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ABSTRACT   

Fast calculation of trapping force provides a more direct way for optimizing designs of optical systems which generate 
optical traps. In this study, a graphic processing unit (GPU), NVIDIA GTX 275, is used to boost the speed of trapping 
efficiency calculation under ray optics approximation. The codes of trapping efficiency calculation are implemented in 
C++. The computing power of GPU is utilized through compute unified architecture device (CUDA) toolkit 4.0. The 
computing speed is compared with that of central processing unit (CPU), Intel Core 2 Quad Q9550. Over 100x speedup 
is achieved when single-precision floating-point numbers were used in the calculation.  
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1. INTRODUCTION 
The most important thing in generating optical traps is focusing a laser beam tightly enough to exert noticeable gradient 
forces on particles. In optical tweezers1, this work is often done by a high-numerical-aperture objective lens. The 
objective lens is corrected to be free of aberrations and can bring a laser beam into a diffraction-limited spot. Hence, 
optical tweezers are often built around a commercial microscope. In recently years, some researchers fabricated optical 
components for trapping, such as micro-mirror array2, 3, micro-lens array4, 5, or cylindrical mirror6. In these cases, 
researchers have to design and optimize their own optical components for generating effective traps. However, instead of 
maximizing trapping efficiency, most of optimizations are done by minimizing aberrations of the systems, which may 
lead to that the obtained result is not the best one. This is due to calculating the trapping efficiency is computationally 
intense. 

In the calculation of trapping force under ray optics (RO) approximation, the incident laser beam is often decomposed 
into many rays. The force exerted on a particle by each ray is calculated. The trapping force is then obtained by adding 
the forces contributed by all the rays. When the force calculation is implemented in a central processing unit (CPU) code, 
the force of each ray is calculated sequentially. When the number of rays is large, for example hundreds of thousands, or 
a two-dimensional force scan is required, the calculation takes more time. This makes using trapping efficiency for 
optimizing optical designs impractical. In contrast to CPU, modern programmable graphic processing unit (GPU) can 
lunch many thousands of threads at the same time7. Each thread can calculate the force of each ray simultaneously so the 
calculation speed can be greatly increased. 

In this study, we use a GPU to increase the calculation speed of trapping force. The method we used to calculate trapping 
force is first introduced. The calculation result and speed of CPU and GPU are then compared. 

2. METHOD 
2.1 Ray optics approximation of trapping force 

In RO approximation of trapping force calculation, a laser beam is modeled by rays8. Every ray carries momentum and 
energy. When these rays enter a particle, they change propagating directions and therefore their momentum due to the 
refractive index change. The momentum change implies that the particle exerts a force on each ray. Every ray thus exerts 
a reaction force, which has the same magnitude but opposite direction, on the particle simultaneously. The total sum of 
these reaction forces is the trapping force on the particle.  
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Figure 1. A path of a ray entering a particle. (a) is ray path on the incident plane and (b) is a three-dimensional illustration of 
the ray path. 

Figure 1 shows a path of ray entering a particle. The particle is located at rp and has radius a and refractive index np. 
When a circular polarized ray of power P which originates from position rray and is along a unit direction vector vray is 
incident on the particle,  the force Fray contributed by the ray is given by8 
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where c is the speed of light in vacuum, ns is the refractive index of the surrounds, R and T are the Fresnel reflection and 
transmission coefficients9 of the surface at incident angle θin, θre is the refractive angle, and vgrad is a unit direction vector 
which are perpendicular to vray and directs from the particle center rp to the closest position of the ray from the particle 
rn.  The first term of equation (1) is the gradient force, which attracts the particle to the brightest region. The second term 
is the scattering force, which pushes the particle along the ray. The trapping force Ftotal is obtained by summing the 
contributions of all the incident rays, that is 

∑
=

+=
N

i
,i,i

1

)scatgradtotal F(FF   

 ∑
=

+=
N

i
,i,i

totals

cN
Pn

1

)scatgrad Q(Q , (2) 

where the index i indicates i-th ray, Ptotal is the total incident power, N is the total number of incident rays and Qgrad,i and 
Qscat,i are dimensionless vectors which represent the efficiencies of the gradient and scattering force of the i-th ray 
respectively. Qgrad,i and Qscat,i are given by 
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vgrad,i in equation (3) is defined by 

 ||/)( pnpngrad rrrrv −−= ,i,i,i , (5) 

where rn,i is the closest position of the i-th ray from the particle and  

 ,i,i,i,i,i rayrayrayprayn vvrrrr ])[( ⋅−+= . (6) 

In addition, Ti and Ri of circular polarized light in equations (3) and (4) are 
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and 
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where θin and θre can be expressed as   
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Therefore, with rray,i, vray,i of the rays and the position of the particle center rp, all the incident angles of the rays and the 
directions of scattering and gradient forces are determined. The magnitude of the forces can be determined further when 
ns, np and Ptotal are known.  

A vector Q used to indicate force efficiency of a trap is defined as  

 scatgrad QQQ += , (11) 

where Qgrad and Qscat are the efficiencies of gradient and scattering force of a trap respectively and are given by 
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In the following sections, Q is computed in all the numerical calculations. 
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3. CPU AND GPU COMPUTING  
In this section, the computing results and speeds of CPU and GPU are compared. The trapping efficiency Q of a trap was 
calculated by using a CPU (Core 2 Quad Q9550, Intel) and a GPU (GTX 275, NVIDIA) separately. Both of the CPU and 
GPU codes of Q calculation are implemented in C++. The computing power of GPU is utilized through compute unified 
architecture device (CUDA) toolkit 4.0. 

The calculation of the trapping efficiency Q of a trap formed by an optical system is started by generating an array of 
rays, which are specified by rray,i and vray,i. The final values r’ray,i and v’ray,i of the rays are then calculated after the rays 
propagate through the optical system, such as an objective lens. The trapping efficiency contributed by a ray Qi is 
obtained by substituting the final values of rray,i and vray,i into equation (3) through equation (10). After summing up all 
of the obtained Qi and normalized by the total number of incident rays, the Q of the trap is obtained. 

When writing a CPU code to compute Q of a trap, a loop is often used to scan the entire ray array and compute all the Qi. 
The obtained result is added together in each iteration sequentially. After all the Qi have been computed and added, Q of 
the trap is obtained. However, in order to have an accurate result, the number of rays is usually very large, which is 
around hundreds of thousands or more. The sequential calculation takes lots of time especially when a two-dimensional 
or three-dimensional distribution of Q is required. 

In contrast to CPU, a modern programmable GPU can lunch a large number of threads at the same time. Each thread can 
propagate a ray through the optical system and then calculate the Qi. The obtained Qi in each thread is added together by 
using parallel reduction algorithm10. Because of parallel computing, the calculation speed can thus be greatly increased. 

 
Figure 2. a ray path in a trap which is formed by focusing a normal-incident, collimated laser beam with an infinite-
corrected objective lens. 

To compare the computing speeds and results of CPU and GPU, Q of a trap which is formed by focusing a normal-
incident, collimated laser beam with an infinite-corrected, water-immersion objective lens is calculated. We assume that 
the particle has refractive index of 1.55 and is placed in water, which has refractive index of 1.33. In addition, the 
objective lens has numerical aperture (NA) of 1.1.  

Figure 2 is a schematic illustration of a ray path of the trap. The objective, which obeys Abbe sine condition11, is 
modeled by focal planes, principle plane, and a spherical  surface S. The optical axis is along the z-axis. The distance 
between a focal plane and a nearby principle plane is fobj. The surface S is centered at the focal point and is tangent to the 
2nd principle. The ray starts from position rray,i and has a direction vector vray,i = (0,0,1). After the ray passes through the 
objective lens, it leave at position r’ray,i on surface S, whose transverse component is the same as that of rray,i, and 
converges to the focal point with a direction vector v’ray,i , which is given by 

 ||/ ,i,i,i ''' rayrayray rrv −=  (14) 

and 
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where hray,i is the transverse component of rray,i. Once an array of rray,i and vray,i are given, the r’ray,i and v’ray,i can be 
obtained according to equations (14) and (15). Q of the trap can then be obtained. Figure 3(a) and 3(b) show GPU results 
of Qgrad and Qscat of the trap in the x and z directions when the particle moves along the x and z axis respectively. The 
spatial coordinates is normalized by the radius of the particle. The total ray number in the calculation is 768 x 768. Q 
was calculated at 512 positions which are equally distributed along an axis from -3 to 3. Figure 3(c) and 3(d) show the 
difference distribution of Q between the results of CPU and GPU. The ΔQ is defined by subtracting the Q calculated by 
using CPU from the Q calculated by using GPU. The difference comes from that only single-precision floating-point 
numbers were used in the GPU calculation for a faster computing speed. The maximum value of ΔQ is less than 5105 −× . 
The larger differences distribute only in the regions where the focus of the laser beam is outside the particle. In that case, 
the particle will not stay in the trap and thus the difference of Q could be neglected. Some recent GPUs have already 
supported double-precision floating-point numbers and the computing speed has also increased. The accuracy of the 
GPU computing can be improved by using double-precision floating-point numbers while the computing speed is still 
the same as or even faster than the speed achieved in this study. 

 
Figure 3. GPU results of Q distribution along the x and z axis. (a) is the  x component of Qscat and Qgrad along the x axis. (b) 
is the z component of Qscat and Qgrad along the z axis. (c) is the difference between the CPU and GPU results along the x 
axis. (d) is the difference between the CPU and GPU results along the z axis. 

Figure 4 shows speedup of GPU computing at different total ray number. The speedup is obtained by dividing the 
computation time of CPU by that of GPU. When the total ray number is small, the speedup is small because only a small 
number of threads were used in the calculation. As the total ray number increases, the number of threads used in the 
calculation also increases. The speedup grows rapidly at first and reaches a maximum value of speedup, which is about 
108. The speedup is limited by the number of threads which can be lunched at the same time in a GPU. 
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Figure 4. GPU speedup at different total ray number. 

4. CONCLUSION 
In this study, we used a GPU to calculate the trapping efficiency of a trap formed by focusing a collimated normal-
incident laser beam with an infinite-corrected objective lens. A modern programmable GPU can lunch hundreds of 
thousands threads simultaneously. Each thread calculates the contribution of an incident ray. In this way, GPU 
computing can provide more than 100 times the speed of CPU computing when single-precision floating-point numbers 
were used in the calculation. In addition, the GPU results were compared with the double-precision floating-point results 
of CPU. The maximum difference of Q between the results of CPU and GPU is less than 5105 −× . Larger differences of Q 
only occur at the positions where the laser focus is outside the particle. In that situation, the particle does not stay in the 
trap. The value of Q cannot be measured accurately by an experiment. The difference could be neglected. Therefore, 
calculating trapping efficiency for optimizing optical designs of trapping systems becomes practical.  
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