

Fast trapping force calculation by utilizing graphic processing unit

Sheng-Yang Tseng*a, Ai-Tang Changa, Chih-Wei Luoa, Long Hsua, Takayoshi Kobayashia,b,c,d

aDepartment of Electrophysics, National Chiao Tung University, 1001 University Road, Hsinchu,
Taiwan 300, ROC; bICORP, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan; cUniversity
of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan; dInstitute of Laser

Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka, 565-0971, Japan

ABSTRACT

Fast calculation of trapping force provides a more direct way for optimizing designs of optical systems which generate
optical traps. In this study, a graphic processing unit (GPU), NVIDIA GTX 275, is used to boost the speed of trapping
efficiency calculation under ray optics approximation. The codes of trapping efficiency calculation are implemented in
C++. The computing power of GPU is utilized through compute unified architecture device (CUDA) toolkit 4.0. The
computing speed is compared with that of central processing unit (CPU), Intel Core 2 Quad Q9550. Over 100x speedup
is achieved when single-precision floating-point numbers were used in the calculation.
Keywords: Graphic processing unit, optical trapping force, Ray optics

1. INTRODUCTION
The most important thing in generating optical traps is focusing a laser beam tightly enough to exert noticeable gradient
forces on particles. In optical tweezers1, this work is often done by a high-numerical-aperture objective lens. The
objective lens is corrected to be free of aberrations and can bring a laser beam into a diffraction-limited spot. Hence,
optical tweezers are often built around a commercial microscope. In recently years, some researchers fabricated optical
components for trapping, such as micro-mirror array2, 3, micro-lens array4, 5, or cylindrical mirror6. In these cases,
researchers have to design and optimize their own optical components for generating effective traps. However, instead of
maximizing trapping efficiency, most of optimizations are done by minimizing aberrations of the systems, which may
lead to that the obtained result is not the best one. This is due to calculating the trapping efficiency is computationally
intense.

In the calculation of trapping force under ray optics (RO) approximation, the incident laser beam is often decomposed
into many rays. The force exerted on a particle by each ray is calculated. The trapping force is then obtained by adding
the forces contributed by all the rays. When the force calculation is implemented in a central processing unit (CPU) code,
the force of each ray is calculated sequentially. When the number of rays is large, for example hundreds of thousands, or
a two-dimensional force scan is required, the calculation takes more time. This makes using trapping efficiency for
optimizing optical designs impractical. In contrast to CPU, modern programmable graphic processing unit (GPU) can
lunch many thousands of threads at the same time7. Each thread can calculate the force of each ray simultaneously so the
calculation speed can be greatly increased.

In this study, we use a GPU to increase the calculation speed of trapping force. The method we used to calculate trapping
force is first introduced. The calculation result and speed of CPU and GPU are then compared.

2. METHOD
2.1 Ray optics approximation of trapping force

In RO approximation of trapping force calculation, a laser beam is modeled by rays8. Every ray carries momentum and
energy. When these rays enter a particle, they change propagating directions and therefore their momentum due to the
refractive index change. The momentum change implies that the particle exerts a force on each ray. Every ray thus exerts
a reaction force, which has the same magnitude but opposite direction, on the particle simultaneously. The total sum of
these reaction forces is the trapping force on the particle.

*twsone@gmail.com

Optical Trapping and Optical Micromanipulation IX, edited by Kishan Dholakia, Gabriel C. Spalding, Proc. of SPIE Vol. 8458,
84582Y · © 2012 SPIE · CCC code: 0277-786/12/$18 · doi: 10.1117/12.929238

Proc. of SPIE Vol. 8458 84582Y-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/28/2014 Terms of Use: http://spiedl.org/terms

Figure 1. A path of a ray entering a particle. (a) is ray path on the incident plane and (b) is a three-dimensional illustration of
the ray path.

Figure 1 shows a path of ray entering a particle. The particle is located at rp and has radius a and refractive index np.
When a circular polarized ray of power P which originates from position rray and is along a unit direction vector vray is
incident on the particle, the force Fray contributed by the ray is given by8

gradray vF
⎭
⎬
⎫

⎩
⎨
⎧

++
+−

−=
)2cos(21

)]2sin()22[sin()2sin(2

2

re

inrein
in

s

RR
RTR

c
Pn

θ
θθθθ

 rayv
⎭
⎬
⎫

⎩
⎨
⎧

++
+−

−++
)2cos(21

)]2cos()22[cos()2cos(1 2

2

re

inrein
in

s

RR
RTR

c
Pn

θ
θθθθ (1)

where c is the speed of light in vacuum, ns is the refractive index of the surrounds, R and T are the Fresnel reflection and
transmission coefficients9 of the surface at incident angle θin, θre is the refractive angle, and vgrad is a unit direction vector
which are perpendicular to vray and directs from the particle center rp to the closest position of the ray from the particle
rn. The first term of equation (1) is the gradient force, which attracts the particle to the brightest region. The second term
is the scattering force, which pushes the particle along the ray. The trapping force Ftotal is obtained by summing the
contributions of all the incident rays, that is

∑
=

+=
N

i
,i,i

1

)scatgradtotal F(FF

 ∑
=

+=
N

i
,i,i

totals

cN
Pn

1

)scatgrad Q(Q , (2)

where the index i indicates i-th ray, Ptotal is the total incident power, N is the total number of incident rays and Qgrad,i and
Qscat,i are dimensionless vectors which represent the efficiencies of the gradient and scattering force of the i-th ray
respectively. Qgrad,i and Qscat,i are given by

 ,i
ireii

iiniireiini
iini,i RR

RT
R gradgrad vQ

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++

+−
−=

)2cos(21
)]2sin()22[sin(

)2sin(
,

2
,,,

2

, θ
θθθ

θ (3)

and

Proc. of SPIE Vol. 8458 84582Y-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/28/2014 Terms of Use: http://spiedl.org/terms

 ,i
ireii

iiniireiini
iini,i RR

RT
R rayscat vQ

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++

+−
−+=

)2cos(21
)]2cos()22[cos(

)2cos(1
,

2
,,,

2

, θ
θθθ

θ . (4)

vgrad,i in equation (3) is defined by

 ||/)(pnpngrad rrrrv −−= ,i,i,i , (5)

where rn,i is the closest position of the i-th ray from the particle and

 ,i,i,i,i,i rayrayrayprayn vvrrrr])[(⋅−+= . (6)

In addition, Ti and Ri of circular polarized light in equations (3) and (4) are

]
)cos()cos(
)cos()cos(

)cos()cos(
)cos()cos(

[
2
1

2

,,

,,

2

,,

,,

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

=
irepiins

irepiins

iresiinp

iresiinp
i nn

nn
nn
nn

R
θθ
θθ

θθ
θθ

, (7)

and

]
)cos()cos(

)cos(2
)cos()cos(

)cos(2
[

2
1

2

,,

,

2

,,

,

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=

irepiins

iins

iresiinp

iins
i nn

n
nn

n
T

θθ
θ

θθ
θ

, (8)

where θin and θre can be expressed as

)(sin 1
, a

,i,i
iin

pn rr −
= −θ , (9)

and

)(sin 1
, an

n ,i,i

p

s
ire

pn rr −
= −θ . (10)

Therefore, with rray,i, vray,i of the rays and the position of the particle center rp, all the incident angles of the rays and the
directions of scattering and gradient forces are determined. The magnitude of the forces can be determined further when
ns, np and Ptotal are known.

A vector Q used to indicate force efficiency of a trap is defined as

 scatgrad QQQ += , (11)

where Qgrad and Qscat are the efficiencies of gradient and scattering force of a trap respectively and are given by

 ∑
=

=
N

i
,iN 1

1
gradgrad QQ (12)

and

 ∑
=

=
N

i
,iN 1

1
scatscat QQ . (13)

In the following sections, Q is computed in all the numerical calculations.

Proc. of SPIE Vol. 8458 84582Y-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/28/2014 Terms of Use: http://spiedl.org/terms

Back focal
plane I 1st 2nd

principle principle
plane plane

-
Focal

plane

3. CPU AND GPU COMPUTING
In this section, the computing results and speeds of CPU and GPU are compared. The trapping efficiency Q of a trap was
calculated by using a CPU (Core 2 Quad Q9550, Intel) and a GPU (GTX 275, NVIDIA) separately. Both of the CPU and
GPU codes of Q calculation are implemented in C++. The computing power of GPU is utilized through compute unified
architecture device (CUDA) toolkit 4.0.

The calculation of the trapping efficiency Q of a trap formed by an optical system is started by generating an array of
rays, which are specified by rray,i and vray,i. The final values r’ray,i and v’ray,i of the rays are then calculated after the rays
propagate through the optical system, such as an objective lens. The trapping efficiency contributed by a ray Qi is
obtained by substituting the final values of rray,i and vray,i into equation (3) through equation (10). After summing up all
of the obtained Qi and normalized by the total number of incident rays, the Q of the trap is obtained.

When writing a CPU code to compute Q of a trap, a loop is often used to scan the entire ray array and compute all the Qi.
The obtained result is added together in each iteration sequentially. After all the Qi have been computed and added, Q of
the trap is obtained. However, in order to have an accurate result, the number of rays is usually very large, which is
around hundreds of thousands or more. The sequential calculation takes lots of time especially when a two-dimensional
or three-dimensional distribution of Q is required.

In contrast to CPU, a modern programmable GPU can lunch a large number of threads at the same time. Each thread can
propagate a ray through the optical system and then calculate the Qi. The obtained Qi in each thread is added together by
using parallel reduction algorithm10. Because of parallel computing, the calculation speed can thus be greatly increased.

Figure 2. a ray path in a trap which is formed by focusing a normal-incident, collimated laser beam with an infinite-
corrected objective lens.

To compare the computing speeds and results of CPU and GPU, Q of a trap which is formed by focusing a normal-
incident, collimated laser beam with an infinite-corrected, water-immersion objective lens is calculated. We assume that
the particle has refractive index of 1.55 and is placed in water, which has refractive index of 1.33. In addition, the
objective lens has numerical aperture (NA) of 1.1.

Figure 2 is a schematic illustration of a ray path of the trap. The objective, which obeys Abbe sine condition11, is
modeled by focal planes, principle plane, and a spherical surface S. The optical axis is along the z-axis. The distance
between a focal plane and a nearby principle plane is fobj. The surface S is centered at the focal point and is tangent to the
2nd principle. The ray starts from position rray,i and has a direction vector vray,i = (0,0,1). After the ray passes through the
objective lens, it leave at position r’ray,i on surface S, whose transverse component is the same as that of rray,i, and
converges to the focal point with a direction vector v’ray,i , which is given by

 ||/ ,i,i,i ''' rayrayray rrv −= (14)

and

Proc. of SPIE Vol. 8458 84582Y-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/28/2014 Terms of Use: http://spiedl.org/terms

4.Z

O.:

4:3

O.1

xo

4.i

4.4

a6;:ne
Opoa.

441

s.x

O . dtxx f
-I.3

tsa

txs

(b)

, Qxats.
nnp rads !.4C{L

:.4FSfi

INSET.

-r
X

(d)

 z hhr rayrayray
22 || ,iobj,i,i f' −−= , (15)

where hray,i is the transverse component of rray,i. Once an array of rray,i and vray,i are given, the r’ray,i and v’ray,i can be
obtained according to equations (14) and (15). Q of the trap can then be obtained. Figure 3(a) and 3(b) show GPU results
of Qgrad and Qscat of the trap in the x and z directions when the particle moves along the x and z axis respectively. The
spatial coordinates is normalized by the radius of the particle. The total ray number in the calculation is 768 x 768. Q
was calculated at 512 positions which are equally distributed along an axis from -3 to 3. Figure 3(c) and 3(d) show the
difference distribution of Q between the results of CPU and GPU. The ΔQ is defined by subtracting the Q calculated by
using CPU from the Q calculated by using GPU. The difference comes from that only single-precision floating-point
numbers were used in the GPU calculation for a faster computing speed. The maximum value of ΔQ is less than 5105 −× .
The larger differences distribute only in the regions where the focus of the laser beam is outside the particle. In that case,
the particle will not stay in the trap and thus the difference of Q could be neglected. Some recent GPUs have already
supported double-precision floating-point numbers and the computing speed has also increased. The accuracy of the
GPU computing can be improved by using double-precision floating-point numbers while the computing speed is still
the same as or even faster than the speed achieved in this study.

Figure 3. GPU results of Q distribution along the x and z axis. (a) is the x component of Qscat and Qgrad along the x axis. (b)
is the z component of Qscat and Qgrad along the z axis. (c) is the difference between the CPU and GPU results along the x
axis. (d) is the difference between the CPU and GPU results along the z axis.

Figure 4 shows speedup of GPU computing at different total ray number. The speedup is obtained by dividing the
computation time of CPU by that of GPU. When the total ray number is small, the speedup is small because only a small
number of threads were used in the calculation. As the total ray number increases, the number of threads used in the
calculation also increases. The speedup grows rapidly at first and reaches a maximum value of speedup, which is about
108. The speedup is limited by the number of threads which can be lunched at the same time in a GPU.

Proc. of SPIE Vol. 8458 84582Y-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/28/2014 Terms of Use: http://spiedl.org/terms

Jaqwnu Aeb

89L X 89L 0179 X0179 ZIS X ZIS 178E X1788 9SZ X 9SZ 8ZT X 8ZT

dnpaads tld9

rg

(AT

077

Figure 4. GPU speedup at different total ray number.

4. CONCLUSION
In this study, we used a GPU to calculate the trapping efficiency of a trap formed by focusing a collimated normal-
incident laser beam with an infinite-corrected objective lens. A modern programmable GPU can lunch hundreds of
thousands threads simultaneously. Each thread calculates the contribution of an incident ray. In this way, GPU
computing can provide more than 100 times the speed of CPU computing when single-precision floating-point numbers
were used in the calculation. In addition, the GPU results were compared with the double-precision floating-point results
of CPU. The maximum difference of Q between the results of CPU and GPU is less than 5105 −× . Larger differences of Q
only occur at the positions where the laser focus is outside the particle. In that situation, the particle does not stay in the
trap. The value of Q cannot be measured accurately by an experiment. The difference could be neglected. Therefore,
calculating trapping efficiency for optimizing optical designs of trapping systems becomes practical.

REFERENCES

[1] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm et al., “Observation of a single-beam gradient force optical trap for
dielectric particles,” Optics Letters, 11(5), 288-290 (1986).

[2] F. Merenda, J. Rohner, J.-M. Fournier et al., “Miniaturized high-NA focusing-mirror multiple optical tweezers,”
Opt. Express, 15(10), 6075-6086 (2007).

[3] Y. S. Ow, M. B. H. Breese, and S. Azimi, “Fabrication of concave silicon micro-mirrors,” Opt. Express, 18(14),
14511-14518 (2010).

[4] X. Zhao, Y. Sun, J. Bu et al., “Microlens-array-enabled on-chip optical trapping and sorting,” Appl. Opt., 50(3),
318-322 (2011).

[5] F. Chen, H. Liu, Q. Yang et al., “Maskless fabrication of concave microlens arrays on silica glasses by a
femtosecond-laser-enhanced local wet etching method,” Opt. Express, 18(19), 20334-20343 (2010).

[6] A. T. Chang, S. Y. Tseng, and L. Hsu, "Optical guiding with cylindrical mirror system," Proc. SPIE 7762,
77622T.

[7] D. B. Kirk, and W.-m. W. Hwu, [Programming Massively Parallel Processors: A Hands-on Approach] Morgan
Kaufmann, (2010).

[8] A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,”
Biophysical Journal, 61(2), 569-582 (1992).

[9] M. Born, and E. Wolf, [Principles of optics : electromagnetic theory of light] Cambridge University Pr,
Cambridge ; New York.

[10] M. Harris, “Optimizing Parallel Reduction in CUDA,” NVIDIA GPU Computing SDK 4.0.
[11] M. Mansuripur, [Classical optics and its applications] Cambridge University Press, (2002).

Proc. of SPIE Vol. 8458 84582Y-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/28/2014 Terms of Use: http://spiedl.org/terms

