals see time averages 
(PASTA) property [13, p. 2941, L, is obtained by 

qJn) = C1 - q,(B,)]n,(n) 0 < n < B, - 1 

B. 

L, = 1 nq,(n) 1 < r < R 
n =  I 

Finally, from Little's law, the mean waiting time, w , ,  can 
be obtained by 

To obtain ciiz) and &), we observe all stations in the 
network and define the following notation 

ui(Z) = the PGF of the number of customers in all 
independent stations when the server arrives 
at  . .  stage i, i i (Z)  E,,, Pr (ai)Zai, where ai = 
(a i ,  a ; ,  ..., pi), Z =  (zl, z 2 ,  ..., zR). and 
Z"' a n:= 2:; similarly 

di(Z) = The PGF of the number of customers in all 
independent stations when the server departs 
from stage i oi(Z) = The PGF of the number of customers arriving 
at all independent stations during U i  $,(a = the PGF of the number of customers arriving 
at all independent stations during S,  

The relation between u d z )  and di(Z, depends on the 
service discipline assigned by the network for stage i. We 
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here use the operator Yi to express their relationship as 
follows 

4m = 9 , C ~ d z ) l  (12) 

We discuss the operator Y ,  for various service disciplines 
in the Appendix. 

The number of customers in station r when the server 
arrives at stage i + 1 is equal to the number of customers 
in station r when the server departs from stage i plus the 
number of customers entering station I during walking 
time U,, 1 < r < R. Therefore, Ai+ l(z) can be given by 

i i + l ( z )  = 9 C m O i ( z ) l  (13) 

where 9 is a linear operator on Z"' that transforms 2:' to 
z: if n, B, and leaves f" unchanged if n, < B, for all r. 
Substituting &z) of eqn. 12 into eqn. 13, we have 

i i + l ( z )  = s C y i C e i ( z ) l O d z ) l  

i i + l ( z )  = ~ C ~ i C 4 ( z ) l ~ d z ) l  a 9'Cidz)l 

For simplicity, we define 

(14) 

Then, for a polling network with the general service order 
sequence, we have the following recursive relation 

Since ci,+,(z) = adz), we can solve the n:= I (B, + 1) 
unknown coefficients of ri@) by using an iterative algo- 
rithm. The problem of the existence of such a huge 
number of unknowns seems inherent in the exact analysis 
of finite-capacity multiple-queue systems [S, p. 386). Our 
approach makes the number of unknowns about R times 
less than that in Section 3.1 of Reference 5. Furthermore, 
the iterative algorithm uses n:=, (B, + 1) times less 
memory space than the matrix solving method used in 
Reference 15. If CidZ) is found for a certain i, for example, 
i = 1, a,@) can be. solved via eqn. 12 and 642) and d&) 
can be obtained by ddZr,)  and d,CZ,,). Z,i is (1, 1, . . ., z, 1, 
. . . , l), obtained by replacing all elements of Z by 1 
except for:,,, which is replaced by z. Finally, iXZ), ddz), 
cidz), and ddz) for 1 < i < P can be found recursively. 

3 Optimal pattern design of the mixed service 
discipline and service order sequence 

First, we describe the numerical procedures used to 
obtain the blocking probability and the mean waiting 
time of a customer served at station r ,  r = 1,2, . . . , R. 

Numerical Algorithm: 
Step 1:  [Initialisation] 

i =  1 

Give an initial i d Z )  1 1 Pr (u')Zai ( (I' 

Step 2 :  [Find i d z )  by an iterative algorithm] 

ci:(z) 3 1 Pr*(ui)zel) = ida ( .I 

4+,(z) = .%tp-l 
x C g i + p - Z C . . .  C g i + 1 C g i C 4 d z ) l l l  ... 11 

(from eqn. 15) 

I E E  Proc-Commun., Vol. 142, No. I ,  February 1995 

Find a weighting factor o according to the con- 
vergence situation in Seelen's algorithm [16] 

i A z )  = i i + , C z ,  + 44+&iz) - 
I Pr (a') - Pr* (a') I 

Pr (a') 
> 10 ~ for any ai I F  

GO TO Step 2 

END IF 

Step 3: [Obtain the PGFs] 

DO i = 1, P 

= Y,[~ ,CZ)I  (from eqn. 12) 

b iz )  = i,(Zr,) and &z) = adz,,) 
Get 6dz) and p i  from eqn. 4 

o,(z) = ~ ' , , C ~ ~ Z ) S ~ , ( Z ) ~ Z - ~  (from eqn. 2) 

I F i f P  

i i + d z )  = =%&z)oz4z)1 (from eqn. 13) 
END IF 

END DO. 

Step 4: [Obtain the performance measures] 
P 

c (the mean whole cycle time) = (pis,< + ui) 
i =  1 

D O T =  l , R  

1 
q, (the effective arrival rates) = - 

C ( i l r , = r )  
1 pi 

rt q,(B,) (the blocking probability) = 1 - 
2, 

D O n = O , B , - l  

q,(n) (the buffer occupancy probability) 
1 - _  - C Piein) 

Arc ( i (r i=r)  

END DO 

L, (the mean queue length) = 1 nq,(n) 

w, (the mean waiting times) = 

E ,  

I =  I 

L 

rt. - s, 

END DO 

When the service order sequence of the network and the 
service disciplines for all stages are assigned, 5"; and g i  
for all i are determined and then the blocking probability 
and the mean waiting time can be found by the above 
numerical algorithm. Within the numerical algorithm, we 
utilise Seelen's algorithm to speed up the convergence of 
the iteration [16]. The reader can refer to Reference 16 
for details. 

Next, we search for an optimal pattern of the mixed 
service discipline and service order sequence for the 
network using a generic algorithm. Genetic algorithms, 
which combine the survival of the fittest with the innova- 
tive flair of human search [14], are a form of the random 
search method which is suitable for discontinuous and 
multimodal problems. We describe this algorithm in the 
following. 
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Genetic Algorithm: 
Step I :  [Initialisation] 

n = O  
Heuristically choose a population of m candidates 

xOp (optimal candidate) = xy 
{XY, x;, . . ., 4 1  

Step 2: [Evaluate fitness] 

DO i = 1, m 

Find fitness f ( x ; ) ( f (  ' )  is a defined objective 
function) 

IF f ( x 3  > f(x,,) 
xop = x; 

END IF 
END DO 

IF the termination criterion is satisfied 
Step 3 :  [Check the termination criterion] 

G O  TO Step 5 

END IF 

Step 4 :  [Produce the next generation] 
Create {i;+', i ; + l ,  ..., x, } from {x;, x;, ..., 
x;} according to the weights of fitnesses f ( x y ) ,  
i =  1,2,  ..., m 

Generate {.;+I, x;+', . . . , x;"} by crossover and 
mutation [I41 
n = n + l  

GO TO Step 2 

PRINT the optimal candidate xOp and its fitness 

In this paper, we heuristically define the objective func- 
tion for a given candidate xl  in the nth generation, 
denoted byf(x;), as 

A " +  1 

Step 5: [End] 

f (xop) 

We define this objective function to find a system with 
smaller blocking probability and smaller mean waiting 
time. The explicit parameters of the objective function 
f ( x l )  are the mean waiting times and the blocking prob- 
abilities, which are performance measures for a candidate 
x; representing a pattern of the mixed service discipline 
and service order sequence (the implicit parameters). 
Note that the service discipline of each stage and the 
service order sequence are coded into a binary string of 
genes. Here, we utilise the GAUCSD 1.4 developed at the 
University of California, San Diego [17], and adopt a 
predetermined number of searched candidates as our ter- 
mination criterion. The selection of the mutation rate, the 
population size, etc. are suggested in this package. 

3.1 Numerical examples and discussion 
In this Section we use an example to illustrate the design 
of an optimal pattern of the mixed service discipline and 
service order sequence for a finite-buffered polling 
network. We assume that there are five stations in the 
network, and the arrival rates are 2 : 1 : 1 : 1 : 1 for sta- 
tions 1-5, respectively. The buffer size is assumed to be 

4 

the same for every station and is equal to 3 in this 
example; the service time S ,  is exponentially distributed 
for station r, 1 < r < R ;  the mean service time s, is equal 
to 1 for every station r ;  and the walking time Ui is deter- 
ministic and is equal to 0.1 for every stage i .  

If the network is designed to fulfil the requirement of 
being fair to all customers, the traffic intensities for all 
stations should be made as equal as possible. In this 
example, there are four light-load stations and one high- 
load station, so we consider four types of service order 
sequences that poll the high-load station from one to four 
times. The four sequences are as follows: Order I: { 1 ,  2, 3, 
4, 5 ) ;  Order 11: { 1, 2, 3, 1,4, 5); Order 111: {l ,  2, 1, 3, 1,4, 
5 ) ;  and Order IV: {1, 2, 1, 3, 1, 4, 1, 5}. The service disci- 
pline of each stage is assumed to be E-limited with lim- 
itation number 3, G-limited with limitation number 3, 
nonexhaustive, exhaustive, or gated. We use E, e, N, E, 
and G to denote E-limited, G-limited, nonexhaustive, 
exhaustive, and gated service disciplines, respectively. We 
shall refer to the aggregation of the capital letter of the 
service discipline of every stage as the pattern of the 
mixed service discipline. For example, ENGNE means E, 
N, G, N, and E for stages 1 ,  2, 3,4, and 5, respectively. 

There are a total of 87040 cases for an enumerative 
search. GAUCSD suggests only 210 cases to be searched; 
the efficiency is about 99.76%. The optimal pattern of the 
mixed service discipline and service order sequence is 
shown in Table 1. The optimal pattern is EEEEEEEE 

Table 1 : Optimal patterns of the mixed service discipline 
and service order seauence 

Traffic 
intensity 

Optimal pattern of service 
discipline and service order 

0.2 
0.5 
1 .o 
1.5 
2.0 
3.0 

EEEEEEEE, Order IV 
EEEEEEEE, Order I V  
ENEEENEN, Order IV 
ENENENEN. Order IV 
ENENENEN. Order IV 
ENENENEN. Order IV 

and Order IV for traffic intensities below 1.0, ENEEE- 
NEN and Order IV for traffic intensities around 1.0, and 
ENENENEN and Order IV for traffic intensities above 
1.0. We further plot the fitness of the above three optimal 
patterns in Fig. I ;  as can be seen from the figure, the 
differences between the optimal patterns are not signifi- 
cant for traffic intensities below 1.0. We could suggest 
that the near-optimal pattern of ENENENEN and Order 
IV be used for all traffic intensities in this example. The 
near-optimal pattern is here defined as the pattern which 
can support system performance near to those supported 
by the optimal patterns at all traffc intensities. A 
network adopting the optimal pattern of ENENENEN 
and Order IV has fitness 0.1362 at buffer size 3 and 
system traffc intensity 1.5. A network adopting only the 
nonexhaustive service discipline for all stages and cyclic 
service order sequence has fitness 0.0554 at buffer size 3 
and system traffic intensity 1.5. The optimal pattern offers 
about 146% improvement over the other pattern in this 
example. 

4 Concluding remarks 

This paper considers an optimal design problem for a 
finite-buffered polling network with mixed service disci- 
pline and general service order sequence. The analytical 
approach is by way of imbedded Markov chains and 
several operators defined to facilitate the analysis. We use 
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a genetic algorithm to find the optimal pattern of the 
mixed service discipline and service order sequence. The 
results show that the performance of a polling network 

EEEEEEEE Order I V  

ENEEENEN Order I V  I 

l i a f f ~ c  Intensity 

Firnuss of uarious optinral patrerns /or  different traffic intens- Fig. 1 
ified 
BuKer s m  = 3 
mean service time = I 
walking lime = 0.1 

0 blrn"latl0" 
A, , . > . L , : A *  A 5 = 2 : l : l  1 I 

can be greatly improved i l  an optimal pattern of service 
discipline and service order sequence is adopted; a 
polling network has different optimal patterns for differ- 
ent traffic intensities; and there could exist an near- 
optimal pattern for all traffic loads. 
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6.1 Limited service discipline 
We here discuss E-limited, G-limited, and nonexhaustive 
service disciplines. If the E-limited service discipline is 
assigned for stage i, then after completing service of a 
customer in stage i, the server will continue to serve the 
next customer if the number of customers already served 
is less than ki  and there are still customers in station ri; 
otherwise it will stop serving at stage i. According to this 
service discipline, we define an operator $,j  on Z'' that 
changes z$ to S,(Z)z$-' for r = ri and U;; >, 1, because 
the PGF of the number of customers arriving at all sta- 
tions during the service time of an i-customer is $,XZ), 
and that leaves z$ unchanged otherwise. Because the 
buffer at each station is finite and at most B,(B,, - 1) cus- 
tomers can be in station r ,  r # ri(r = ri), when an i- 
customer ends service, we also define an operator X r j  on 
Z"' that transforms z$ to z? if a; >, E ,  and leaves 8 
unchanged if a; < E , ,  for all r except ri, and transforms 
z$ to ~ $ 5 . '  if a:! Eri and leaves z$ unaltered if ait < 
E,, . Expressed mathematically, 2,. and Xr i  are given by 

Appendix: The operator .TI for  various service 
disciplines 

z n 1 . .  , . zY' , - t  ,;-, Sr,X.qz;:;-' z$y,1 . . '  z $  

Z"' if a;, < 1 (17) 
if a:, > 1 

I lie L 

( i  

d.;[Z'Y = 

and 
[p'] = Zmin(o;. n r i  . . . Zmin (d ,.,. nVi- 

Z m i n t d j , B , i - ~ ~  min(a;;+,,nri+,~ . . . Zmin(nk.nn) 
Z C + ,  

= ( fi, zp (a:. nr)  ) zF idi. n,, - 1) 

For convenience, we denote by %,j a new operator that 
combines the two operators j,, and X,(. F,i is given by 

r t r ,  (18) 

FJ ' 2 = .x,,v.,c. 13 (19) 
Note that the two operators l,i and X r L  are linear but 
not commutative. We also define 9:; as 

Then for the E-limited service discipline, the operator Y i  
in eqn. 12 is 9:;. 

If stage i is served with the G-limited service discipline, 
the server will serve min (aii, ki)  customers for station ri 
when the server attends stage i .  Then, the relation 
between C i A Z )  and &Z, in eqn. 12 is expressed as 

n,  

& = o  .k = o  
Ji(q = . . . 1 pr {.i}Sp (aii. k O [ p ' ]  (21) 

The nonexhaustive service discipline is a special case of 
the G-limited or E-limited service discipline with ki  = I. 
If stage i adopts the nonexhaustive service discipline, the 
operator .4pi in eqn. 12 is P,#. 
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62 Exhaustive service discipline 6.3 Gated service discipline 
This is a special case of the E-limited service discipline 
with ki = 00. If stage i adopts this service discipline, the 
operator Yi in eqn. 12 is 9:. There will be no customers 

This is a special case of the G-limited service discipline 
with ki = 03, then the relation between i h Z )  and c?,CZ) in 
eqn. 12 is expressed as 

in station ri when the server departs from stage i .  The 
infinite procedure will terminate when di(0) is equal to 1. 

BI BR 

&z) = . .  . C Pr {oi).~$i[~~~l (22) 
.;=o & = o  

6 I E E  Proc.-Commun., Vol. 142, No. I ,  February 1995 


