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Abstract. To save energy, low voltage operation is the most important criterion for CMOS ICs. 
To reach this goal, high mobility new channel materials are required for CMOS ICs at 14 nm 
technology nodes. The high electron mobility InGaAs nMOSFET and high hole mobility Ge 
pMOSFET were proposed for CMOS at 0.5 V operation, since the poor hole mobility of 
InGaAs makes it unsuitable for all InGaAs CMOS. However, the epitaxial InGaAs nMOSFET 
on Si faces fundamental material challenges with large defects and high leakage current. 
Although dislocation-defects-free Ge-on-Insulator (GeOI), ultra-thin-body (UTB) InGaAs 
IIIV-on-Insulator (IIIVOI), and selective GeOI on Si were pioneered by us, it is still difficult to 
reach InGaAs-nMOS/Ge-pMOS CMOS targeting to 14 nm CMOS. In contrast, Ge is the 
ideal candidate for all Ge CMOS logic due to both higher electron and hole mobility than Si. 
Significantly higher (2.6X) hole mobility of GeOI pMOSFET than universal SiO2/Si value was 
reached at a medium 0.5 MV/cm effective electric field (Eeff) and 1.4 nm equivalent-oxide-
thickness (EOT). Nevertheless, the Ge nMOSFET suffers from large EOT and fast mobility 
degradation with increasing Eeff, due to the surface Fermi-level pinning to valance band, poor 
high-κ/Ge interface and low dopant activation. Using novel laser annealing and proper gate 
stack, small EOT of 0.95 nm, small sub-threshold swing of 106 mV/dec, and 40% better high-
field mobility than universal SiO2/Si data were achieved in Ge nMOSFET. Such all-Ge CMOS 
has irreplaceable merits of much simpler process, lower cost, and potentially higher yield than 
the InGaAs-nMOS/Ge-pMOS CMOS platform. 

1. Introduction 
The IC chips consume a large portion of energy globally and will increase more in the near future. 
Therefore, low voltage CMOS must be developed to lower the energy and power consumption, 
according to fundamental physics of P=CloadVD

2f, where the Cload, VD, and f are the load capacitance, 
driven voltage, and operation frequency of an IC. To maintain high performance operation at a low 
voltage, high mobility new channel materials are necessary for CMOS IC at 14 nm technology 
nodes. Thus, high electron mobility InGaAs nMOSFET and high hole mobility Ge pMOSFET were 
proposed for 14 nm CMOS at 0.5 V operation, which can lower the AC switching power as much as 
50% from the current 0.7 V VD bias used for 22 nm CMOS ICs. However, the integration of InGaAs 
on Si faces fundamental material challenges: the large 8% lattice-mismatch, high dislocation densities, 
and anti-phase domain boundaries by polar-nonpolar mismatched lattice. These defects further lead to 
high leakage current in epitaxial grown InGaAs nMOSFET on Si substrate. Although the device 
improves with increasing the buffer layer thickness, this will cause the integration of InGaAs 
nMOSFET with bottom Si devices more difficult.  
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To address these epitaxial growth issues, dislocation-defects free Ge and InGaAs on Si were 
demonstrated by us using the Ge-on-Insulator (GeOI) [1]-[2], ultra-thin-body (UTB) InGaAs IIIV-on-
Insulator (IIIVOI) [3]-[4], and selective GeOI on Si [5] using the wafer bonding, smart-cut, or 
selective etching method. Alternatively, Ge has higher electron (3X) and hole (4X) mobility than Si 
that is the ideal candidate for all Ge CMOS logic. This is quite different to the InGaAs case, where the 
poor hole mobility prevents to form all InGaAs CMOS. This all-Ge CMOS approach is much simpler 
than the CMOS platform of InGaAs nMOSFET and Ge pMOSFET, which has unique merits of 
smaller numbers of mark, simpler process step, lower cost, and potentially higher yield. However, the 
Ge nMOSFET suffers from large equivalent-oxide-thickness (EOT) and fast mobility degradation with 
increasing oxide effective electric field (Eeff), which are related to the surface Fermi-level pinning to 
valance band, poor high-κ/Ge interface and low dopant activation. In this paper, we will discuss the 
potential to use GeOI, IIIVOI, selective GeOI, and the progress of all Ge CMOS.  

2. Experiments 
The Ge/SiO2/Si GeOI was formed by first depositing SiO2 on both Ge and Si wafers using PECVD, O2 
plasma treatment to top SiO2, bonding Ge/SiO2 and SiO2/Si at 500oC, etching back and polishing the 
Ge [1]. Figure 1 show the fabricated GeOI without and with O2 plasma treatment. Void-free Ge/SiO2-
SiO2/Si interface with improved mechanical strength was reached by using O2 plasma treatment at 
such low temperature. Dislocation-free Ge is obtained and the smooth Ge/SiO2 interface allows further 
thinning down the body thickness.  
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SiO2
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Figure 1. Cross-sectional TEM of low-temperature bonded GeOI without (left) and 
with (right) O2 plasma treatment before bonding. 

 
We further fabricated the selective GeOI [5]. As shown in Figure 2, the selective GeOI was formed by 
SiO2 deposition on both H+-implanted Ge and standard 1-Poly Si-6-Metal (1P6M) 0.18m MOSFETs, 
O2 plasma enhanced bonding, smart-cut, followed by 400oC annealing and slight polishing. 
 

 

Figure 2. Top view of selective GeOI on 1P6M 0.18μm CMOS 
before (left) and after (right) bonding. 
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We also extended the GeOI to wider semiconductor-on-Insulator (SemiOI). Figure 3 shows the 
fabricated InAlAs/InGaAs IIIVOI [3]-[4]. An inverted InAlAs/InGaAs/InAlAs HEMT hetero-
structure was first grown on InP substrate, followed by PECVD SiO2 deposition, applying O2 plasma 
treatment to top SiO2/InAlAs/InGaAs/InAlAs/n+-InGaAs/InAlAs/InP and SiO2/Si, bonding at 400oC, 
and selective etching the InP substrate and InAlAs buffer layer. Such low temperature bonding process 
was developed to decrease the thermal mismatch among III-V, SiO2 and Si materials.  
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Figure 3. Cross-sectional TEM of InAlAs/InGaAs/InAlAs FET structure.  
 
After GeOI or selective GeOI fabrication, the pMOSFET were made by high-κ LaAlO3 gate dielectric 
and high work-function IrO2 metal-gate formation, self-aligned source-drain B+ implantation, and 
dopant activation at 500oC. The InAlAs/InGaAs IIIVOI FET was formed by gate-recess etching the 
top n+ InGaAs contact layer, Ti/Au Schottky gate lift-off, and NiGeAu source-drain contacts [3]. 
 
For high performance Ge nMOSFET, a gate-last process was used. To improve the high-κ/Ge 
interface, an ultra-thin interfacial SiO2 [6] and KrF laser annealing (248 nm, ~30 ns pulse) [7]-[8] were 
applied. The laser annealing was also used to increase the dopant activation of P+-implanted source-
drain. The gate dielectric is composited with ~0.8 nm SiO2, 1 nm La2O3 and 3 nm ZrO2, followed by 
400oC furnace annealing. Then ultra-fast laser annealing was applied to prevent the Ge out-diffusion 
into high-κ gate dielectric [6]. The Ge nMOSFETs were made by patterning the deposited TaN gate 
and Al source-drain contact metal. 

3. Results and discussion 

3.1. Defect-free SemiOI transistors 
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Figure 4. Id-Vd (left) and  mobility-Eeff (right) characteristics of  IrO2/LaAlO3/GeOI pMOSFETs. 
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Figure 4 shows the Id-Vd and mobility data of IrO2/LaAlO3/GeOI pMOSFETs. In addition to the good 
transistor characteristics, the metal-gate/high-κ/GeOI pMOSFET at (110)-orientation has 2.6X higher 
hole mobility than universal SiO2/Si mobility, at a medium 0.5 MV/cm Eeff and a 1.4 nm EOT. The 
bonding top layer with different orientation to bottom substrate is the advantage of SemiOI technology. 

The device Id -Vd and gain-frequency characteristics of InAlAs/InGaAs IIIVOI nFETs are shown in 
Figure 5. A high drive current of 0.41 mA/m was obtained for this nFET with a 1.1 μm gate length. 
The good device performance is evident from the high RF current gain (|H21|

2) and cut-off-frequency 
(ft) of 21 GHz that are close to those of a 0.35m Si MOSFET with much smaller gate length. The 
better transistor performance is due to the significantly higher mobility of 8,100cm2/Vs than that for a 
Si MOSFET.  
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Figure 5. Id-Vd (left) and gain-frequency (right) characteristics of Au/Ti/InAlAs/InGaAs/IIIVOI nFETs. 
 
It is important to notice that although the selective wafer-bonding on 50-μm×50-μm area was 
obtained, this technique is still different to reach both the IIIVOI and GOI side-by-side for high 
mobility InGaAs-nMOS/Ge-pMOS CMOS platform. The low hole mobility makes InGaAs unsuitable 
for all-InGaAs CMOS. The epitaxial InGaAs nMOSFET on Si is still quite challenging due to the 
large defects density and high transistor leakage current. 

3.2. High mobility Ge nMOSFET for all-Ge CMOS  
The Ge has both higher electron and hole mobility than Si - an ideal candidate for all Ge CMOS logic. 
The GeOI pMOSFET shown in Figure 4 has much higher hole mobility than universal SiO2/Si 
mobility at a small 1.4 nm EOT. However, Ge nMOSFET suffers from poor device performance due 
to surface Fermi-level pinning to valance band, low dopant activation, and poor high-κ/Ge interface. 
To address these issues, novel laser annealing with fast ~30 ns pulse was used [7]-[9]. The laser 
annealing melts surface semiconductor and re-crystallize within a very short time, which can fully 
activate the ion-implanted dopants and form ultra-shallow junction. Such laser annealing was 
proposed for highly scaled 14 nm CMOS to reach both ultra-shallow junction and low series 
resistance. We pioneered the use of laser annealing on high-κ gate dielectric [7].  Figure 6 shows the 
device characteristics of TaN/ZrO2/La2O3/SiO2/Ge MOS capacitors and nMOSFETs. Applying laser 
annealing on gate dielectric not only improves the C-V hysteresis but also increases the gate 
capacitance. The higher gate capacitance is attributed to the fast ~30 ns annealing with less high-κ/Ge 
interface reaction, which gives a small EOT of 0.95 nm from quantum-mechanical C-V simulation. 
From the measured transistor Id-Vg characteristics, a small sub-threshold swing of 106 mV/dec was 
obtained that is consistent with the improved C-V hysteresis. Figure 7 shows the mobility-Eeff 
characteristics, after gate leakage correction [10]. At 1 MV/cm Eeff, 40% better high-field mobility 
than universal SiO2/Si data was achieved in Ge nMOSFET. These results suggest the fast electron 
mobility degradation is not intrinsic to Ge nMOSFET.  
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4. Conclusions 
High mobility new channel materials are required at 14 nm CMOS, but the InGaAs/Si nMOSFET is 
still very challenging due to fundamental material issues with large defects and high leakage current. 
Although dislocation-defects-free InGaAs-IIIVOI, GeOI, and selective GeOI were developed, it is still 
difficult to reach InGaAs-nMOS/Ge-pMOS CMOS side-by-side with nm-scale dimension for 14 nm 
CMOS. In contrast, the GeOI pMOSFET shows 2.6X higher hole mobility than universal SiO2/Si data 
at a medium 0.5 MV/cm Eeff and 1.4 nm EOT. Using novel laser annealing and proper gate stack on 
Ge nMOSFET, small 0.95 nm EOT and 40% better 1-MV/cm mobility than universal SiO2/Si data 
were achieved. Although further device performance improvement on Ge nMOSFET is required, the 
fast mobility degradation with increasing Eeff is not an intrinsic limitation to Ge nMOSFET. The all-Ge 
CMOS has irreplaceable merits of much simpler process, lower cost, and potentially higher yield than 
the InGaAs-nMOS/Ge-pMOS CMOS platform. 
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