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ABSTRACT 

We successfully demonstrate crystallization and crystal rotation of L-alanine in D2O solution using a focused laser beam 
of 1064 nm with right- or left-handed circularly polarization. Upon focusing each laser beam into a solution/air interface 
of the solution thin film, one single crystal is generally formed from the focal spot. The necessary time for the 
crystallization is systematically examined against polarization and power of the trapping laser. The significant difference 
in the average time is observed between two polarization directions at a relatively high laser power, where the left-
handed circularly polarized laser takes 3 times longer than the right-handed one. On the other hand, the prepared crystal 
is stably trapped and rotated at the focal point by circularly polarized lasers after the crystallization, and the rotation 
direction is completely controlled by the polarization of the trapping laser. The mechanisms for the crystallization and 
the crystal rotation are discussed in terms of trapping force and rotation torque of circularly polarized lasers acting on the 
liquid-like clusters and its bulk crystal, respectively. 
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1. INTRODUCTION 
 

The optical trapping of small particles was first demonstrated by Ashkin in 1970 using two laser beams propagating 
oppositely [1]. The simplest trapping technique using a tightly focused single laser beam was proposed, and the three-
dimensional manipulation of the trapped particle was experimentally realized in 1986 [2]. Currently, this technique is 
well-known as “laser trapping” or “optical tweezers”, and has been widely used for trapping and manipulating a single 
micrometer-sized object spatially in solution at room temperature without mechanical contact [3]. As with a micrometer-
sized object, a focused laser beam can trap smaller objects with nanometer size such as nanoparticles, quantum dots, 
micelles, polymers, and molecular clusters at a focal spot [4–10]. They have much a smaller size compared to the focal 
spot with the volume of about 1μm3, so that plural particles, molecules, and clusters are simultaneously gathered, trapped, 
and confined in the focal volume, eventually forming their assemblies. When the target molecules or clusters have 
relatively strong mutual interactions, their assembling can be extended to the outside of the focal spot through nucleation 
and subsequent spontaneous growth, namely, the bulk phenomena of liquid-liquid phase separation and crystallization 
are achieved [11–13]. 

In 2007, we for the first time successfully demonstrated crystallization of glycine by applying this single laser trapping 
technique to its supersaturated D2O solution, and have called this phenomenon “laser trapping crystallization” [14]. The 
crystallization is realized just by focusing a continuous wave (CW) near-infrared (NIR) laser beam into a solution/air 
interface and is not induced by the laser irradiation into solution or at a solution/glass interface. This result suggests that 
crystallization requires not only high molecular concentration due to laser trapping of the liquid-like clusters but also 
high-ordered molecular alignment at the surface layer. Recently, we also demonstrated the selective fabrication of 
glycine crystal polymorph by changing laser polarization (linear or circular polarization), power, and solution 
concentration, and discussed the mechanism of this polymorphism in view of local concentration increase, temperature 
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