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To address the nonlinear and non-stationary characteristics of financial time series such as foreign exchange
rates, this study proposes a hybrid forecasting model using empirical mode decomposition (EMD) and least
squares support vector regression (LSSVR) for foreign exchange rate forecasting. EMD is used to decompose
the dynamics of foreign exchange rate into several intrinsic mode function (IMF) components and one residual
component. LSSVR is constructed to forecast these IMFs and residual value individually, and then all these fore-
casted values are aggregated to produce the final forecasted value for foreign exchange rates. Empirical results
show that the proposed EMD-LSSVR model outperforms the EMD-ARIMA (autoregressive integrated moving
average) as well as the LSSVR and ARIMA models without time series decomposition.
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1. Introduction

Financial time series forecasting has come to play an important
role in the world economy as a result of its ability to forecast economic
benefits and influence countries' economic development; it has
attracted increasing attention from academic researchers and business
practitioners for its theoretical possibilities and practical applications
(Hadavandi et al., 2010; Lu et al., 2009). Since the breakdown of finan-
cial market boundaries in order to enhance the efficiency of capital
funding, for example, the Bretton Woods system of monetary manage-
mentwas officially ended in the 1973; currencies traded internationally
has become crucial economic indices for international trade, financial
markets, the alignment of economic policy by governments, and corpo-
rate financial decision-making. However, it is widely known that finan-
cial time series forecasting has shortcomings, including its inherent
nonlinearity and non-stationarity (Huang et al., 2010; Lu et al., 2009).
Therefore, financial time series forecasting is one of the most challeng-
ing tasks in the financial markets.

For modeling financial time series, autoregressive integrated
moving average (ARIMA) models have been popular and are widely
chosen for academic research observing the behavior of foreign
exchanges and stock markets, because of their statistical properties
and forecasting performance (Khashei et al., 2009). However, some
problems arise when forecasting financial time series with ARIMA
models, as follows. First is the characteristic linear limitation of ARIMA
models, in contrast to real-word financial time series, which are often
.
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nonlinear (Khashei et al., 2009; Zhang, 2001; Zhang et al., 1998) and
are rarely pure linear combinations. Second is the robustness limitation
of ARIMA models—the ARIMA model selection procedure depends
greatly on the competence and experience of the researchers to yield
desired results. Unfortunately, choice among competing models can
be arbitrated by similar estimated correlation patterns and may fre-
quently reach inappropriate forecasting results.

With the recent development of machine-learning algorithms,
several methods have been utilized that work more effectively than
the traditional linear model in time series forecasting problems. For
example, the support vector machine (SVM) is a novel machine-
learning approach. SVM's generalization capability in obtaining a
unique solution (Lu et al., 2009) and structural risk minimization
principle (SRM) in achieving high performance (Duan and Stanley,
2011) have drawn attention to SVM's research applications. Support
vector regression (SVR) is the regression model of SVM (Vapnik,
2000). It has been applied to investigate the forecasting ability of finan-
cial time series. Lu et al. (2009) used SVR to construct a stock price fore-
casting model, and Huang et al. (2010) and Ni and Yin (2009) both
implemented SVR in exchange rate forecasting models. However,
the training phrase of SVR is a time-consuming process when there
is a lot of data to deal with. Therefore, least squares support vector
regression (LSSVR), proposed by Suykens and Vandewalle (1999),
has been applied in much literature as an alternative (He et al., 2010;
Khemchandani et al., 2009); it is a simplified version of traditional
SVR that alters inequality constraints into equal conditions and employs
a squared loss function, which is a differential setting relative to tradi-
tional SVR (Wang et al., 2011), to achieve higher calculation speed
and efficiency while retaining the advantage of the structural risk min-
imization principle.
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When we model financial time series using LSSVR or ARIMA, we
must remember that these financial time series are inherently
nonlinear and non-stationary. If we ignore this problem, it will result
inworse forecasting. The property offinancial time series and the divide
and conquer principle (Yu et al., 2008) are important in constructing a
financial time series forecasting model. Therefore, hybrid models are
widely used to solve the limitations in financial time series forecasting.
Empirical mode decomposition (EMD) is suitable for financial time
series in terms of finding fluctuation tendency, which simplifies the
forecasting task into several simple forecasting subtasks. EMD as a
time–frequency resolution approach offers a new way by which the
-stationary and nonlinear behavior of time series can be decomposed
into a series of valuable independent time resolutions (Tang et al.,
2012). It also can reveal the hidden patterns and trends of time series,
which can effectively assist in designing forecasting models for various
applications (An et al., 2012; Guo et al., 2012). Guo et al. (2012), for ex-
ample, decomposed wind-speed series using EMD and then forecasted
them using a feed-forward neural network, whereas Chen et al.
(2012) proposed an EMD approach combined with an artificial neural
network for tourism-demand forecasting.

In this paper, EMD and LSSVR are used to present a financial time
series forecasting model for foreign exchange rate, in which consider-
ation of the decomposed financial time series structure will increase
the accuracy and practicability of the proposed model in terms of over-
coming the nonlinearity and non-stationarity limitations to the linear
statistical model. The proposed approach is compared with the com-
bination of EMD and ARIMA as well as with the existing LSSVR and
ARIMA models, and it is shown that the proposed model can yield
more accurate results. Three financial time series are used as illustrative
examples, as follows: USD/NTD exchange rate, JPY/NTD exchange rate,
and RMB/NTD exchange rate.
2. Methodology

2.1. Empirical mode decomposition

Empirical mode decomposition (EMD) is a nonlinear signal-
transformation method developed by Huang et al. (1998, 1999). It is
used to decompose a nonlinear and non-stationary time series into
a sum of intrinsic mode function (IMF) components with individual
intrinsic time scale properties. According to Huang et al. (1998),
each IMF must satisfy the following two conditions. First, the number
Foreign Excha
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Fig. 1. The proposed EMD-LSSVR forecast
of extreme values and zero-crossings either are equal or differ at the
most by one; and second, the mean value of the envelope constructed
by the local maxima and minima is zero at any point. The detail-
decomposition process of EMD is presented by Huang et al. (1998).
Suppose that a data time series can be decomposed according to the fol-
lowing procedure.

(1) Identify all the local maxima and minima of x(t).
(2) Obtain the upper envelope xu(t) and the lower envelope xl(t)

of the x(t).
(3) Use the upper envelope xu(t) and the lower envelope xl(t) to

compute the first mean time series m1(t), that is, m1(t)=
[xu(t)+xl(t)]/2.

(4) Evaluate the difference between the original time series x(t) and
the mean time series and get the first IMF h1(t), that is, h1(t)=
x(t)−m1(t).Moreover,we seewhetherh1(t) satisfies the two con-
ditions of an IMF property. If they are not satisfied, we repeat steps
1–3 of the decomposition procedure to eventually find the first
IMF.

(5) After we obtain the first IMF, a repeat of the above steps is neces-
sary to find the second IMF, until we reach the final time series
r(t) as a residue component that becomes a monotonic function,
which is suggested for stopping the decomposition procedure
(Huang et al., 1999).

The original time series x(t) can be reconstructed by summing up
all the IMF components and one residue component as Eq. (1), as
follows.

x tð Þ ¼
Xn
i¼1

hi tð Þ þ r tð Þ: ð1Þ

2.2. Least squares support vector regression

The support vector machine (SVM) developed by Vapnik (1995,
2000) is based on the SRM principle. It aims to minimize the upper
bound of the generalization error, instead of the empirical error as in
other neural-network methods such as back-propagation networks
(BPN). SVM explores not only the problem of classification but also the
regression application of forecasting. Vapnik et al. (1997) proposed sup-
port vector regression (SVR) as an SVM regression estimation model,
introducing the concept of the ε-loss function.
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Fig. 2. The daily USD/NTD exchange rate form July 2005 to December 2009. Fig. 4. The daily RMB/NTD exchange rate form July 2005 to December 2009.

Table 1
Descriptive statistics of the exchange rare data.

Currencies Numbers Mean Standard
deviation

Max Min

USD/NTD
All sample 1130 32.537 0.895 35.174 30.010
Training 904 32.424 0.894 34.050 30.010
Testing 226 32.987 0.745 35.174 32.030

JPY/NTD
All sample 1130 0.303 0.032 0.383 0.264
Training 904 0.291 0.023 0.383 0.264
Testing 226 0.351 0.010 0.375 0.329

RMB/NTD
All sample 1130 4.403 0.313 5.138 3.829
Training 904 4.297 0.251 4.294 3.829
Testing 226 4.829 0.107 5.138 4.692

Table 2
Performance and their definition.

Metrics Calculation

MAPE
MAPE ¼ 1

n
�
Xn
i¼1

Ti � Ai

Ti

����
����� 100%
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SVR performs by nonlinearly mapping the input space into a high-
dimensional feature space, and then runs the linear regression in the
output space. This allows us to formulate the nonlinear relationship
between input data and output data. The formulation of SVR basically
is represented the following linear estimation function:

f xð Þ ¼ ω⋅ϕ xið Þ þ b; ð2Þ

where ω denotes the weight vector, b is the bias, ϕ(xi) represents a
mapping function that aims to map the input vectors into a high-
dimensional feature space, and ω⋅ϕ(xi) describes the dot production
in the feature space.

In SVR, the problem of nonlinear regression in the low-dimension
input space is transformed into a linear regression problem in a high-
dimension feature space. That is, the original optimization problem
involving a nonlinear regression is recast as a search for the flattest
function in the feature space, not in the input space. However, LSSVR
is the least squares version of SVR, and finds the solution by solving a
set of linear equations instead of a quadratic programming problem
(Iplikci, 2006). In LLSVR, the regression problem can be applied to the
following optimization problem:

min
1
2
‖ω‖2 þ 1

2
C
Xl
i¼1

e2i

s:t:yi ¼ ω·ϕ xið Þ þ bþ ei i ¼ 1;…; lð Þ
; ð3Þ

where ei represents the error from the training set and C is the penalty
parameter to be used to limit the minimization of estimation error and
function smoothness.

In order to derive the optimization problem of Eq. (3), the
Lagrange function is formulated for Eq. (3) to find out the solutions
to ω and e; this can be written as follows.

L w; b; e;αð Þ ¼ 1
2
‖ω‖2 þ 1

2
C
Xl
i¼1

e2i −
Xl
i¼1

αi ω·ϕ xið Þ þ bþ ei−yif g; ð4Þ
Fig. 3. The daily JPY/NTD exchange rate form July 2005 to December 2009.
where αi=(α1,…,αl) are Lagrange multipliers, which can be expressed
as either positive or negative. The first-order conditions for optimality
are as follows.

∂L
∂ω ¼ ω−

Xl
i¼1

αiϕ xið Þ ¼ 0 ð5Þ

∂L
∂b ¼

Xl
i¼1

αi ¼ 0 ð6Þ
RMSE RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
�
Xn
i¼1

Ti � Aið Þ2
s

MAD MAD ¼ 1
n
�
Xn
i¼1

Ti � Aij j

DS DS ¼ 100
n

Xn
u¼1

di; where di ¼ 1 Ti−Tt−1ð Þ Ai−At−1ð Þ≥0
0 otherwise

� �

CP CP ¼ 100
n1

Xn
u¼1

di; where di ¼ 1 AI−At−1ð Þ≻0 and Ti−Tt−1ð Þ Ai−At−1ð Þ≥0
0 otherwise

�

CD CD ¼ 100
n2

Xn
u¼1

di; where di ¼ 1 AI−At−1ð Þ≺0 and Ti−Tt−1ð Þ Ai−At−1ð Þ≥0
0 otherwise

�

Note that A and T represent the actual and forecasted value, respectively. n is total number
of data points, n1 is number of data points belong to up trend and n2 is number of data
points belong to down trend.
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∂L
∂ei

¼ C·ei−αi ¼ 0 ð7Þ

∂L
∂αi

¼ ω·ϕ xið Þ þ bþ ei−yi ¼ 0: ð8Þ

By solving the above linear system, the forecasting formulation of
LSSVR can be represented in the following equation:

f xð Þ ¼
Xl
i¼1

αiK xi; xj
� �

þ b; ð9Þ
Fig. 5. The decomposition results for
where K(xi,xj) is called the “kernel function” andmust satisfy Mercer's
theorem (Vapnik, 1995). The value of the kernel equals the inner
product of two vectors, xi and xj, in the feature space ϕ(xi) and
ϕ(xj); that is, K(xi,xj)=ϕ(xi)⋅ϕ(xj).

The most widely used kernel function is the Gaussian radial basis

function (RBF), defined as K xi; xj
� 	 ¼ exp

−‖xi−xj‖
2

2σ2

 !
, where σ de-

notes the width of the RBF. Moreover, the RBF kernel is not only easier
to implement than alternatives, but also capable of nonlinearly map-
ping the training data into an infinite-dimensional space; thus, it deals
suitably with nonlinear relationship problems. Thus, the Gaussian RBF
kernel function is used in this work. LSSVR parameter selection is
USD/NTD from EMD approach.

image of Fig.�5
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most important, so that we can see that the established LLSVR model
with Gaussian RBF kernel function goes well, because these parameters
can significantly affect generalized performance. Grid search (He et al.,
2010), one of the most useful methods for parameter optimization,
is applied to find the optimal parameters, C and σ, in LSSVR model
construction.

3. Proposed EMD-LSSVR model

Many studies have used least squares support vector regression in
practice problems (Khemchandani et al., 2009; Lin et al., in press). In
financial time series forecasting, however, the major problems are inher-
ent nonlinearity and non-stationary properties affecting the robustness of
Fig. 6. The decomposition results fo
the LSSVR model significantly. For this reason, the proposed EMD-LSSVR
model is employed according to the principle of decomposition and
ensemble (He et al., 2010; Wang et al., 2011). The procedure of the pro-
posed EMD-LSSVR structure is shown in Fig. 1 and generally consists
of the following three steps: (1) data decomposition, (2) forecasting-
model construction, and (3) data reconstruction and validation.

(1) Suppose there is a foreign exchange rate time series x(t) that also
can be decomposed into n IMF components, hi(t), i=1, 2,…,n,
and one residue component, r(t), through the EMD approach,
as in Eq. (1).

(2) After the data decomposition, each obtained IMF component
and residual component is further input to the LSSVR forecasting
r JPY/NTD from EMD approach.

image of Fig.�6
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model; consequently, the corresponding forecasted values for all
IMF and residual components are acquired from the forecasting
tool.

(3) The forecasted value of each IMF and residual component in the
previous stage can be reconstructed as a sum of superposition of
all components, which can be used as the final forecasting result,
and then compared with the original time series according to
several criteria for measuring the performance capability of this
proposed model.
Fig. 7. The decomposition results for
4. Experimental results

4.1. Exchange rate dataset

To evaluate the performance of the proposed forecasting models
using EMD with LSSVR methodologies, this study uses daily USD/NTD,
JPY/NTD, and RMB/NTD exchange rates obtained from the Central
Bank of Taiwan and Yahoo Finance. The whole daily data of exchange
rates from July 1, 2005 to December 31, 2009 are used, for a total of
RMB/NTD from EMD approach.

image of Fig.�7


Table 4
The parameter selection of single LSSVR forecasting model.

Kernel USD/NTD JPY/NTD RMB/NTD

RBF C σ C σ C σ
64 0.25 64 0.125 64 0.0312

Table 5
The exchange rate forecasting results using EMD-LSSVR, EMD-ARIMA, LSSVR and
ARIMA models.

Models Indicators
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1130 data points, as illustrated in Figs. 2–4 for each of the three rates
respectively. These datasets are also divided into training group and
testing group in separate foreign exchange rate categories. The first
904 data points (80% of the total dataset) are used as the training
group and the remaining 226 data points are used as the testing
group. Table 1 shows some basic summary statistics for total, training,
and testing data within the three foreign exchange rate datasets.

4.2. Performance criteria

Following Lu et al. (2009) and Tay and Cao (2001), the following
performance measures are used and evaluated respectively: applied
mean absolute percentage error (MAPE), root‐mean‐square error
(RMSE), mean absolute difference (MAD), directional symmetry
(DS), correct uptrend (CP), and correct downtrend (CD) for consider-
ation. The definition of these criteria can be summarized in Table 2.
MAPE, RMSE, and MAD are measures of the deviation between the
actual and forecasted value. They can be used to evaluate forecasting
error. The smaller the values of the criteria, the closer the forecasted
value to the actual value. DS provides the correctness of the forecasted
direction of the exchange rate in terms of percentage, while CP and
CD provide the correctness of the forecasted up trend and down trends
of exchange rate, also in terms of percentage. DS, CP, and CD can be uti-
lized to provide forecasting accuracy.

4.3. Forecasting results

In this section, the forecasting results of the EMD-LSSVR model are
compared to those of other linear and nonlinearmodels. First is another
hybrid forecasting model, one that integrates EMD with ARIMA. EMD
is applied to decompose the foreign exchange rate time series, and
gathered components that have a monotonic function, enhancing the
forecasting ability of LSSVR and ARIMA. The others are the single
LSSVR and ARIMA models without algorithms or treatments for fore-
casting. That is, the single LSSVR and ARIMA model were directly ap-
plied to forecast future exchange rates. The purpose of doing so is to
explore the problem of financial time series forecasting based on linear
and nonlinearmodels, whether we can preprocess forecasting variables
using the EMD approach or not, thus helping to further managerial
applications.

The modeling steps of the proposed EMD-LSSVR are shown in
Section 3. Using the EMD approach in the data decomposition, the
three foreign exchange rate time series can be decomposed into nine
independent IMFs and one residue component, respectively, as illus-
trated in Figs. 5–7. These decomposition results may enhance the
model's forecasting ability in terms of the divide and conquer concept
(Yu et al., 2008). Then, the decomposed forecasting variables, the inde-
pendent IMFs, and residual components from the previous step, are
used in LSSVR model construction. Parameter selection is essential for
LSSVR model construction; we employ the Gaussian RBF as the kernel
Table 3
The parameter selection of EMD-LSSVR forecasting model.

Kernel USD/NTD JPY/NTD RMB/NTD

RBF Set C σ Set C σ Set C σ

1 0.5 0.00390625 1 8 0.00390625 1 0.5 0.015625
2 64 1 2 1 0.00390625 2 0.5 0.00390625
3 64 1 3 64 0.5 3 1 0.0078125
4 16 0.5 4 64 0.5 4 64 1
5 64 1 5 64 1 5 32 1
6 64 1 6 64 1 6 64 1
7 64 1 7 64 1 7 32 1
8 64 1 8 64 1 8 64 1
9 64 1 9 64 0.015625 9 32 0.25
10 64 1 10 64 1 10 64 1
function of LSSVR. The parameter combination (C and σ) was selected
by grid search, as suggested in He et al. (2010) and Van Gestel et al.
(2004). The optimal values of C and σ for each EMD-LSSVR forecasting
model are presented in Table 3. At the reconstruction step, we combine
all forecasted values from the individual EMD-LSSVRmodels in order to
compare them with the actual foreign exchange rate date, so as to vali-
date the forecasting ability of the EMD-LSSVR model.

The same EMD-based methodology steps are also fed into ARIMA in
order to build the hybrid linear foreign exchange rate forecasting
model, namely, the EMD-ARIMA model, the results of which are com-
pared with those of the EMD-LSSVR model. As well, the pure LSSVR
and ARIMA models are applied for comparison. The optimal parameter
combination selected for the single LSSVRmodel is listed in Table 4, and
the performance evaluation of each forecasting model is based on the
several performance criteria from Section 4.2, as listed in Table 2. The
performance measurements of the selected forecasting models are
given in Table 5.

4.4. Comparison of forecasting results

In order to verify the forecasting capability of the proposed EMD-
LSSVRmodel, the EMD-ARIMA, LSSVR and ARIMAmodels are employed
for comparison, using three foreign exchange rate data sets: (1) the
USD/NTD exchange rate data set, (2) the JPY/NTD exchange rate data
set, and (3) the RMB/NTD exchange rate data set. MAPE, RMSE, MAD,
DS, CP and CD, which are computed from the equations mentioned in
Table 2, are used as performance indicators to further survey the fore-
casting performance of the proposed EMD-LSSVE model as compared
to other linear and nonlinear models.

Take the USD/NTD exchange rate as an example-the forecasting
results using EMD-LSSVR, EMD-ARIMA, LSSVR, and ARIMA are comput-
ed and listed in Table 5, where can be seen that the MAPE, RMSE, and
MAD of the EMD-LSSVR model are, respectively, 0.21%, 0.0188, and
0.0135. These values are the smallest of all the forecasting models,
that the deviation between actual and forecasted values in the EMD-
LSSVR model is the smallest. Moreover, EMD-LSSVR also has higher
MAPE (%) REMSE MAD DS (%) CP (%) CD (%)

USD/NTD
EMD-LSSVR 0.48 0.0109 0.0081 86.37 87.88 86.28
EMD-ARIMA 1.21 0.0173 0.0159 80.78 74.46 84.19
LSSVR 1.06 0.0262 0.0231 83.54 82.12 83.42
ARIMA 11.06 0.1039 0.1020 73.53 74.77 73.09

JPY/NTD
EMD-LSSVR 0.57 0.0026 0.0020 86.37 87.63 82.74
EMD-ARIMA 2.29 0.0183 0.0150 83.89 82.54 86.17
LSSVR 2.94 0.0267 0.0212 81.77 78.55 82.22
ARIMA 7.19 0.0302 0.0400 73.67 76.17 70.75

RMB/NTD
EMD-LSSVR 0.48 0.0109 0.0081 86.37 87.88 86.28
EMD-ARIMA 1.21 0.0173 0.0159 80.78 74.46 84.19
LSSVR 1.06 0.0262 0.0231 83.54 82.12 83.42
ARIMA 11.06 0.1039 0.1020 73.53 74.77 73.09



Table 6
Percentage improvement of forecasting performance of the proposed EMD-LSSVR
model in comparison with other forecasting models.

Models Indicators

MAPE REMSE MAD DS CP CD

USD/NTD
EMD-ARIMA 82.79 62.85 66.67 8.02 15.71 3.56
LSSVR 91.03 79.76 80.93 5.01 4.01 7.00
ARIMA 98.23 81.01 81.38 17.51 13.06 26.91

JPY/NTD
EMD-ARIMA 75.11 85.79 86.67 2.96 6.17 3.98
LSSVR 80.61 90.26 90.57 5.63 11.56 0.63
ARIMA 92.07 91.39 95.00 17.24 15.05 16.95

RMB/NTD
EMD-ARIMA 60.33 36.99 49.06 6.92 18.02 2.48
LSSVR 54.72 58.40 64.94 3.39 7.01 3.43
ARIMA 95.66 89.51 92.06 14.46 17.53 18.05
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DS, CP, and CD ratios, 87.26%, 85.88%, and 89.38%, respectively. DS, CP,
and CD provide a good measure of forecasting consistency of moving
exchange rate trends. In sum, it can be concluded that EMD-LSSVR
provides better forecasting accuracy and direction criteria for USD/
NTD exchange rate than EMD-ARMA, LSSVR, or ARIMA. In addition,
the results of EMD-LSSVR are consistentwith the principle of decompo-
sition and ensemble (He et al., 2011; Wang et al., 2010). Time series
decomposition may enhance forecasting ability. For example, in terms
of DS indicators from the USD/NTD exchange rate forecasting, as
shown in Table 6, relative to the comparison models, the improvement
percentages of the proposed model are 8.02%, 5.01% and 17.51%,
respectively.

The forecasting results and performance comparisons of the four
forecasting models for JPY/NTD and RMB/NTD are also reported in
Tables 5 and 6. In addition, we see that the decomposition of time
series in EMD can enhance the forecasting ability of nonlinear and
linear models.
5. Conclusions

There has been increasing attention given to finding an effective
model to address the problem of financial time series forecasting in
terms of nonlinear and non-stationary characteristics. In this paper, an
EMD-based LSSVR forecastingmodel is proposed. EMD is used to detect
themoving trend of financial time series data and improve the forecast-
ing success of LSSVR. Through empirical comparison of several models
of foreign exchange rate forecasting, the proposed EMD-LSSVR model
outperforms EMD-ARIMA, LSSVR and ARIMA on several criteria. Thus,
it can be concluded that the proposed EMD-LSSVR model may be an
effective tool for financial time series forecasting.
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