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For a complex matrix A = [aij]ni,j=1, let W(A) be its numerical

range, and let G(A) be the convex hull of
⋃n

i=1 {z ∈ C : |z − aii| �(∑
i �=j(|aij| + |aji|)

)
/2
}

and G′(A) = ⋂{G(U∗AU) : U n-by-n

unitary}. It is known that W(A) is always contained in G(A) and

hence in G′(A). In this paper, we consider conditions for W(A) to

be equal to G(A) or G′(A). We show that if W(A) = G′(A), then the

boundary of W(A) consists only of circular arcs and line segments.

If, moreover, A is unitarily irreducible, then W(A) is a circular disc.

(Almost) complete characterizations of 2-by-2 and 3-by-3 matrices

A for whichW(A) = G′(A) are obtained.We also give criteria for the

equality ofW(A) and G(A). In particular, such A’s among the permu-

tationally irreducible ones must have even sizes. We also character-

ize those A’s with size 2 or 4 which satisfyW(A) = G(A).
Crown Copyright © 2012 Published by Elsevier Inc. All rights

reserved.

1. Introduction

For an n-by-nmatrix A, let W(A) be its numerical range

W(A) = {〈Ax, x〉 : x ∈ Cn, ‖x‖ = 1},
where 〈·, ·〉 and ‖ · ‖ denote the standard inner product and its associated norm in Cn, respectively. If

A = [aij]ni,j=1, then, for each i, 1 � i � n, let
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gi(A) = 1

2

∑
1�j�n

j �=i

(|aij| + |aji|)

and

Ci(A) = {z ∈ C : |z − aii| � gi(A)},
and let

G(A) =
⎛
⎝ n⋃

i=1

Ci(A)

⎞
⎠∧

,

the convex hull of
⋃n

i=1 Ci(A), and

G′(A) = ⋂{G(U∗AU) : U n-by-n unitary matrix}.

TheCi(A)’s,G(A)andG′(A)are called theGeršgorindiscs,Geršgorin regionandunitarily reducedGeršgorin
region of A, respectively. The purpose of this paper is to discuss when W(A) and G(A) (respectively,

G′(A)) are equal.

The set
⋃

i Ci(A)was first proposed by S. Geršgorin [4] in 1931 to serve as an inclusion region for the

eigenvalues of A. Its relation toW(A)was considered by C. R. Johnson [9]; he proved thatW(A) ⊆ G(A)
is always true. Note that both W(A) and G′(A) are invariant under the unitary similarity of A while

G(A), depending on the entries of A, is not. From these, we easily obtain W(A) ⊆ G′(A). The main

concern now is when the extremum casesW(A) = G(A) and W(A) = G′(A) hold.
In Section 2 below, we first prove a decomposition theorem (Theorem 2.4) for a matrix A with

G(A) contained in the closed half-plane H ≡ {z ∈ C : Re z � 0} and with W(A) ∩ ∂H nonempty.

It says that in this case A is permutationally similar to a direct sum A1 ⊕ · · · ⊕ A� ⊕ B, where each

Ak , 1 � k � �, is such that Re Ak is permutationally irreducible, W(Ak) ∩ ∂H is a singleton together

with many other nice properties, and B satisfiesW(B) ∩ ∂H = ∅. This will be the main tool in proving

conditions forW(A) = G′(A) andW(A) = G(A) in Sections 3 and 4, respectively. Using this, we derive

in Proposition 2.6 that if Re A is permutationally irreducible, then W(A) ∩ ∂G(A) is contained in the

circle with center (1/n) trA and radius
(∑n

i=1 gi(A)
)
/n. In Section 3, we consider the equality ofW(A)

and G′(A). Among other things, we show that (1) if W(A) = G′(A), then ∂W(A) consists of circular

arcs and line segments and, moreover, if A is unitarily irreducible, then W(A) must be a circular disc

(Theorem 3.4), (2) a 2-by-2 matrix A satisfies W(A) = G′(A) if and only if it is unitarily similar to⎡
⎣ a 0

0 b

⎤
⎦ or

⎡
⎣ a b

0 a

⎤
⎦ for some scalars a and b (Proposition 3.5), and (3) if a 3-by-3 matrix A satisfies

W(A) = G′(A), then it is unitarily similar to

(i)

⎡
⎢⎢⎢⎣
a

b

c

⎤
⎥⎥⎥⎦ , (ii)

⎡
⎢⎢⎢⎣
a b

0 a

c

⎤
⎥⎥⎥⎦ , or (iii)

⎡
⎢⎢⎢⎣
a b

a c

a

⎤
⎥⎥⎥⎦ ,

for some a, b and c, and, conversely, if A is of one of these forms with |b| = |c| in (iii), then it satisfies

W(A) = G′(A) (Proposition 3.6). Finally, in Section 4, we study the property W(A) = G(A). The main

results here (Theorems 4.2 and 4.4) say that an n-by-nmatrix A satisfiesW(A) = G(A) if and only if it

is permutationally similar to a direct sum D ⊕ A1 ⊕ · · · ⊕ A� ⊕ B, where D is a diagonal matrix, each

Ak , 1 � k � �, is such that Re Ak is permutationally irreducible and W(Ak) is a circular disc which

coincideswith all the Geršgorin discs Ci(Ak), and B satisfiesG(B) ⊆ W(D⊕A1⊕· · ·⊕A�). In this case,
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if Re A is permutationally irreducible, then nmust be even. Complete characterizations for 2-by-2 and

4-by-4 matrices AwithW(A) = G(A) are obtained (Propositions 4.5 and 4.6).

For any nonzero complex number z, its argument, arg z, is the unique number θ in [0, 2π) such

that z = |z|eiθ . The trace of a matrix A is denoted by trA, and its real part (A + A∗) /2 and imaginary

part (A − A∗) /(2i) by Re A and Im A, respectively. AT is the transpose of A. We use diag (a1, . . . , an)
to denote the n-by-n diagonal matrix with eigenvalues a1, . . . , an. A permutation matrix is one each

of whose rows and columns contains exactly one 1 and whose all other entries are 0. Two n-by-n

matrices A and B are said to be permutationally similar if there is a permutation matrix P such that

PTAP = B; they are unitarily similar if U∗AU = B for some unitary matrix U. In this paper, two notions

of irreducibilitywill beused. Ann-by-nmatrixA ispermutationally reducible if eithern = 1andA = [0]
or n � 2 and there is an n-by-n permutation matrix P such that PTAP is of the form

⎡
⎣ B C

O D

⎤
⎦, where B

and D are square matrices; otherwise, A is permutationally irreducible. It is obvious that A = [aij]ni,j=1

is permutationally irreducible if and only if for any i and j with 1 � i �= j � n, there are distinct

indices r0 = i, r1, . . . , r�−1, r� = j such that for all s, 1 � s � �, ars−1rs is nonzero. A is unitarily

reducible if it is unitarily similar to a direct sum of other matrices; otherwise, it is unitarily irreducible.

Note that these two notions are different. For example,

⎡
⎣ 0 1

1 0

⎤
⎦ is permutationally irreducible but

unitarily reducible, while

⎡
⎣ 0 1

0 0

⎤
⎦ is unitarily irreducible but permutationally reducible. It is known

that everymatrix is permutationally similar (respectively, unitarily similar) to a direct sum ofmatrices

withpermutationally irreducible realparts (respectively, adirect sumofunitarily irreduciblematrices),

and the summands areuniqueup topermutations andpermutational similarities (respectively, unitary

similarities). In particular, the real part of a unitarily irreducible matrix must be permutationally

irreducible. The above permutationally irreducible assertion can be proven by an easy graph-theoretic

argument while the unitarily irreducible assertion was proven in [2, Corollary 3.2]. The former notion

will be mostly referred to in Sections 2 and 4 while the latter in Section 3.

The general references for this paper are the twomonographs [7,8] by Horn and Johnson. In partic-

ular, [7, Sections 6.1 and 6.2] contains some discussions on Geršgorin discs, [8, Chapter 1] on numerical

ranges, and [8, p. 39, Problem 4] specifically asks whether W(A) = G′(A) is true. Other references for
the numerical range are [5] and [6, Chapter 22]. [9] contains results on numerical ranges of 3-by-3

matrices,whichwill be used in Section 3. In the literature, there are papers discussing the containment

relations between (generalized) Geršgorin regions and (generalized) numerical ranges. It seems that,

other than [8, p. 39, Problem 4] and [17, Question 2], none has touched on their equality.

2. Nonemptiness of W(A) ∩ ∂G(A)

Westart bya result relating theattainingvector for apointofW(A) to theentriesofA. IfA = [aij]ni,j=1

and K = {k1, . . . , kp} ⊆ {1, 2, . . . , n} with 1 � k1 < · · · < kp � n, we let A[K] denote the p-by-p

matrix [akikj ]pi,j=1.

Proposition 2.1. Let A = [aij]ni,j=1 and let z = 〈Ax, x〉 be a point in W(A), where x = [x1 . . . xn]T is a

unit vector in Cn. If K = {i : xi �= 0} = {k1, . . . , kp}, where 1 � k1 < · · · < kp � n, then

∣∣∣∣∣∣z −
p∑

i=1

|xki |2akiki
∣∣∣∣∣∣ �

p∑
i=1

|xki |2gi
(
A[K]) . (1)

Moreover, (1) is an equality if and only if the following two conditions hold:
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(a) If z = ∑
i |xki |2akiki , then A[K] = diag (ak1k1 , . . . , akpkp); otherwise, arg (akskt xkt xks) =

arg (z −∑
i |xki |2akiki) ≡ θ for all ks �= kt with akskt �= 0.

(b) |xks | = |xkt | for all ks �= kt with akskt or aktks nonzero.

In particular, if (1) is an equality and akskt �= 0 for some ks �= kt , then xks = xkt e
i(θst−θ), where θst =

arg akskt .

Proof. Since

z =
n∑

i,j=1

aijxjxi =
p∑

i=1

akiki |xki |2 + ∑
1�i �=j�p

akikj xkj xki ,

we have∣∣∣∣∣∣z −
p∑

i=1

|xki |2akiki
∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

1�i �=j�p

akikj xkj xki

∣∣∣∣∣∣
�
∑
i �=j

|akikj ||xkj ||xki | = 1

2

∑
i �=j

|xkj ||xki |(|akikj | + |akjki |) (2)

� 1

4

∑
i �=j

(|xki |2 + |xkj |2)(|akikj | + |akjki |) (3)

= 1

2

∑
i �=j

|xki |2(|akikj | + |akjki |)

=
p∑

i=1

|xki |2gi
(
A[K]) .

This proves (1). Moreover, (1) becomes an equality if and only if the inequalities in (2) and (3) are

equalities, which are equivalent to (a) and (b).

Finally, if (1) is an equality and akskt �= 0 for some ks �= kt , then

|akskt |eiθst xkt xks = akskt xkt xks = |akskt ||xkt ||xks |eiθ
= |akskt |xkt e−i(arg xkt )xkse

i(arg xks )eiθ ,

where the second equality is ensured by (a). Since akskt , xkt and xks are all nonzero, we obtain ei(θst−θ)

= ei(arg xks−arg xkt ). Together with (b), this yields xks = xkt e
i(θst−θ) as asserted. �

Note that if Re A is permutationally irreducible, then Proposition 2.1(b) is equivalent to

(b′) |xki | = 1/
√

p for all i, 1 � i � p.

Indeed, under the irreducibility of Re A, for any 1 � i �= j � p, there are distinct indices

r0 = i, r1, . . . , r�−1, r� = j such that for all s, 1 � s � �, either akrs−1
krs

or akrs krs−1
is nonzero.

Hence Proposition 2.1(b) implies that

|xki | = |xkr1 | = · · · = |xkr�−1
| = |xkj |.

This obviously yields (b′). That (b′) implies (b) is trivial.

In the following, we will frequently use some easily derived properties of G(A), which we gather

together in the next lemma.
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Lemma 2.2. If A is an n-by-n matrix, then

(a) G(aA + bIn) = aG(A) + b for any scalars a and b,

(b) G(A) = G(U∗AU) for any diagonal unitary matrix U, and

(c) G(A) ⊇ G(B) for any principal submatrix B of A.

Wenow apply Proposition 2.1 to derive some necessary conditions for the nonemptiness ofW(A)∩
∂G(A).

Proposition 2.3. Let A = [aij]ni,j=1 be such that G(A) ⊆ H ≡ {z ∈ C : Re z � 0} and W(A) ∩ ∂H �= ∅.
If z = 〈Ax, x〉 is in W(A) ∩ ∂H, where x = [x1 . . . xn]T is a unit vector in Cn, K = {i : xi �= 0} =
{k1, . . . , kp} with 1 � k1 < · · · < kp � n, and J = {j : Cj(A) ∩ ∂H �= ∅}, then the following hold:

(a) K ⊆ J.

(b) Re akiki = gki(A) for all i, 1 � i � p.

(c)
∣∣∣z −∑p

i=1 |xki |2akiki
∣∣∣ = ∑p

i=1 |xki |2gki(A).
(d) Im z = ∑p

i=1 |xki |2 Im akiki .

(e) If Re akiki = 0 for all i, then A[K] = diag (ak1k1 , . . . , akpkp). Otherwise, if Re akiki > 0 for some i, then

forall ks �= kt withakskt �= 0,wehavexks = −xkt e
i(arg akskt ), and, inparticular, arg akskt = arg aktks

for akskt , aktks �= 0.

(f) gi

(
A[K]) = gi

(
Re A[K]) = gki(A) = gki(Re A) for all i, 1 � i � p.

(g) A is permutationally similar to A[K] ⊕ B for some (n − p)-by-(n − p) matrix B.

Proof. Since G(A) ⊆ H, we have Re ajj � gj(A) for all j, 1 � j � n, and Re ajj = gj(A) if and only if j is

in J.

(a) To prove K ⊆ J, assume to the contrary that there is a k0 in K \ J. The inequality (1) in Proposition

2.1 says that∣∣∣∣∣∣z −
p∑

i=1

|xki |2akiki
∣∣∣∣∣∣ �

p∑
i=1

|xki |2gki(A).

Hence

0 = Re z � Re

⎛
⎝ p∑

i=1

|xki |2akiki
⎞
⎠−

p∑
i=1

|xki |2gki(A)

=
p∑

i=1

|xki |2(Re akiki − gki(A)) � |xk0 |2(Re ak0k0 − gk0(A)) > 0

since k0 ∈ J \K implies that xk0 �= 0 and Re ak0k0 > gk0(A). This contradiction yields that K ⊆ J.

(b) Since each ki, 1 � i � p, in K is in J by (a), we have Cki(A) ∩ ∂H �= ∅ and hence Re akiki= gki(A) � 0.

(c) From (b), we derive that

∣∣∣∣∣∣z −
p∑

i=1

|xki |2akiki
∣∣∣∣∣∣ �

∣∣∣∣∣∣Re
⎛
⎝z −

p∑
i=1

|xki |2akiki
⎞
⎠
∣∣∣∣∣∣ (4)

=
p∑

i=1

|xki |2Re akiki =
p∑

i=1

|xki |2gki(A) �
p∑

i=1

|xki |2gi
(
A[K]) .
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Combined with inequality (1), this yields equalities throughout. In particular, we have

∣∣∣∣∣∣z −
p∑

i=1

|xki |2akiki
∣∣∣∣∣∣ =

p∑
i=1

|xki |2gki(A).

(d) As all the inequalities in (4) are equalities, we deduce from its first one that

Im z = ∑p
i=1 |xki |2 Im akiki .

(e) If Re akiki = 0 for all i, then z = ∑
i |xki |2akiki by (d) and hence A[K] = diag (ak1k1 , . . . , akpkp) by

Proposition2.1(a).On theotherhand, if Re akiki > 0 for some i, then z �= ∑
i |xki |2akiki by (4).Note

that z−∑
i |xki |2akiki is real and equals−∑

i |xki |2 Re akiki by (d). Thus arg
(
z −∑

i |xki |2akiki
)

=
π . Therefore, Proposition2.1(a)ensures thatxks = −xkt e

i(arg akskt ) foranyks �= kt withakskt �= 0.

(f) Sincegki(A) � gi(A
[K]) for all i, 1 � i � p, theequalities in (4)yield that theyareactually equal to

each other. To prove gi

(
A[K]) = gi

(
Re A[K]), we need show that |akskt |+ |aktks | = |akskt +aktks |

for all ks �= kt . If one of akskt and aktks is zero, then this is obvious; otherwise, this follows from

arg akskt = arg aktks in (e). Finally, from

gki(Re A) � gki(A) = gi

(
A[K]) = gi

(
Re A[K]) � gki(Re A),

where the two equalities have just been proven, we infer that gki(A) = gki(Re A) as asserted.

(g) Since gi

(
A[K]) = gki(A) for 1 � i � p from (f), we obtain akij = ajki = 0 for all j /∈ K . This

yields the permutational similarity of A and A[K] ⊕ B for some B. �

Geometrically, condition (b) of the preceding proposition says that all the Geršgorin discs Cki(A),
1 � i � p, are tangent to the y-axis ∂H. Moreover, if Re A is permutationally irreducible, then |xki | =
1/

√
p for all i (by condition (b′) after Proposition 2.1), and hence (d) says that the “height” of z on ∂H

is an average of those of the centers of the Cki(A)’s.
We are now ready for themain result of this section, a decomposition theorem for AwithG(A) ⊆ H

andW(A) ∩ ∂H �= ∅. It refines Proposition 2.3.

Theorem 2.4. Let A = [aij]ni,j=1 be such that G(A) ⊆ H ≡ {z ∈ C : Re z � 0} and W(A) ∩ ∂H �= ∅.
Then A is permutationally similar to a matrix of the form A1 ⊕ · · · ⊕ A� ⊕ B, where � = dim ker(Re A),

W(B) ∩ ∂H = ∅, and for each k, 1 � k � �, Ak = [a(k)
ij ]nki,j=1 is a matrix of size nk, which satisfies the

following conditions:

(a) Re a
(k)
ii = gi(Ak) = gi(Re Ak) for all i, 1 � k � �.

(b) Re Ak is permutationally irreducible.

(c) If z = 〈Akx, x〉 is in W(Ak) ∩ ∂H, where x = [x1 . . . xnk ]T is a unit vector in Cnk , then Im z =(∑nk
i=1 Im a

(k)
ii

)
/nk and |xi| = 1/

√
nk for all i. In particular, W(Ak) ∩ ∂H is a singleton.

(d) If nk > 1, then Re a
(k)
ii > 0 for all i and xs = −xte

i
(
arg a

(k)
st

)
for all s �= t with a

(k)
st �= 0.

(e) dim ker(Re Ak) = 1.

(f) If U = diag
(
ei(arg x1), . . . , ei(arg xnk )

)
and U∗AkU =

[
b
(k)
ij

]nk
i,j=1

, then Re b
(k)
ii � 0 for all i and

b
(k)
ij � 0 for all i �= j.

Proof. Let z′ = 〈Ax′, x′〉 be a point in W(A) ∩ ∂H, where x′ = [x′
1 . . . x′

n]T is a unit vector in Cn, and

let K = {i : x′
i �= 0} = {k1, . . . , kp}with 1 � k1 < · · · < kp � n. Wemay choose z′ and x′ to be such

that p is the smallest. Then, by Proposition 2.3(g), A is permutationally similar to A[K] ⊕ B1 for some
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(n− p)-by-(n− p) matrix B1. Let A1 = A[K] =
[
a
(1)
ij

]p
i,j=1

. We now show that A1 satisfies the asserted

properties (a) ∼ (f ) with n1 there replaced by p.

(a) This follows from Proposition 2.3(b) and (f).

(b) Assume that Re A1 is permutationally reducible. Using Proposition 2.3(e), we deduce that A1

is permutationally similar to, say, A[K1] ⊕ A[K2], where {K1, K2} is a partition of K . Since z′ =
〈A1x

′′, x′′〉, where x′′ = [x′′
1 . . . x′′

p ]T is a unit vector in Cp given by x′′
i = x′

ki
for 1 � i � p,

we have z′ ∈ W(A1) ∩ ∂H. Furthermore, since W(A1) =
(
W
(
A[K1]

)
∪ W

(
A[K2]

))∧
, we may

assume thatW
(
A[K1]

)
∩∂H �= ∅. IfK1 = {r1, . . . , rq}with1 � r1 < · · · < rq � p, then there is

a unit vector u = [u1 . . . uq]T inCq such that
〈
A[K1]u, u

〉
is inW(A[K1])∩∂H. Let v = [v1 . . . vn]T

be given by

vj =
⎧⎨
⎩ ui if j = kri for some i, 1 � i � q,

0 otherwise.

Then v is a unit vector in Cn and 〈Av, v〉 = 〈A[K1]u, u〉 is inW(A) ∩ ∂H. Since the cardinality of

{j : vj �= 0} is at most q, which is in turn strictly less than p, this contradicts our choice of p in

the first place. Hence Re A1 is indeed permutationally irreducible.

(c) If z = 〈A1x, x〉 is any point in W(A1) ∩ ∂H, where x = [x1 . . . xp]T is a unit vector in Cp,

then the xj ’s must all be nonzero. This is because if some of the xj ’s are zero, then Proposition

2.3(g) applied to A1 gives the permutational reducibility of Re A1, which contradicts (b). By

Propositions 2.3(c) and 2.1(b′), we have |xj| = 1/
√

p for all j. Hence Proposition 2.3(d) yields

Im z =
(∑p

i=1 Im a
(1)
ii

)
/p as required. In particular, this shows that z is unique and thus z = z′

andW(A1) ∩ ∂H is a singleton.

(d) If p > 1 and Re a
(1)
ii = 0 for some i, then (a) implies that gi(Re A1) = 0. This would result in the

permutational reducibility of Re A1, contradicting (b). Hence we must have Re a
(1)
ii > 0 for all i.

Proposition 2.3(e) then implies that xs = −xte
i
(
arg a

(1)
st

)
for all s �= t with a

(1)
st �= 0.

(e) Since Re A1 is permutationally irreducible by (b), for each j, 1 < j � p, there are distinct indices

r0 = j, r1, . . . , rq−1, rq = 1 such that either a
(1)
rs−1rs or a

(1)
rsrs−1 is nonzero for all s, 1 � s � q. Let

θ s
j =

⎧⎪⎨
⎪⎩

arg
(
−a

(1)
rs−1rs

)
if a

(1)
rs−1rs �= 0,

arg

(
−a

(1)
rsrs−1

)
if a

(1)
rsrs−1 �= 0

for1�s�q. Note that if botha
(1)
rs−1rs anda

(1)
rsrs−1 arenonzero, thenarg

(
−a

(1)
rs−1rs

)
= arg

(
−a

(1)
rsrs−1

)
by Proposition 2.3(e), and thus the θ s

j above is well-defined. Moreover, when a
(1)
rs−1rs �= 0, we

have xrs−1
= −xrs e

i
(
arg a

(1)
rs−1rs

)
by Proposition 2.3(e) again. Thus

xrs−1
= xrs e

i
(
π+arg a

(1)
rs−1rs

)
= xrs e

iθ s
j .

Similarly, the same is true for a
(1)
rsrs−1 �= 0. For each j, 1 < j � p, let θj = ∑q

s=1 θ s
j . Then

xj = xr0 = xr1e
iθ1

j = xr2e
i(θ1

j +θ2
j ) = · · · = xrqe

i
(∑q

s=1 θ s
j

)
= x1e

iθj .

Thus x = x1

[
1 eiθ2 . . . eiθp

]T
and hence dim ker(Re A1) = 1.
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(f) If A′
1 = U∗A1U =

[
b
(1)
ij

]p
i,j=1

and y =
⎡
⎢⎣ 1/

√
p . . . 1/

√
p︸ ︷︷ ︸

p

⎤
⎥⎦
T

, then Uy = x and

〈A′
1y, y〉 = 〈U∗A1Uy, y〉 = 〈A1x, x〉 = z = z′.

Note that G(A′
1) ⊆ H and z′ is in W(A′

1) ∩ ∂H. Thus Proposition 2.3(e) applied to y yields that

1/
√

p = −
(
1/

√
p
)
e
i
(
arg b

(1)
st

)
for any s �= t with b

(1)
st �= 0. Hence b

(1)
st � 0 for s �= t. On the

other hand, since b
(1)
ss = a

(1)
ss , we have Re b

(1)
ss = Re a

(1)
ss = gs(A1) � 0 by (a).

Note that ifW(B1) ∩ ∂H = ∅, then we are done; otherwise, apply the above arguments to B1
and proceed repeatedly. �

In the remaining part of this section, we use the preceding theorem to derive properties ofW(A)∩
∂G(A) and G(A). For convenience, we restrict ourselves to matrices with Re A permutationally irre-

ducible.

Proposition 2.5. Let A = [aij]ni,j=1 be such that Re A is permutationally irreducible.

(a) If W(A)∩ ∂G(A) consists of two points, then the aii’s are on a line and G(A) is the convex hull of two

circular discs.

(b) If W(A) ∩ ∂G(A) consists of at least three points, then the Geršgorin discs Ci(A)’s all coincide with

each other and thus a11 = a22 = · · · = ann and G(A) is a circular disc.

Proof. (a) Assume that W(A) ∩ ∂G(A) = {z1, z2} (z1 �= z2). Let Lj , j = 1, 2, be a supporting

line of G(A) at zj . After a translation and rotation, we may assume that L1 is the y-axis and

G(A) ⊆ {z ∈ C : Re z � 0}. Thus Theorem 2.4 is applicable. Condition (a) there says that

each Geršgorin disc Ci(A), 1 � i � n, is tangent to both Lj ’s. Thus their centers aii are all on

the bisecting line of L1 and L2, and G(A) is the convex hull of the two Geršgorin discs which are

farthest apart.

(b) Assume that z1, z2 and z3 are three distinct points in W(A) ∩ ∂G(A). Let Lj , 1 � j � 3, be a

supporting line of G(A) at zj . As above, each Ci(A), 1 � i � n, is tangent to all the Lj ’s. Note

that the Lj ’s are distinct. Indeed, if L1 = L2 ≡ L, then L contains two distinct points z1 and z2
ofW(A) ∩ ∂G(A). This contradicts the assertion in Theorem 2.4(c) thatW(A) ∩ L is a singleton.

On the other hand, since the Lj ’s are all supporting lines of the convex set G(A), they cannot be

all parallel to one another nor can they intersect at one single point. Thus the centers aii of the

Ci(A)’s, 1 � i � n, are all on all three bisecting lines of the Lj ’s. It follows that the Ci(A)’s, and,
in particular, their centers aii all coincide and hence G(A) = Ci(A) is a circular disc. �

The next two propositions give more information on the points in W(A) ∩ ∂G(A).

Proposition 2.6. Let A = [aij]ni,j=1 (n � 2) be such that Re A is permutationally irreducible. Then

W(A) ∩ ∂G(A) is contained in the circle with center (1/n) trA and radius (
∑n

i=1 gi(A))/n.

Proof. Let z = 〈Ax, x〉 be any point in W(A) ∩ ∂G(A), where x = [x1 . . . xn]T is a unit vector in Cn,

and let L be a supporting line of G(A) at z. After a translation and rotation, wemay assume that L is the

y-axis and G(A) ⊆ {z ∈ C : Re z � 0}. Applying Theorem 2.4(c) and (f), we may further assume that

xj = 1/
√

n for all j and aij � 0 for all i �= j. Hence

z =
n∑

i,j=1

aijxjxi = 1

n
trA + 1

n

∑
1�i �=j�n

aij.
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It follows that∣∣∣∣z − 1

n
trA

∣∣∣∣ = −1

n

∑
i �=j

aij = 1

n

∑
i

gi(A).

Thus z is indeed on the asserted circle. �

Note that, in the above proof, the asserted circle is also tangent to L. This is because

Re

(
1

n
trA

)
= 1

n

∑
i

Re aii = 1

n

∑
i

gi(A)

by Theorem 2.4(a).

Proposition 2.7. Let A = [aij]ni,j=1 be such that Re A is permutationally irreducible. If there are distinct

indices kj, 1 � j � p, with 1 � kj � n for all j so that some permutation k′
j , 1 � j � p, of them satisfies

k′
j �= kj for all j and ak1k′

1
, . . . , akpk′

p
�= 0, then W(A) ∩ ∂G(A) consists of at most p points, and these

points are some of the vertices of a regular p-gon inscribed on the circle with center (1/n) trA and radius(∑n
i=1 gi(A)

)
/n.

Proof. Let z = 〈Ax, x〉 and z′ = 〈Ay, y〉 be points in W(A) ∩ ∂G(A), where x = [x1 . . . xn]T and

y = [y1 . . . yn]T are unit vectors in Cn, and let L be a supporting line of G(A) at z′. As before, we may

assume that L is the y-axis, G(A) ⊆ {z ∈ C : Re z � 0}, yj = 1/
√

n for all j, and aij � 0 for all i �= j.

On the other hand, after a translation and a rotation by θ (0 � θ < 2π ), we also have, by Theorem

2.4(c) and (d), |xt| = 1/
√

n for all t and

xs = −xte
i(θ+arg ast) = xte

iθ

for all s �= t with ast �= 0. In particular, this is true for all xkj ’s and xk′
j
’s. Hence

p∏
j=1

xkj =
⎛
⎝ p∏

j=1

xk′
j

⎞
⎠ eip θ =

⎛
⎝ p∏

j=1

xkj

⎞
⎠ eip θ ,

from which we deduce that eip θ = 1. Thus aijxjxi = (1/n)aije
iθ for all i �= j, and therefore

z − 1

n
trA =

n∑
i,j=1

aijxjxi − 1

n

n∑
i=1

aii = eiθ

n

∑
1�i �=j�n

aij

and, similarly,

z′ − 1

n
trA =

n∑
i,j=1

aijyjyi − 1

n

n∑
i=1

aii = 1

n

∑
1�i �=j�n

aij.

It follows that z − (1/n) trA = (z′ − (1/n) trA)eiθ and

∣∣∣∣z − 1

n
trA

∣∣∣∣ = −1

n

∑
i �=j

aij = 1

n

∑
i

gi(A). �
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3. Equality of W(A) and G′(A)

In this section, we consider matrices A for which W(A) and G′(A) are equal, obtain some neces-

sary/sufficient conditions, and give complete characterizations when A is of size 2. In contrast, we

remark that if the unitary similarity of A in the definition of G′(A) is replaced by similarity, then the

intersection is much easier to characterize:
⋂{G(X−1AX) : X invertible} is equal to the convex hull of

the spectrum of A (see [7, p. 351, Problem 2] or [8, p. 60, Problem 30]). This can be proven by invoking

the Jordan canonical form of A, which is in turn similar to a direct sum of matrices of the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a ε

a
. . .

. . . ε

a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

with arbitrarily small positive ε. Note also that the containmentW(A) ⊆ G′(A) is always true (cf. [9]).

We start with the following lemma.

Lemma 3.1. If A is an n-by-n matrix with G′(A) contained in the closed right half-plane H = {z ∈ C :
Re z � 0}, then there is an n-by-n unitary matrix U such that G(U∗AU) is contained in H.

Note that, in general, it may happen that a sequence of compact convex sets has its intersection

contained in H, but none of these sets is in H. One example is given by the closed discs {z ∈ C :
|z − 1| � 1 + (1/n)}, n � 1. Lemma 3.1 says that this is not the case for G′(A).

Proof of Lemma 3.1. For each tk = −1/k, k � 1, our assumption of G′(A) ⊆ H implies that there

is an n-by-n unitary matrix Uk such that tk is not in G
(
U∗
k AUk

)
. Let Lk and Mk be two supporting lines

of G
(
U∗
k AUk

)
which pass through tk , and let Hk denote the closed sector in the open left half-plane

{z ∈ C : Re z < 0} formed by Lk and Mk with vertex tk . The convexity of G
(
U∗
k AUk

)
implies that

G
(
U∗
k AUk

) ∩ Hk = ∅ (cf. Figure 1). Note that there is a subsequence {Ukj}∞j=1 which converges to a

unitary matrix U. Then G
(
U∗
kj
AUkj

)
converges to G (U∗AU) in the Hausdorff metric as j approaches

infinity. We infer that G
(
U∗
k AUk

) ∩ Hk = ∅ for all k � 1. Thus

G
(
U∗AU

) ∩ M = G
(
U∗AU

) ∩
⎛
⎝ ∞⋃

k=1

Hk

⎞
⎠ = ∅,

that is, G (U∗AU) ⊆ H as asserted. �

Recall that theHausdorff metric h is defined, for nonempty compact subsets�1 and�2 of the plane,

by

h(�1, �2) = max{max
z1∈�1

min
z2∈�2

|z1 − z2|, max
z2∈�2

min
z1∈�1

|z1 − z2|}.

It can be proven that if {Ak}∞k=1 is a sequence of n-by-n matrices which converges to A in norm, then

G(Ak) converges to G(A) in the Hausdorff metric.

To prepare for the next theorem, we state some general facts concerning the support function

of a compact convex subset of the complex plane. Recall that if � is a nonempty compact convex

subset of C, then its support function d(θ) is, for each real θ , the signed distance from the origin to

the supporting line Lθ of � which is perpendicular to the ray Rθ from the origin forming angle θ
from the positive x-axis (cf. Figure 2). Thus Lθ is given by the equation x cos θ + y sin θ = d(θ),
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Fig. 1. Disjointness of G(U∗
k AUk) and Hk .

Fig. 2. Support function d(θ) of �.

d(θ) = max{Re (e−iθ z) : z ∈ �}, and � = ⋂
θ∈R{z ∈ C : Re (e−iθ z) � d(θ)}. If the origin is in �

(respectively, in the interior of �), then d(θ) � 0 (respectively, d(θ) > 0) for all θ . One reference for

the support function is [16, Part V, Section A].

Lemma 3.2. Let �, d(θ) and Lθ be given as above. Then

(a) d(θ) is both left and right differentiable for all θ ,
(b) d(θ) is continuously differentiable for all but a countable number of values of θ ,
(c) d is differentiable at θ if and only if Lθ ∩ ∂� is a singleton, in which case Lθ ∩ ∂� consists of the

point (d(θ) + id′(θ))eiθ , and
(d) d is not differentiable at θ if and only if ∂� contains a line segment on Lθ , inwhich case the endpoints

of the line segment are (d(θ) + id′±(θ))eiθ .

Proof. (a) follows form [16, Theorem 10.5] and (b) from [16, Corollary 10.3] or [1, Section I.4, Corollary

3.2].We nowprove that Lθ ∩∂� is the line segmentwith endpoints (d(θ)+ id′±(θ))eiθ . (c) and (d)will

then follow from this easily. Indeed, after a rotation of Rθ by the angle −θ , we may assume that� has

a vertical supporting line L = L0 given by the equation x = d(0) and the corresponding perpendicular

ray R0 (cf. Figure 3). We check that the lowest point of L ∩ ∂� is d(0) + id′−(0). Indeed, from Figure 3

we have

d′−(0) = lim
α→0−

d(α) − d(0)

α
= lim

α→0−
aα cosα − (aα + bα tan(−α))

α

= lim
α→0−

(
aα · cosα − 1

α
+ bα · tanα

α

)
= 0 + lim

α→0− bα = c.

Similarly, the highest point of L ∩ ∂� is d(0) + id′+(0). This proves our assertion and hence also (c)

and (d). �

The next lemma gives a condition for a part of the boundary of a compact convex set to be a circular

arc.
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Fig. 3. Proof for lowest point of L ∩ ∂�.

Lemma 3.3.

(a) Let � be a nonempty compact convex subset of the plane, and let α be an arcwise connected subset

of ∂�. Then α is a circular arc if and only if there is a point p in C such that, for any q in α, the

supporting line Lq of � at q is perpendicular to the line Lpq connecting p and q.

(b) Let A be an n-by-n matrix and let ∂W(A) be composed of the algebraic arcs α1, . . . , αm. Then, for

any αk, 1 � k � m, and any point p in C, either αk is a circular arc with center p or there are only

finitely many points q in αk with supporting line Lq of W(A) at q perpendicular to Lpq.

Proof.

(a) If α is a circular arc, then with p the center of α we have the asserted perpendicular property.

For the converse, we may assume that p is the origin. Let d(θ) be the support function of � and

let (θ1, θ2) correspond to the arc α. Our assumption on α implies that it cannot contain any line

segment. Hence d(θ) is differentiable for all θ in (θ1, θ2) by Lemma3.2(c) or (d). Thus each point

q of α is given by both (d(θ) + id′(θ))eiθ and d(θ)eiθ . Their equality then yields that d′(θ) = 0

or d(θ) is a constant for all θ in (θ1, θ2). Thus α is a circular arc.

(b) Note that, by [11, Theorem 10], the boundary of the numerical range of a matrix is always

composed of finitely many algebraic curves. Let αk , 1 � k � m, be given by

fk(x, y) ≡ ∑
0�i+j��k

a
(k)
ij xiyj = 0,

where fk is an irreducible polynomial of degree �k . An implicit differentiation of fk with respect

to x yields

∑
i,j

a
(k)
ij

(
ixi−1yj + jxiyj−1 dy

dx

)
= 0.

Let p = (x0, y0) and q = (x1, y1). The perpendicular condition says that

dy

dx
(x1, y1) = sk(x1, y1)

rk(x1, y1)
= − 1

y1−y0
x1−x0

,

where sk(x, y) = −∑
i,j a

(k)
ij ixi−1yj and rk(x, y) = ∑

i,j a
(k)
ij jxiyj−1, that is, (x1, y1) is a zero of

the polynomial

gk(x, y) ≡ sk(x, y)(y − y0) + rk(x, y)(x − x0)

of degree �k . If fk and gk have a common factor, then the irreducibility of fk implies that fk is a

factor of gk . Thus all the points of αk have the perpendicular property. (a) then implies that αk is
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a circular arc with center p. On the other hand, if fk and gk have no common factor, then Bézout’s

theorem [12, Theorem 3.9] implies that the number of their common zeros is at most �2k . In this

case, there are at most �2k many points q in αk with Lq perpendicular to Lpq. �

Wearenowready toprove themain result of this section. It gives thepossible shapeof thenumerical

rangeW(A)ofAwhen it is equal toG′(A). Note that though theboundaryofG(A) consists of circular arcs
and line segments, that ofG′(A) can in general be quite arbitrary aswitness the fact that any nonempty

convex compact subset of the plane is the intersection of closed polygonal regions (respectively, closed

circular discs) containing it.

Theorem 3.4. Let A be an n-by-n matrix with W(A) = G′(A).

(a) If A is nonscalar, then ∂W(A) is composed of finitely many circular arcs and line segments.

(b) If A is unitarily irreducible, thenW(A) is a circular disc centered at (1/n)trA and A is unitarily similar

to a matrix B = [bij]ni,j=1 of the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1
n
trA

)
I1 B1(

1
n
trA

)
I2 B2

. . .
. . .

. . . B�−1(
1
n
trA

)
I�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with bij � 0 for all i �= j.

Proof.

(a) Assume that ∂W(A) is composed of the algebraic curves α1, . . . , αm. Let A be unitarily similar

to A1 ⊕ · · · ⊕ Ar , where each Aj , 1 � j � r, is unitarily irreducible (cf. [2, Corollary 3.2]). For

each ordered sequence of indices 1 � i1 < · · · < is � r, let Bi = Ai1 ⊕ · · · ⊕ Ais and let

pi = (1/mi) trBi, where mi is the size of Bi. Assume that some αj is not a circular arc nor a line

segment. Then, by Lemma 3.3 (b), for each pi there are only finitelymany points q inαj such that

the supporting line Lq ofW(A) at q is perpendicular to Lpiq, the line connecting pi and q. Since αj

contains infinitelymany points, by the pigeonhole principle, there is a point q0 inαj which is not

equal to any of such q’s, that is, the supporting line Lq0 ofW(A) at q0 is not perpendicular to Lpiq0
for all the pi’s. Let H be the closed half-plane with boundary Lq0 which containsW(A) = G′(A).
By Lemma 3.1, there is a unitary matrix U such that G(U∗AU) is contained in H. Now apply

Theorem2.4 to infer thatU∗AU is permutationally similar to amatrixof the formA′
1⊕· · ·⊕A′

t⊕B,

where A′
k , 1 � k � t, is an nk-by-nk matrix with Re A′

k permutationally irreducible,W(A′
k)∩ Lq0

is the singleton {q0} (because αj is not a line segment) and the line perpendicular to Lq0 at q0
passes through the point (1/nk)trA

′
k . Since each A′

k (and also B) is unitarily similar to a direct

sum of unitarily irreducible matrices and the unitarily irreducible decomposition is unique (up

to the permutations and unitary similarities of the summands) by [2, Theorem 3.1], we obtain

the unitary similarity of each A′
k to some Bi. Hence the line perpendicular to Lq0 at q0 passes

through pi = (1/mi) trBi, that is, Lq0 is perpendicular to Lpiq0 , contradicting our choice of q0. It

follows that each αj is either a circular arc or a line segment.

(b) In this case, for any point q0 on ∂W(A), let L be a supporting line of W(A) at q0. Apply Lemma

3.1 to obtain a unitary matrix U such that G (U∗AU) is contained in the closed half-plane which

contains W(A) = G′(A) and has boundary L. Theorem 2.4 then implies that W(A) ∩ L = {q0}
and the line perpendicular to L at q0 passes through (1/n) trA. Hence W(A) is a circular disc

centered at (1/n) trA by Lemma 3.3(a).
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To prove the remaining part, we may assume, by considering A − ((1/n)tr A)In instead of A,

that trA = 0 and hence W(A) = G′(A) = {z ∈ C : |z| � r} (r > 0). Since G′(rIn − A) ⊆
H ≡ {z ∈ C : Re z � 0}, Lemma 3.1 implies the existence of a unitary matrix U such that

G (rIn − U∗AU) ⊆ H. Applying Theorem 2.4(b) and (f) to rIn −U∗AU, we obtain that ReU∗AU is

permutationally irreducible and there is a diagonal matrix V such that all nondiagonal entries

of (UV)∗A(UV) are nonnegative. [13, Theorem 1] then says that (UV)∗A(UV) is permutationally

similar to a matrix of the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 B1

0
. . .

. . . B�−1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. �

We can now characterize 2-by-2 matrices A for which W(A) = G′(A).

Proposition 3.5. A 2-by-2 matrix A is such that W(A) = G′(A) if and only if it is unitarily similar to⎡
⎣ a 0

0 b

⎤
⎦ or

⎡
⎣ a c

0 a

⎤
⎦ for some scalars a, b and c.

Since the unitary similarity of two 2-by-2 matrices is equivalent to the equality of their numerical

ranges, the preceding proposition says that, for a 2-by-2matrix A, a necessary and sufficient condition

for W(A) = G′(A) is that W(A) equals a singleton, a line segment or a circular disc.

Proof of Proposition 3.5. Let A be unitarily similar to B =
⎡
⎣ a c

0 b

⎤
⎦ for some a, b and c. Assume

first that W(A) = G′(A). If A is unitarily reducible, then c = 0 and we are done. Otherwise, W(A)
is a circular disc by Theorem 3.4(b). Since a and b are the foci of the elliptic disc W(A) = W(B), we

must have a = b and hence A is unitarily similar to

⎡
⎣ a c

0 a

⎤
⎦ as asserted. Conversely, If B =

⎡
⎣ a 0

0 b

⎤
⎦

(respectively, B =
⎡
⎣ a c

0 a

⎤
⎦), then W(B) and G(B) both equal the line segment with endpoints a and

b (respectively, the circular disc with center a and radius |c|/2). In either case, we obviously have

W(A) = W(B) = G′(B) = G′(A). �

The next proposition gives necessary/sufficient conditions for a 3-by-3 matrix A to satisfyW(A) =
G′(A).

Proposition 3.6. If a 3-by-3 matrix A is such that W(A) = G′(A), then it is unitarily similar to a matrix

of the form

(i)

⎡
⎢⎢⎢⎣
a

b

c

⎤
⎥⎥⎥⎦ , (ii)

⎡
⎢⎢⎢⎣
a b

a

c

⎤
⎥⎥⎥⎦ or (iii)

⎡
⎢⎢⎢⎣
a b

a c

a

⎤
⎥⎥⎥⎦
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for some scalars a, b and c. Conversely, if A is of one of the above forms with |b| = |c| in (iii), then it satisfies

W(A) = G′(A).

Unfortunately, at the present time we are not yet able to verify whether a matrix of type (iii) above

with nonzero b and c satisfying |b| �= |c| has the propertyW(A) � G′(A).

Proof of Proposition 3.6. Let A be a 3-by-3 matrix with W(A) = G′(A). Obviously, we need only

consider the case of unitarily irreducible A. Let a1, a2 and a3 be its eigenvalues. Under our assumptions,

W(A) is a circular disc with center (a1 + a2 + a3)/3 by Theorem 3.4(b). It is known that, in this case,

two of the eigenvalues of A, say, a1 and a2 are equal to the center ofW(A) (cf. [10, Corollary 2.5]). Hence
a1 = a2 = (a1 + a2 + a3)/3, from which we obtain a1 = a2 = a3 ≡ a. Thus A − aI3 is nilpotent and

hence is unitarily similar to a matrix A′ of the form⎡
⎢⎢⎢⎣
0 b d

0 c

0

⎤
⎥⎥⎥⎦ .

Since W(A′) = W(A) − a is a circular disc, [10, Theorem 4.1] implies that bcd = 0. If b or c equals

0, then rank A′ = 1. In this case, A′ has the matrix representation A1 ⊕ A2 on the decomposition

C3 = K ⊕ K⊥, where K is the span of the ranges of A′ and A′∗ with 1 � dim K � 2. This contradicts

our assumption on the unitary irreducibility of A. We conclude that b and c are both nonzero. Thus

d = 0 and hence A is of the form (iii) as required.

For the converse, if A is unitarily reducible, then it is unitarily similar to either

B =

⎡
⎢⎢⎢⎣
a

b

c

⎤
⎥⎥⎥⎦ or C =

⎡
⎢⎢⎢⎣
a b

d

c

⎤
⎥⎥⎥⎦ .

In the former case, since W(A) = W(B) = G(B), we have W(A) = G′(A). For the latter, if a �= d and

b �= 0, then

W(A) = W(C) =
⎛
⎝W

⎛
⎝
⎡
⎣ a b

0 d

⎤
⎦
⎞
⎠ ∪ {c}

⎞
⎠∧

.

In this case, the boundary of W(A) contains a (noncircular) elliptic arc, and hence W(A) � G′(A) by

Theorem 3.4(a). Thus we must have a = d. Then

W(A) = W(C) = G(C) ⊇ G′(C) = G′(A).

Hence W(A) = G′(A).
It remains to show that if

A =

⎡
⎢⎢⎢⎣
a b

a c

a

⎤
⎥⎥⎥⎦ ,

where |b| = |c| �= 0, then W(A) = G′(A). We already know that W(A) ⊆ G′(A). To prove

the converse containment, we may assume, by considering U∗((A − aI3)/|b|)U, where U = diag(
1, e−(arg b), e−(arg b+ arg c)

)
, instead of A, that
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A =

⎡
⎢⎢⎢⎣
0 1

0 1

0

⎤
⎥⎥⎥⎦ .

In this case, W(A) is the circular disc with center the origin and radius 1/
√

2. Let V be the unitary

matrix⎡
⎢⎢⎢⎢⎣

1

2
√

3
+ 1√

6
e− 7π

12
i − 1

2
√

3
+ 1

2
e

π
4
i + 1

2
√

6
e− 7π

12
i 1

2
√

3
+ 1

2
e

π
4
i − 1

2
√

6
e− 7π

12
i

− 1√
6

+ 1√
3
e− 7π

12
i 1√

6
+ 1

2
√

3
e− 7π

12
i − 1√

6
− 1

2
√

3
e− 7π

12
i

1

2
√

3
+ 1√

6
e− 7π

12
i − 1

2
√

3
− 1

2
e

π
4
i + 1

2
√

6
e− 7π

12
i 1

2
√

3
− 1

2
e

π
4
i − 1

2
√

6
e− 7π

12
i

⎤
⎥⎥⎥⎥⎦ .

Via some computations, we obtain

V∗AV =

⎡
⎢⎢⎢⎢⎣

1

3
√

2

4
√

2+√
3+3

12
−4

√
2+√

3+3
12

4
√

2−√
3−3

12
− 1

6
√

2
−

√
3

4
i

√
2−2

√
3+3

12

−4
√

2−√
3−3

12

√
2+2

√
3−3

12
− 1

6
√

2
+

√
3

4
i

⎤
⎥⎥⎥⎥⎦ .

Its three Geršgorin discs are

C1
(
V∗AV

) =
{
z ∈ C :

∣∣∣∣∣z − 1

3
√

2

∣∣∣∣∣ � 2
√

2

3

}
,

C2
(
V∗AV

) =
{
z ∈ C :

∣∣∣∣∣z −
(
− 1

6
√

2
−

√
3

4
i

)∣∣∣∣∣ � 5
√

2

12

}
,

and

C3
(
V∗AV

) =
{
z ∈ C :

∣∣∣∣∣z −
(
− 1

6
√

2
+

√
3

4
i

)∣∣∣∣∣ � 5
√

2

12

}
.

Therefore, W(A) ∩ ∂G (V∗AV) is the singleton
{
−1/

√
2
}
. If Uθ = diag

(
1, eiθ , e2iθ

)
for any real θ ,

then U∗
θ AUθ = eiθA. Hence we obtain W(A) ∩ ∂G ((UθV)∗A(UθV)) =

{
−
(
1/

√
2
)
eiθ
}
. This shows

that

G′(A) ⊆ ⋂
θ∈R

G
(
(UθV)∗A(UθV)

) = W(A),

and thusW(A) = G′(A) as asserted. �

We end this section by some remarks. It can be proven that if each Aj , 1 � j � m, satisfies

W(Aj) = G′(Aj), then A ≡ A1 ⊕ · · · ⊕ Am also satisfiesW(A) = G′(A). However, the converse is false.

A counterexample is given by

A1 =
⎡
⎣ 0 2

0 0

⎤
⎦ and A2 =

⎡
⎢⎢⎢⎣
0 1 1

0 1

0

⎤
⎥⎥⎥⎦ .
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HereW(A1) = G′(A1) = {z ∈ C : |z| � 1}. Since A2 is unitarily irreducible and ∂W(A2) contains one
line segment (cf. [10, Corollary 3.3]), we haveW(A2) � G′(A2) by Theorem 3.4(b). On the other hand,

since G(A2) = {z ∈ C : |z| � 1}, we can derive that

W(A1 ⊕ A2) = (W(A1) ∪ W(A2))
∧ = (G(A2) ∪ W(A2))

∧ = G(A2)

= (G(A1) ∪ G(A2))
∧ = G(A1 ⊕ A2),

fromwhich it follows thatW(A1 ⊕A2) = G′(A1 ⊕A2). More generally, using Lemma 3.1, we can prove

that if matrices A1 and A2 are such that W(A1) = G′(A1) and G(A2) ⊆ W(A1), then A ≡ A1 ⊕ A2

satisfiesW(A) = G′(A).

4. Equality of W(A) and G(A)

In this section,we considermatricesAwith the propertyW(A) = G(A). Complete characterizations

for such matrices are obtained. We also give more specific forms for such matrices of size 2 or 4.

Our first proposition relates the numerical radius w(A) = max{|z| : z ∈ W(A)} and Gerš-

gorin radius g(A) = max{|z| : z ∈ G(A)} of a matrix A. Note that if A = [aij]ni,j=1, then g(A) =
max1�i�n

∑n
j=1(|aij| + |aji|)/2.

Proposition 4.1. If A = [aij]ni,j=1 is an n-by-n matrix, then w(A) � g(A). Moreover, if Re A is permuta-

tionally irreducible, thenw(A) = g(A) if and only ifW(A) and all the Geršgorin discs Ci(A) have a common

supporting line L at a common point and the aii’s and the origin are all on a line and on one side of L.

Proof. SinceW(A) ⊆ G(A), we obviously havew(A) � g(A). Nowassume that Re A is permutationally

irreducible and w(A) = g(A). Let z0 in W(A) be such that |z0| = w(A), and let L be a supporting line

of W(A) at z0 which is tangent to the circle |z| = w(A). Since |z0| = g(A) by our assumption and

W(A) ⊆ G(A) ⊆ D ≡ {z ∈ C : |z| � g(A)}, we infer that L is a common supporting line of

W(A) and G(A) at z0. After an affine transform of A, we may assume that z0 = 0, L is the y-axis and

G(A) ⊆ {z ∈ C : Re z � 0}. Since Re A is permutationally irreducible, in the decomposition of A in

Theorem 2.4 we have A = A1. Hence (a) there, together with Ci(A) ⊆ D for all i, yields that the Ci(A)’s
are all tangent to L at the common point z0, and the centers aii of the Ci(A)’s and z0 are on a common

line and on the same side of L (cf. Figure 4). This proves the necessity. The sufficiency is trivial. �

The main results of this section are the following two theorems.

Theorem 4.2. Let A = [aij]ni,j=1 be an n-by-n (n � 2) matrix with Re A permutationally irreducible. Then

the following conditions are equivalent:

(a) W(A) = G(A);
(b) W(A) is a circular disc, which coincides with all the Geršgorin discs Ci(A);

Fig. 4. Ci(A)’s with a common supporting line L.
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(c) there are a permutation matrix P and a diagonal unitary U such that B ≡ (PU)∗A(PU) = [bij]ni,j=1

is of the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1
n
trA

)
I1 B1(

1
n
trA

)
I2 B2

. . .
. . .

. . . Bm−1(
1
n
trA

)
Im

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(m � 2) (5)

with bij � 0 for all i �= j and gi(B)’s constant.

In this case, aii and gi(A), 1 � i � n, are both constants, and n is even.

Proof. By considering A − ((1/n) trA)In, we may assume that trA = 0. The implication (a) ⇒ (b)
follows form Proposition 2.5(b). To prove (b) ⇒ (c), note that (b) implies that aii = 0 for all i and the

gi(A)’s are equal to one another. Now apply Theorem 2.4 (f) to g1(A)In − A to obtain a permutation

matrix P1 and a diagonal unitary V such that C ≡ (P1V)∗A(P1V) = [cij]ni,j=1 satisfies cii = 0 for all i ad

cij � 0 for all i �= j. SinceW(C) = W(A) is a circular disc centered at the origin and Re C, as Re A, is per-

mutationally irreducible, [13, Theorem 1] says that there is another permutation matrix P2 such that

B ≡ PT2CP2 is of the form (5). Letting P = P1P2 andU = PT2VP2,we obtain B = (PU)∗A(PU) as asserted.
We now prove (c) ⇒ (a). Under condition (c), we have gi(B) = gi(A) = g(A) for all i and hence

G(A) = G(B) = {z ∈ C : |z| � g(A)}. Therefore, W(A) = W(B) ⊆ {z ∈ C : |z| � g(A)}. On the

other hand, since B is unitarily similar to eiθB for all real θ , its numerical range W(B) is also a circular

disc centered at the origin. Letting 1n denote the n-vectorwhose components are all equal to 1,wehave

w(A) = w(B) = ‖Re B‖ � ‖(Re B)1n‖
‖1n‖ = ‖g(B)1n‖

‖1n‖ = g(B) = g(A).

It follows that w(A) = g(A). Hence W(A) = G(A) = {z ∈ C : |z| � g(A)}, that is, (a) holds.
Finally, we show that n is even. Assume that Bk , 1 � k � m − 1, is an nk-by-nk+1 matrix, and let

fik(B) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

∑n2
j=1(B1)ij if k = 1 and 1 � i � n1,

1
2

(∑nk−1

j=1 (Bk−1)ji +∑nk+1

j=1 (Bk)ij
)

if 2 � k � m − 1 and 1 � i � nk,

1
2

∑nm−1

j=1 (Bm−1)ji if k = m and 1 � i � nm,

where, for any matrix D, (D)ij denotes its (i, j)-entry. We have fik(B) = g(B) for all i and k. Hence∑nk
i=1 fik(B) = nkg(B) for all k. Since

m∑
k=1

(−1)k−1nkg(B) =
m∑

k=1

(−1)k−1
nk∑
i=1

fik(B)

= 1

2

⎡
⎣ n1∑
i=1

n2∑
j=1

(B1)ij −
n2∑
i=1

⎛
⎝ n1∑

j=1

(B1)ji +
n3∑
j=1

(B2)ij

⎞
⎠+ · · ·



1188 C.-T. Chang et al. / Linear Algebra and its Applications 438 (2013) 1170–1192

+(−1)m−2
nm−1∑
i=1

⎛
⎝nm−2∑

j=1

(Bm−2)ji +
nm∑
j=1

(Bm−1)ij

⎞
⎠+ (−1)m−1

nm∑
i=1

nm−1∑
j=1

(Bm−1)ji

⎤
⎦

= 0

and g(B) �= 0 by the permutational irreducibility of Re A and Re B, we obtain
∑m

k=1(−1)k−1nk = 0.

On the other hand, we also have
∑m

k=1 nk = n. Adding these two together yields n = 2
∑m

k=1,k odd nk ,

which shows that n is even as asserted. �

Note that if a matrix A is such thatW(A) = G(U∗AU) for some unitary U, then, obviously,W(A) =
G′(A). The converse is false as the following corollary shows. It is an easy consequence of Proposition

3.6 and Theorem 4.2.

Corollary 4.3. If

A =

⎡
⎢⎢⎢⎣
0 1

0 1

0

⎤
⎥⎥⎥⎦ ,

then W(A) = G′(A), but W(A) � G(U∗AU) for any unitary U.

The next theorem deals with general matrices with the property W(A) = G(A).

Theorem 4.4. Let A be an n-by-n matrix. Then W(A) = G(A) if and only if A is permutationally similar

to a matrix of the form D ⊕ A1 ⊕ · · · ⊕ A� ⊕ B, where D is a diagonal matrix, each Ak, 1 � k � �, is
such that Re Ak is permutationally irreducible and satisfies W(Ak) = G(Ak), and B is such that G(B) ⊆(
W(D) ∪

(
∪�

k=1W(Ak)
))∧

. In this case, W(A) = W(D ⊕ A1 ⊕ · · · ⊕ A�).

Here it goeswithout saying that some of the summands in the above decompositionmay be absent.

The proof of this theorem is analogous to the one for Theorem 3.4(a).

Proof of Theorem4.4. Assumefirst thatW(A) = G(A). ThenW(A) = G′(A)holds. Hence, by Theorem
3.4, the boundary of W(A) consists of circular arcs and line segments. Let α be one of such arcs. Note

that A is permutationally similar to a direct sum A′
1 ⊕ · · · ⊕ A′

m with each Re A′
j permutationally

irreducible. For any A′
j of size nj � 2, let pj = (1/n) trA′

j . We now show that one of the pj ’s is the

center of the circular arc α. Indeed, assume to the contrary that none of the pj ’s is the center of α. Then

Lemma 3.3(b) implies that for any pj there are only finitely many points q in α with supporting line Lq
of W(A) at q perpendicular to the line Lpjq connecting pj and q. The pigeonhole principle guarantees

the existence of a point q0 inα such that its supporting line Lq0 is not perpendicular to Lpjq for any j. Let

H be the closed half-plane with boundary Lq0 which contains W(A) = G(A). Since W(A) ∩ ∂H �= ∅,
an application of Theorem 2.4 yields some A′

j with all its Geršgorin discs tangent to Lq0 at q0, and, in

particular, with Lq0 perpendicular to Lpjq0 . This contradicts our choice of q0. Henceα is indeed a circular

arc with center, say, pj0 . Also, as the above arguments show, α and all the Geršgorin discs Ci

(
A′
j0

)
of

A′
j0
are tangent to each other at a common point. We infer from this and the fact that pj0 , the center

of α, is the average of the centers of the Ci

(
A′
j0

)
’s that the Ci

(
A′
j0

)
’s must all coincide and α is part of

their common boundary. On the other hand, sinceW
(
A′
j0

)
∩ Lq = {q} for all points q in α by Theorem

2.4(c), we also have α ⊆ ∂W
(
A′
j0

)
. Hence Ci

(
A′
j0

)
⊆ W(A′

j0
) by [14, Lemma] or [3, Theorem]. Since

W
(
A′
j0

)
⊆ G

(
A′
j0

)
= Ci

(
A′
j0

)
, they are equal to each other, that is, W

(
A′
j0

)
= Ci

(
A′
j0

)
. Note that the
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above goes for every circular arc α of ∂W(A). Hence we may rename all those A′
j ’s thus obtained as

A1, . . . , A�, let D be the direct sum of those A′
j ’s which have size one, and let B be the direct sum of the

remaining A′
j ’s. As

G(B) ⊆ G(A) = W(A) =
(
W(D) ∪

(
∪�

k=1W(Ak)
))∧

,

D ⊕ A1 ⊕ · · · ⊕ A� ⊕ B is the asserted decomposition of A.

Conversely, if A is permutationally similar to D ⊕ A1 ⊕ · · · ⊕ A� ⊕ B with the asserted properties,

then

G(A) = G(D ⊕ A1 ⊕ · · · ⊕ A� ⊕ B) =
⎛
⎝G(D) ∪

⎛
⎝ �⋃

k=1

G(Ak)

⎞
⎠ ∪ G(B)

⎞
⎠∧

⊆
⎛
⎝W(D) ∪

⎛
⎝ �⋃

k=1

W(Ak)

⎞
⎠
⎞
⎠∧

⊆ W(A).

Since W(A) ⊆ G(A) always holds, we obtain W(A) = G(A). �

WenowcharacterizematricesAof small sizes forwhichW(A) andG(A) are equal. Since, byTheorem
4.2, A can only have an even size if this holds, in the following we only consider 2-by-2 and 4-by-4

matrices.

Proposition 4.5. A 2-by-2matrix A satisfiesW(A) = G(A) if and only if A =
⎡
⎣ a 0

0 b

⎤
⎦,
⎡
⎣ a b

0 a

⎤
⎦ or

⎡
⎣ a 0

b a

⎤
⎦

for some a and b.

This follows easily from Theorems 4.2 and 4.4.

The next proposition deals with 4-by-4 matrices.

Proposition 4.6. A 4-by-4 matrix A satisfies W(A) = G(A) if and only if it is permutationally similar to

one of the following forms:

(a) diag (a, b, c, d),

(b)

⎡
⎣ a b

0 a

⎤
⎦⊕

⎡
⎣ c 0

0 d

⎤
⎦,

(c)

⎡
⎣ a b

0 a

⎤
⎦⊕

⎡
⎣ c d

0 c

⎤
⎦,

(d)

⎡
⎣ a b

0 a

⎤
⎦⊕ B, where B is a 2-by-2matrix with G(B) ⊆ {z ∈ C : |z − a| � |b|/2},

(e)

⎡
⎢⎢⎢⎢⎢⎢⎣

λ 0 a b

λ c d

λ 0

λ

⎤
⎥⎥⎥⎥⎥⎥⎦ with |a| = |d| �= 0, |b| = |c| �= 0, and arg(ad) = arg(bc), and
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(f)

⎡
⎢⎢⎢⎢⎢⎢⎣

λ a b 0

λ 0 c

λ d

λ

⎤
⎥⎥⎥⎥⎥⎥⎦ with |a| = |d| �= 0, |b| = |c| �= 0, and arg(ac) = arg(bd).

Proof. In view of Theorem4.4 and Proposition 4.5, we need only prove, for a 4-by-4matrix Awith Re A

permutationally irreducible, that W(A) = G(A) if and only if A is permutationally similar to a matrix

of the form (e) or (f). Assume that W(A) = G(A), Re A is permutationally irreducible, and trA = 0.

Then, by Theorem 4.2(c), there are a permutation matrix P and a diagonal unitary matrix U such that

B ≡ (PU)∗A(PU) = [bij]4i,j=1 is of the form (5) with bii = 0 for all i, bij � 0 for i �= j and gi(B)’s

constant. It is easily seen that if

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 a

0 b

0 c

0

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎢⎣

0 a

0 0 b c

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 a

0 0 b

0 c

0

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎢⎣

0 a b c

0 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ , or

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 a

0 0 0 b

0 0 0 c

0

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

then the constancy of the gi(B)’s implies B = 0, contradicting the permutational irreducibility of Re B.

This leaves only the cases

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 a b

0 0 c d

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ or

⎡
⎢⎢⎢⎢⎢⎢⎣

0 a b 0

0 0 c

0 0 d

0

⎤
⎥⎥⎥⎥⎥⎥⎦ .

In either one, the constancy of the gi(B)’s yields that a = d � 0 and b = c � 0. If any of

them is zero, then Re B, and hence Re A, is permutationally reducible, again a contradiction. Let U =
diag

(
eiθ1 , eiθ2 , eiθ3, eiθ4

)
with real θj ’s. Then

PTAP = UBU∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 aei(θ1−θ3) bei(θ1−θ4)

0 0 bei(θ2−θ3) aei(θ2−θ4)

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ or

⎡
⎢⎢⎢⎢⎢⎢⎣

0 aei(θ1−θ2) bei(θ1−θ3) 0

0 0 bei(θ2−θ4)

0 aei(θ3−θ4)

0

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

which shows that A is permutationally similar to a matrix of the form (e) or (f).

Conversely, if A is of the form (e) with λ = 0, then, letting U = diag (eiθ1 , eiθ2, eiθ3 , eiθ4), where

θ1 = 0, θ2 = arg a − arg c = arg b − arg d, θ3 = arg a and θ4 = arg b, we have

UAU∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 |a| |b|
0 0 |c| |d|

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ .
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ThusW(A) = G(A)byTheorem4.2. Similarly, ifA is of the form(f)withλ = 0, thenU = diag (eiθ1 , eiθ2 ,
eiθ3 , eiθ4), where θ1 = 0, θ2 = arg a, θ3 = arg b and θ4 = arg a + arg c = arg b + arg d, is such that

UAU∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 |a| |b| 0

0 |c|
0 |d|

0

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Again, we haveW(A) = G(A) by Theorem 4.2. �

Our final example shows that, in the situation of Theorem 4.2, condition (c) there cannot be relaxed

to requiring that A be permutationally similar to a matrix B of the form (5) with gi(B)’s constant.

Example 4.7. Let

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 1

0 0 1 −1

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Then G(A) = {z ∈ C : |z| � 1}. Since A2 = 0 and ‖
⎡
⎣ 1 1

1 −1

⎤
⎦ ‖ = √

2, we have W(A) = {z ∈ C :

|z| �
√

2/2} (see [15, Theorem 2.1]). ThusW(A) � G(A). A similar example of the form in Proposition

4.6(f) can also be constructed to this effect.

We conclude this paper by asking the following questions:

(a) Is it true thatW(A) � G′(A) for

A =

⎡
⎢⎢⎢⎣
1 b

1 c

1

⎤
⎥⎥⎥⎦

with b, c > 0 and b �= c? If this is the case, then it yields, together with Proposition 3.6, a

complete characterization of 3-by-3 matrices A satisfyingW(A) = G′(A).
(b) Does the n-by-n Jordan block

Jn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1

0 1

. . .
. . .

. . . 1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

satisfy W(Jn) = G′(Jn) for n � 4? Note that this is indeed the case for n = 2 (Proposition 3.5)

and n = 3 (Proposition 3.6).
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(c) Is there some general criterion of A for which W(A) = G′(A) holds, just as Theorems 4.2 and

4.4 for W(A) = G(A)? In particular, is there a complete characterization for 4-by-4 matrices

satisfyingW(A) = G′(A)?
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