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Adaptive Decision Feedback Equalization for Digital 
Satellite Channels Using Multilayer Neural Networks 

Po-Rong Chang, Member, IEEE, and Bor-Chin Wang 

Abstract-This paper introduces an adaptive decision feedback 
equalization using the multilayer perceptron structure of an M -  
ary PSK signal through a TDMA satellite radio channel. The 
transmission is disturbed not only by intersymbol interference 
(ISI) and additive white Gaussian noise, but also by the nonlinear- 
ity of transmitter amplifiers. The conventional decision feedback 
equalizer (DFE) is not well-suited to detect the transmitted se- 
quence, whereas the neural-based DFE is able to take into account 
the nonlinearities and therefore to detect the signal much better. 
Nevertheless, the applications of the traditional multilayer neural 
networks have been limited to real-valued signals. To overcome 
this difficulty, a neural-based DFE is proposed to deal with the 
complex PSK signal over the complex-valued nonlinear MPSK 
satellite channel without performing time-consuming complex- 
valued back-propagation training algorithms, while maintain- 
ing almost the same computational complexity as the origi- 
nal real-valued training algorithm. Moreover, a modified back- 
propagation algorithm with better convergence properties is 
derived on the basis of delta-bar-delta rule. Simulation results 
for the equalization of QPSK satellite channels show that the 
neural-based DFE provides a superior bit error rate performance 
relative to the conventional mean square DFE, especially in poor 
signal-to-noise ratio conditions. 

I. INTRODUCTION 

N integrated digital land-mobile satellite system envi- A sions the use of satellites to complement existing or 
planned terrestrial systems to provide mobile communications 
to thinly populated and/or large geographical areas. Digi- 
tal satellite communication systems are frequently operated 
over nonlinear channels with memory. In fact, the satellite 
communication links are equipped with traveling wave tube 
(TWT) amplifiers at or near saturation for better efficiency. 
The TWT exhibits nonlinear distortion in both amplitude and 
phase conversions. In addition, at high transmission rates, the 
finite bandwidth of the channel causes a form of distortion 
known as intersymbol interference (ISI). In this paper, we 
will examine the problem of equalizing this type of nonlinear 
satellite communication link, where observed data are assumed 
to be corrupted by additive Gaussian white noise. 

For digital satellite communication, it has been recog- 
nized that PSK/TDMA provides highly efficient use of power 
and bandwidth through the sharing of single transponder by 
several mobile units or earth stations accessing it. Satellite 
communication systems that use nonlinear TWT amplifiers 
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require constant envelope signaling such as M-ary phase shift 
keying (MPSK). On the contrary, [4] showed the quadrature 
amplitude modulation (QAM) would not be feasible to do 
so on the TWT satellite link. References [ l ]  and [2j showed 
that the coherent MPSK satellite channel can be characterized 
using a Volterra series expansion. Various techniques such as 
nonlinear Volterra-series-based transversal equalizer [2] and 
decision feedback equalizer [ 3 ]  were developed to eliminate 
the undesired nonlinear distortion. Meanwhile, the Volterra 
series representation is too cumbersome and impractical for 
use in achieving the real-time satellite equalization involving 
a large number of computations. An alternative approach to 
nonlinear channel equalization is based on the multilayer 
perception (MLP). 

Artificial neural networks are systems which use nonlinear 
computational elements to model the neural behavior of the 
biological nervous systems. The properties of neural networks 
include: massive parallelism, high computation rates, great 
capability for nonlinear problems, and ease for VLSI im- 
plementation, etc. All these properties make neural network 
attractive for various applications, such as image processing, 
pattern recognition, and digital signal processing, and neural 
networks have provided good solutions for these areas. 

Recently, Chen et al. [6], and Siu et al. [ 5 ] ,  have effec- 
tively utilized MLP neural networks as adaptive equalizers for 
several nonlinear channel models with additive colored noise. 
They demonstrated that the neural-based equalizer trained by 
the back-propagation algorithms showed superior performance 
over conventional decision feedback equalizer because of its 
capability to form complex decision regions with nonlinear 
boundaries. Nevertheless, their applications have been limited 
to real-valued baseband channel models and binary signals. 
However, for MPSK satellite communication, the channel 
models and the information bearing signals are complex- 
valued. So, there is a great need to develop a neural network 
equalizer that can deal with higher level signal constellations, 
such as M-ary PSK, as well as with complex-valued channel 
models. Chang and Chang [17j applied the method of splitting 
to separately treat the real and imaginary neuron inputs and 
outputs of the neural network equalizer over a complex- 
value QAM indoor radio fading channels in order to avoid 
complex-valued operations and to yield the better bit error 
rate performance. Here, we use the same concept to equalize 
QPSK satellite channels. Section I1 gives a brief description of 
channel modeling based on the Volterra series representation of 
nonlinear systems with memory. In Section 111, we proposed a 
new neural-based decision-feedback equalizer to PSK systems 
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Fig. 1 A discrete-input discrete-output model of a nonlinear satellite channel. 

over complex-valued channel without performing complex- 
valued back-propagation algorithms. A packet-wise neural 
cqualization is introduced to track channel time variations 
and improve the system performance. Furthermore, it will 
be proven that the neural equalizer trained by packet-wise 
back-propagation algorithm approaches an ideal equalizer after 
receiving a sufficient number of packets. In Section IV, 
an algorithm based on a delta-bar-delta rule is proposed to 
improve the computational efficiency of the back propagation 
and provide faster network training of the neural equalizers. 
Computer simulations are presented in Section V. 

11. CHANNEL MODELING FOR DIGITAL SATELLITE LINKS 

Fig. 1 shows the block diagram of the baseband-equivalent 
model for a nonlinear satellite channel. Let its input be the 
sequence of M-ary information symbols {Uk} .  Thus, the 
modulator output has the complex envelope 

M 

k = - m  

where T is the sampling period and p ( t )  is the basic modulator 
waveform (typically, a rectangular with a T second duration). 
For an M-ary PSK, U? = 1. 

Although the traveling-wave tube (TWT) amplifier is mod- 
eled as a memoryless nonlinearity, it embedment between 
linear transmission (TX) and receiving (Rx) filters leads to 
a nonlinear system with memory as a model for the overall 
channel. The TX filter includes the shaping filter and four-pole 
Butterworth filter with 3 dB bandwidth 1.7/T. The RX filter 
is a two-pole Butterworth filter with 3 dB bandwidth 1.1/T. A 
convenient tool to represent the overall channel is the Volterra 
series. Reference [2] showed that the symbol-rate sampling of 
receiving output can be described as 

where v(n) is a complex Gaussian down-link noise, and 
the Volterra coefficients of the discrete-input discrete-output 
channel H f  ), k z ,  kg , . . . , are a set of complex numbers 
which describe the effect of the nonlinear channel on the 
symbol sequence {ak}.  The term with index i = 1 represents 
the linear part of the channel, i.e., it comprises the useful 
signal and linear ISI. The terms with index i = 2 corresponds 
to third-order distortion, and the terms with index i = 3 to 
fifth-order distortion, and so forth. 

TABLE I 
REDUCED VOLTERRA COEFFICIENTS 

LINEAR PART 
H i 1 )  = 1.22 + j0.646 

H!') = 0.063 - jo.001 
Hi')  = -0.024 - j0.014 
Hi1)  = 0.036 + j0.031 

3RD ORDER NONLINEARITIES 
HA,"; = 0.039 - j0.022 
HAiA = 0.018 - jO.018 
Hi:! = 0.035 - j0.035 

HA:$ = -0.040 - jO.009 
H$, = -0.01 - j0.017 

5TH OR.DER NONLINEARITIES 
HAiAll = 0.039 - j0.022 

Reference [I] showed that the symbol structure of PSK 
modulation results in insensitivity to certain kinds of nonlin- 
earities. The Volterra coefficients H(2i -1 )  will induce non- 
linearity of order less than 2i - 1 when aka; = 1, where 
a k  = ej2x(k-1)/M, k = 1, 2 , .  . . , M .  For example, the channel 
nonlinearities reflected by the Volterra coefficients HLf!, ks 

will not affect a PSK signal when /c1 = lC3 or k 2  = k3. 
From [ l ]  and [2], the computed Volterra coefficients for this 
channel, after reduction and deletion of the smallest, are shown 
in Table I. The thresholds used for the magnitude of Volterra 
coefficients are equal to 0.001 and 0.005 for the linear and 
nonlinear parts, respectively. 

A 

111. NEURAL-BASED DECISION FEEDBACK 
EQUALIZATION FOR NONLINEAR QPsK CHANNELS 

A feedfonvard neural network (shown in Fig. 2) is a layered 
network consisting of an input layer, an output layer, and at 
least one hidden layer of nonlinear processing elements. The 
nonlinear processing elements, which sum incoming signals 
and generate output signals according to some predefined 
function, are called neurons. In this paper, the function used by 
nonlinear neurons is called the sigmoidal function G defined 

(3) 

where G(z) lies in the interval [-1, 13. The neurons are 
connected by terms with variable weights. The output of one 
neuron multiplied by a weight becomes the input of an adjacent 
neuron of the next layer. 

by 
G(z) = (1 - e-") / ( l+ e?) 
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Fig. 2. Multilayer feedforward neural network. 

zk = [xk.. x k 2 ,  . . . , z k , J *  denotes the input pattern at 
time instant I C .  dk = [ & I r  dk2,...,dk,no]T is the desired 
output vector. The neuron j in layer m receives L,-1 inputs 

, oLL_, at time instant I C ,  multiplies them 
by a set of weights wj;"'. wj;'"', . . . , w:;!-~ and sums the 

resultant values. To this sum, a real threshold level I jm) is 
added. The output oiy) of the neuron j at time instant IC is 
given by evaluating the sigmoidal activation function 

oiyl) o p  . . .  m-1) , 

The output value 0:' serves as input to the (m+ 1)th layer 
to which the neuron is connected. Furthermore, an iterative 
learning algorithm, called back propagation, was suggested by 
Rumelhart et al. [12]. In back propagation, the output value 
of the output layer is compared to the desired output dk, 
resulting in error signal. The error signal is fed back through 
the network and weights are adjusted to minimize the error. 
For the simplicity of evaluating the backpropagation algorithm, 
the threshold level Ijm' can be considered as a weight value 
from an additional virtual neuron with o ( m - l )  = 1 to the j th  
neuron in the,mth layer. More details of the back propagation 
will be discussed in Section IV. 

Unfortunately, Birx and Pipenberg [ 191 showed that the con- 
tinuity of the sigmoidal activation function of (3) is not valid 
on any complex domain that contains the point e-" = - 1. For 
example, when the imaginary component of z equals T or any 
multiple thereof, and the real component of z approaches zero, 
G(z) will tend to infinity, where z belongs to the complex 
plane. In addition, the Cauchy-Riemann conditions of G(z) 
are not satisfied on the same domain. This implies that the 
general expressions for the complex gradient of the error 
power with respect to hidden and output layer weights are not 
analytic on the domain. This complex behavior is troublesome 
for the back propagation. To overcome this difficulty, [19] 

Ln, - 1 

I 

- +  

layer  

suggests a "split" complex activation function that is created 
by modifying a classical sigmoidal activation function for 
both real and imaginary components of the input. In the next 
section, we use the concept of "splitting" to treat the real 
and imaginary neuron inputs/outputs separately as they are 
propagated back through the split complex activation function 
and its derivative, and then to avoid performing complex 
computations. 

By applying the multilayer feedforward neural networks to 
the adaptive equalization problem, it is essential to establish 
their approximation capabilities to some arbitrary nonlin- 
ear real-vector-valued continuous mapping y = f(z): D 
Rnt -+ Rn0 from input/output data pairs (2, y}, where D is a 
compact set on R. Consider a feedforward network "(2, w )  
with z as a vector representing inputs and w as a parameter 
weight vector that is updated by some learning rules. It is 
desired to train "(2, w )  to approximate the mapping f(z) as 
close as possible. The Stone-Weierstrass theorem [7] showed 
that for any continuous function f E C1 ( D )  with respect to D, 
a compact metric space, an "(2, w )  with appropriate weight 
vector w can be found such that (INN(z, w) - f(z)llz < e 
for an arbitrary t > 0, where llellz is the mean squared error 
defined by 

where I (  . ( 1  is the vector norm and (Dl denotes the number 
of elements in D. 

For neural network approximators, key questions are: how 
many layers of hidden units should be used, and how many 
units are required in each layer? Cybenco [8] has shown 
that the feedforward network with a single hidden layer can 
uniformly approximate any continuous function to an arbitrary 
degree of exactness provided that the hidden layer contains a 
sufficient number of units. However, it is not cost-effective for 
the practical implementation. Nevertheless, Chester [9] gave a 
theoretical support to the empirical observation that networks 



CHANG AND WANG: ADAPTIVE DECISION FEEDBACK EQUALIZATION 319 

with two hidden layers appear to provide high accuracy and 
better generalization than a single hidden layer network, and 
at a lower cost (i.e., fewer total processing units). Since, in 
general, there is no prior knowledge about the number of 
hidden units needed, a common practice is to start with a large 
number of hidden units and then prune the network .whenever 
possible. Additionally, Huang and Huang [lo] gave the lower 
bounds on the number of hidden units which can be used to 
estimate its order of magnitude. 

As mentioned above, the feedforward neural network re- 
sults in a static network which maps static input patterns to 
static output patterns. However, from ( 2 ) ,  the satellite channel 
exhibits the temporal behavior where the output has a finite 
temporal dependence on the input. These temporal patterns 
in the input data are not recognizable by such a network. If 
the input signal is passed through a set of delay elements, the 
outputs of the delay elements can be used as the network inputs 
and temporal patterns can be trained with the standard learning 
algorithms of feedforward neural network. An architecture 
like this is often referred to as time delay neural network. 
It is capable of modeling dynamical systems where their 
input-output structure has finite temporal dependence. 

Generally, the received signal transmitted over the digital 
satellite channels can be governed by the following discrete- 
time difference dynamic equation 

(6) 

where T (  k ) ,  s( k) ’s  are the complex-valued received signal 
and the transmitted symbols, respectively; and n D  is the 
maximum lag involved in the satellite channel. The sym- 
bol s ( k )  equals either 0 or 1 when the transmission is 
binary signaling. However, here, s(k)’s  are suggested to 
be in bipolar form {-1, l}. In a general M-ary signaling 
system, the waveforms used to transmit the information are 
denoted by { U k ,  IC = 1, 2, . . . , M}. It is possible to represent 
each symbol of the M-ary system by a log, M x 1 binary- 
state or bipolar-state vector, s ( k ) .  Here, we are interested 
in PSK systems. The constellations have their signal points 
on a circle, at {(cos IC7r/2, sin IC71-/2)}2=~ for QPSK and 
{(cos IC7r/4, sin k7r/4)}Z=, for 8-PSK, . . . etc. The location 
of any signal point may be assigned to a particular bipolar- 
state vector s( I C ) .  The correspondence between signal location 
and the values of components in the bipolar-state vector is 
not unique. However, this correspondence is usually a one- 

T ( k )  = C ( s ( k ) ,  . . . , s ( k  - n D ) )  

showed that a causal infinite impulse response (IIR) filter can 
achieve a delayed version of the system inverse to H ( z ) .  The 
inverse or the equalizer filter for the general channel model 
can be governed by the following IIR-type dynamic equation 

i ( k )  = EQ ( r ( k ) ,  . . . , r ( k - n f ) .  i ( k -  l),  . . . , s ( k - n b ) )  (7) 

where i ( k )  represents the equalized output signal or vector; 
n f  and n b  are maximum lags in the input and output, 
respectively. It should be noted that the responses i ( k )  are 
identical to the transmitted symbols s ( k )  when the equalizer is 
a perfect and ideal channel inverse which can compensate the 
undesired nonlinear channel distortion completely. Moreover, 
to model the dynamics represented by (7), it is possible 
to convert the temporal sequence of radio frequency signal 
into a static pattern by unfolding the sequence over time 
and then use this pattern to train a static network. From a 
practical point of view, it is suggested to unfold the sequence 
over a finite period of time. This can be accomplished by 
feeding the input sequence into a tapped delay line of finite 
extent, then feeding the taps from the delay line into a 
static feedforward network. Thus, the channel inverse is 
achieved by training the static feedforward network. This 
can be referred to as inverse system identification. The 
basic configuration for achieving this is shown schematically 
in Fig. 3. The feedforward neural network-based decision 
feedback equalizer is placed behind the channel and receives 
both the channel outputs and detected symbols as its 
inputs. The network inputs at time k can be represented by 
X k  = [rz, s;]’, where r k  = [ r T ( k ) , . . .  , rT(k  - nf) lT and 
s k  = [ST(  k - l), . . . , s T ( k  - 7 1 b ) l T .  Notice that the received 
complex-valued signals r ( k )  should be represented by a 2 x 1 
vector, i.e., [TI ,  T Q ] ~ ,  because the error back-propagation 
algorithms cannot be applied to the complex-valued inputs 
directly, where T I  and TQ represent the in-phase (real) and 
quadrature (imaginary) components of T (  I C ) .  The detected 
symbols s ( k )  are generated by feeding the static neural 
network outputs S ( k )  through a hardlimiter at time instant 
k and given by S ( k )  = sign(s(k)), where S ( k )  = ”(ski w )  
and sign(v) = [sign(v,), sign(v2), . . . , sZgn(v,)lT, ‘U = 
[VI, v2, . . . , v,IT. According to Fig. 3, the input-output 
relationship of the neural equalizer can be characterized by 
the function 

’ 

S ( k )  = NNDFE(zk; w )  = sign(NN(zr,; w ) )  (8) 
to-one mapping. Reference 141 showed that the best choice 
for the code assignment is the Ungerboeck code for PSK 
signal in coded modulation. For example, the 8-PSK signal lo- 
cations (1, o), (-f i/2, fi/2), and ( - f i la ,  - f i /2)  may 
be assigned to [-1, -1, -1IT, [-1, 1, -llT, and [l, 1, 1IT 
which correspond to the decimal representations “0,” “3,” and 
“5,” respectively. Generally, the bipolar representation can be 
extended to any other M-ary systems, i.e., QAM, GMSK, and 
CPM. 

Equation (6) becomes a weighted linear sum of transmitted 
symbols s(k)’s when the satellite channel does not include 
the nonlinear TWT amplifier. Thus, the transfer function of 
the satellite channel between the transmitter and receiver is 
denoted as H ( z ) ,  which is an FIR system. Widrow 1111 

where w is the weight vector of the feedforward network 
and S ( k )  is the estimate of s ( k ) .  The training data involved 
in transmitted symbols provide the desired response of the 
static feedforward network, dk(= s ( k ) )  to train the network 
to approximate the perfect channel inverse or ideal equalizer 
EOideal(.). Notice that a replica of the desired response is 
stored in the receiver. By the Stone-Weierstrass theorem, it is 
possible to find the appropriate weight vector w* of the static 
feedforward network of the neural-based equalizer, such that 

(9) II”(2k; W * )  - EQideai(Zk))IXk < E 

for an arbitrary t > 0 and all the x k  are in the region of 
interest. 
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Architecture of neural-based decision feedback equalizer for .Wq 

Since d k  is represented by a bipolar-state vector, each 
component of NN(zk; w * )  becomes either -1 or 1 after 
a sufficiently long training period. This would imply that 
NNDFE(zk; w * )  = "(zk; w*) .  From (9), we have 

II"DFE(zk; w * )  - E Q I d e a i ( z k ) l l z k  < 6. (10) 

For an M-ary PSK signaling communication system, s(k), 
; ( I C ) ,  and S ( k )  should be represented by log, M x 1 vectors. 
Moreover, the received signal r ( k )  is complex-valued and then 
can be expressed as a two-dimensional vector. Thus, the input 
layer of the network consists of two nf-tap forward filters, 
and log, M nb-tap feedback filters. As a result, the number of 
neurons in the input layer is given by 

nZ = 2 x (nf f 1) + (log, M )  x n b .  (11) 

In the output layer, the number of neurons is no = log, M .  

IV. MULTILAYER NEURAL NETWORKS 
AND THEIR LEARNING RULES 

An iterative learning algorithm, called back propagation, 
was suggested by Rumelhart et al. [ 121. This iterative learning 
algorithm is used to adjust the weights and threshold levels 
of the network in a pattern-wise manner. In a mathematical 
sense, the back-propagation learning rule is used to train the 
feedforward network " ( E ,  w )  to approximate a function 
f(z) from compact subset D of n,-dimensional Euclidean 
space to a bounded subset f( D) of no-dimensional Euclidean 
space. Let Z k  which belongs to D be the lcth pattern or sample 
and selected randomly as the input of the neural network at 
time instant k, let " ( z k ,  w )  (= O k )  be the output of the 
neural network, and let f ( z k )  (= d k )  which also belongs 
to f ( D )  be the desired output. This task is to adjust all the 
variable weights of the neural network such that the pattern- 
wise quadratic error E k  can be reduced, where E k  is defined 
as 

1 1 no 
E k  = -II"(zk, W )  - f ( z k ) 1 l 2  = jc ( o k ,  - d k , ) ,  (12) 

where no is the number of output nodes, Ok, and d k ,  are the 
j th  components of Ok and d k ,  respectively. 

,=1 
2 

Here, we define the weighted sum of the output of the 
previous layer by the presentation of input pattern z k  

where w,, is the weight which connects the output of the ith 
neuron in the previous layer with respect to the j th  neuron, and 
Okz is the output of the ith neuron. It should be noted that Okz is 
equal to X k z  when the ith neuron is located in the input layer, 
where x k ,  is the ith component of pattern z k .  Notice that the 
threshold level variables are treated as the additional weight 
variables in the network. Using ( 3 ) ,  the output of neuron j is 

f x k ?  1 

(14) 
if the neuron j belongs to the input layer 

o k j  = { G i n e t k j ) ,  
otherwise. 

The pattern-wise or on-line back-propagation algorithm [ 121 
minimizes the quadratic error E k  by recursively altering the 
connection weight vector at each pattern according to the 
expression 

where the learning rate q is usually set to be equal to a positive 
constant less than unity. 

It is useful to see the partial derivative for pattern k ,  
d E k / d w j , ,  as resulting from the product of two parts: one 
part reflecting the change in error to a function of the change 
in the network input to the neuron, and one part representing 
the effect of changing a particular weight on the network input 

(16) 
d E k  - d E k  d n e t k ,  

dw3, d n e t k ,  dwJ2 ' 

From (13), the second part becomes 

An error signal term I5 called delta produced by the j th  neuron 
is defined as follows 

Note that E is a composite function of n e t k , ,  it can be 
expressed as follows 

E k  = E k ( o k 1 ,  o k 2 , " ' , 0 k L )  

= E k ( G ( n e t k i ) ,  G ( n e t k 2 ) ,  . . . , G ( n e t k L ) )  (19) 

where L is the number of the neurons in the current layer. 
Thus, we have from (18) 

Denoting the second term in (20) as a derivative of the 
activation function 
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However, to compute the first term, there are two cases. For 
the hidden-to-output connections, it follows the definition of 
E k  that 

Substituting for the two terms in (20), we can get 

6 k j  = ( d k j  - O k j ) G ’ ( n e t k j ) .  (23) 

Second, for hidden (or input)-to-hidden connection, the chain 
rule is used to write 

Substituting into (20), it yields 

1 

Equations (23) and (25) give a recursive procedure for 
computing the 6’s for all neurons in the network. In summary, 
the error signals 6’s for all neurons in the network can be 
computed according to the following recursive procedure 

(26) 
if neuron j belongs to the output layer { G ’ ( n e t k j ) C l  6 k l w l j >  

6 k j  = 

otherwise. 

It should be mentioned that O k i  is equal to X k i  when neuron 
i belongs to the input layer. The expression of (26) is also 
called the generalized delta learning rule. Once those error 
signal terms have been determined, the partial derivatives for 
the quadratic error of the Icth pattern can be computed directly 
by 

Thus, the update rule of the on-line back-propagation algo- 
rithm is 

w j i ( k  f 1) = w j i ( k )  + 7 6 k j o k i .  (28) 

In the traditional equalizer, a replica of the desired response 
is stored in the receiver. Naturally, the generator of this stored 
reference has to be electronically synchronized with the known 
transmitted sequence. A widely used training signal consists 
of a pseudonoise (PN) sequence of length NB.  Moreover, 
the training signal can also be expressed as a collection of 
input-output data pairs, { Z k ,  d k } F & .  The weights of neural- 
based equalizer are updated by using the batch of these data 
pairs. Thus, the objective function should be modified in an 
expression of summation, E = ~~~, E k ,  during the initial 
training. Thus, the update rule becomes 

Notice that the quantity w(Ic + 1) is the updated weight vector 
after one pattern of learning; wneW is the updated weight vector 
after one batch of learning. 

It is shown that the batch back-propagation learning al- 
gorithm is used to initialize the weight coefficients of the 
neural-based equalizer when the channel is unknown. Nev- 
ertheless, the on-line learning algorithm is used to adjust 
the weights to track channel time variations and said to be 
decision directed. However, from [ 131, the initial training 
can be executed by the on-line learning algorithm instead of 
batch learning since on-line learning is shown to approach 
batch learning provided that 7 is small. Initialization may be 
aided by the transmission of NB known training symbols. 
The trained neural-based equalizer converges to the channel 
inverse when N B  is sufficiently large. It is known that the 
decision errors in equalizer tracking can lead directly to 
crashing of the equalizer, especially when the adaptation 
gain is high. Decision errors become more prevalent when 
the received signal-to-noise ratio is low, a condition that 
occurs unpredictably in nonlinear digital satellite channels. The 
susceptibility of adaptive equalizers or neural-based equalizers 
to crashes caused by propagation of decision errors implies that 
retraining procedures must be specific. For nonlinear satellite 
channel, periodic retraining is often used to improve reliability 
at some cost in throughput efficiency, via periodic insertion 
of training symbols into the data stream. More details about 
the packet adaptive equalization will be discussed in the next 
section. 

A. Learning for Packet Adaptive Equalization 

Packet equalization is a method that arises in TDMA 
communication systems, in which data are transmitted in fixed- 
length packets, rather than continuously [18]. It is usually 
assumed that the packet is largely self-contained for error 
detection, i.e., in terms of equalize initialization and at least 
fine synchronization. This overhead can achieve good perfor- 
mance with reasonable complexity. Packet equalization has 
some similarities with block-oriented methods for periodic 
training on continuous channels, although it is assumed that the 
channel state is independent from packet to packet. Frequency 
and packet synchronization are assumed to be maintained 
once initialized, but symbol timing and phase synchronization 
are assumed to be maintained once initialized, but symbol 
timing and phase synchronization typically need to be restored 
for each packet. It is known that the optimum approach 
to equalization is an off-line noncausal batch processing of 
the received signal with a large amount of training data. 
Such a formulation would be unfeasible and too complex to 
implement, but iterative approaches based on periodic training 
are possible. We will show that there is an equivalence of 
the off-line equalization and the packet-wise neural-based 
equalizer when the number of packets approaches infinity. 

Considering the packet transmission, it is assumed that the 
length of the training data contained in the packet header and 
the total packet length are nu and np,  respectively. The main 
idea of the packet training scheme is used to train the neural- 
based equalizer with nu training data for each packet. The 
neural-based equalizer can be retrained for every packet and 
thus track the time variations in the channel. This is quite 
similar to the on-line training for a .sequence of packets. 
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The packet version of the back-propagation-based algorithm 
can be obtained by modifying (29) and given by 

n,, 

k = l  

Furthermore, during data transmission after packet training 
period, the decision-directed adaptation is executed by (28). 
Similarly, the delta-bar-delta rule shown in the next section 
can also be applied to packet-wise back-propagation algorithm 
in order to increase the rate of convergence. 

Furthermore, from the Stone-Weierstrass theorem, the exact 
channel inverse can be obtained by the batch learning when the 
length of training data is large enough and the maximum lags 
in both input and output of channel inverse are known. Espe- 
cially, for time-varying channels, N B  would approach infinity. 
But it is unfeasible for any channel equalizer transmitting a 
large amount of training data continuously. Fortunately, [ 171 
shows that the problem is solved by inserting a finite number 
of training data into the data stream periodically. This leads 
to the following theorem. 

Theorem 1: The neural equalizer is guaranteed to be capa- 
ble of converging to the channel inverse globally by perform- 
ing the packet back propagation algorithms with a sufficient 
number of hidden nodes when the maximum lags in the input 
and output of channel inverse are known. From [17] and the 
Stone-Weierstrass theorem, a solution w* can be generated by 
the packet-wise back-propagation algorithm such that 

II"DFE(zk; U*) - EQideal(zk)IIzk < 6 (31) 

for an arbitrary E > 0, as N -+ 30, where N is the number 
of packets and Ng = N . nu. 

B. Fast Learning Algorithms 

Although the back-propagation algorithm is a useful method 
to find an optimal solution of a set of weight values of a 
network, many researchers [ 141 showed that the convergence 
rate of this algorithm is relatively slow. It is necessary to find 
a faster algorithm to improve the back-propagation algorithm 
and also to achieve better performance. In this subsection, a 
modified back-propagation algorithm with much faster con- 
vergence rate will be introduced to the neural equalizer. 
This faster algorithm is used to modify the negative gradient 
direction by adjusting the learning rate, and it is called the 
delta-bar-delta rule [ 141. 

Since a large 71 corresponds to rapid learning but might also 
result in oscillations, [12] suggests that expression (15) might 
be modified to include a sort of momentum term in order to 
dampen oscillation. That is, the weight u t j i  is updated at the 
k+lst iteration, according to the rule 

where Awji (k  + 1) is the weight increment for the k + 1st 
iteration, ~ ( k  + 1) is the learning rate value corresponding to 
Aw(k + 1) at time k + 1, and Q is the momentum rate. 

However, Jacobs [ 141 showed that the momentum can cause 
the weight to be adjusted up the slope of the system error 

surface. This would decrease the performance of the learning 
algorithm. To overcome this difficulty, Jacobs [ 141 proposed 
a promising weight update algorithm based on the delta-bar- 
delta rule which consists of both a weight update rule and a 
learning rate update rule. The weight update rule is the same 
as the steepest descent algorithm and is given by (32) .  The 
delta-bar-delta learning rate update rule is described to follows 

(6: otherwise 

where X ( t )  = dEk /dwtJ  and x( t )  = (1 - 6 ' )A ( t )  + B X ( t  - 1). 
In these equations, X(k )  is the partial derivative of the 

system error with respect wzJ at the kth iteration, and X ( k )  
is an exponential average of the current and past derivatives 
with 6' as the base and index of iteration as the exponent. If 
the current derivative of a weight and the exponential average 
of the weight's previous derivatives possess the same sign, 
then the learning rate for that weight is incremented by a 
constant K .  The learning rate is decremented by a proportion 4 
of its current value when the current derivative of a weight and 
the exponential average of the weight's previous derivatives 
possess opposite signs. 

From ( 3 3 ) ,  it can be found that the learning rates of the delta- 
bar-delta algorithm are incremented linearly in order to prevent 
them from becoming too large too fast. The algorithm also 
decrements the learning rates exponentially. This ensures that 
the rates are always positive and allows them to be decreased 
rapidly. Jacobs [14] showed that a combination of the delta- 
bar-delta rule and momentum heuristics can achieve both the 
good performance and faster rate of convergence. 

More recent work has produced improved learning strategies 
based on extended Kalman algorithm [ 151 and a recursive pre- 
diction error routine [ 161. Although these two algorithms were 
each derived independently based on a different approach, they 
are actually equivalent. They both use the same search direc- 
tion called the Gauss-Newton direction, for which the negative 
gradient is multiplied by the inverse of an approximate Hessian 
matrix of the given criterion. The computational complexity 
of both algorithms applied to the neural equalizer is examined 
in [17]. 

ifX(k - 1)X(k) > o 
A ~ ( J C  + 1) = -4q(Ic), ifX(k - I ) X ( ~ )  < o (33 )  

V. SIMULATION RESULTS 

The QPSK satellite channel model used in performance 
evaluation is based on the Volterra series expansion model 
developed as a result of measurement [I] ,  [2]. The associated 
Volterra series coefficients are shown in Table I. Moreover, 
the channel output is corrupted by zero mean additive white 
Gaussian noise (AWGN). For convenience, the received signal 
could be normalized to unity. Then the received signal-to-noise 
ratio (SNR) becomes the reciprocal of the noise variance at the 
input of the equalizer. The bit error rates were determined by 
simulating the QPSK data transmission system and taking an 
average of 100 individual runs of lo5 samples. 

The complex-valued data are transmitted at a bit rate of 60 
Mb/s over the Volterra-series-based QPSK satellite channel. 
The modulation scheme is QPSK with a symbol rate of 30 
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M symbolsk and a symbol interval of 100 ns. The packet 
length is set to 400 symbols (800 bits). A 10% overhead 
would allow a maximum of 40 symbols for training, i.e., 
nu = 40. The neural-based decision feedback equalizer in- 
cludes a four-layer feedforward neural network. For simplicity, 
the neural equalizer is denoted by a short-hand notation 
NNDFE((nf, n b ) ,  n1, n2, no), where nf  is the number of 
forward taps, nb is the number of forward taps, n1 is the 
number of neurons in hidden layer 1 ,  n2 is the number of 
neurons in hidden layer 2, and no is the number of neurons 
in output layer. Similarly, traditional LMS decision feedback 
equalizer is denoted by LMSDFE (n f  , nb). According to the 
suggestions of [3] and ( 1  l),  n f  and n b  are set to be 3 and 
2, respectively. Karam and Sari [3] showed that a two-stage 
feedback filter can cancel most third- and higher-order IS1 
terms resulted from the Volterra-series-based channel model. 
As discussed in Section 11-A, ni and no can be found as 12 
and 2, respectively, for QPSK system. According to Huang 
and Huang’s [lo] suggestions, it is possible to estimate the 
lower bounds on the numbers of neurons in both hidden layers. 
Thus, n1 and 122 can be chosen as 20 and 10, respectively. 
Fig. 4 illustrates MSE (mean square error) convergence of the 
packet-wise neural equalizer, NNDFE ((3, 2), 20, 10, 2 ) ,  and 
LMSDEF(3, 2 )  with the same initial learning rate Q ( k ) l k = O  

0.03 for training mode and 0.005 for decision-directed mode. 
The MSE is defined as follows 

where S ( k )  = NNDFE(zk, w ) ,  Ng = N . nu and dk denotes 
the desired response. The values of parameters related to the 
delta-bar-delta rule are a = 0.8, K = 0.00005, 4 = 0.4, 
and 6’ = 0.3. The NNDFE requires at least 50 packets to 
converge, while the LMSDFE converges in about 8 packets. 
The results also show that the steady-state value of averaged 
square error produced by the NNDFE converges to a value (5  
-70 dB), which is much lower than the additive noise (-10 

a: 
W m 

0 2 4 6 8 10 12 14 16 18 20 
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Comparison of bit error rates achieved by NNDFE and LMSDFE Fig. 5. 
when nu = 40. 

dB). This is a result of the approximation capability of packet 
back-propagation. Theorem 1 indicates that the approximation 
error approaches zero when the number of packets approaches 
infinity. The LMSDFE gives a steady value of averaged 
squared error at about -10 dB, which is around the noise floor. 
Fig. 5 compares the respective bit error rates (BER’s) achieved 
by NNDFE ((3, 2),  20, 10, 2) and LMSDFE (3, 2). It may be 
observed from Fig. 5 that the NNDFE attains about 3.2 dB 
improvement at BER = lop4 relative to the LMSDFE having 
the same number of input samples. 

VI. CONCLUSION 

This paper has introduced a four-layer neural-based adaptive 
decision feedback equalizer based on a concept of splitting 
which is capable of dealing with the M-ary PSK signals 
over the complex digital satellite channel by using cost- 
effective real-valued training algorithms, where the real and 
imaginary components of neuron outputs are separately prop- 
agated back through the split complex activation function 
and its derivative. The neural-based DFE offers a superior 
performance as a channel equalizer to that of the conventional 
LMS DFE, because of its ability to approximate arbitrary 
nonlinear mapping. For comparison of simulation results for 
the Volterra-series-based QPSK satellite channel, it can be seen 
that the neural-based DFE provides better BER performance, 
especially in high-noise conditions; also, the MSE of neural- 
based DFE converges to a value which is much lower than that 
of LMS DFE after receiving a sufficient number of packets. 
These results would be conducted to verify the performance 
and approximation capability of packet-wise back propagation. 
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