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1. Introduction
For an n-by-n matrix A, let W(A) be its numerical range
W(A) = {{Ax,x) : x € C", ||x| = 1},
where (-, -) and || - || denote the standard inner product and its associated norm in C", respectively. If
A= [aij]}"fj:1, then, for eachi, 1 <i < n, let
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1
gi(A) = 3 > (lag| + lagi])
1<j<n
JF#i
and
GA) ={ze€C:|z—ail < g(A},

and let

i=1

A
n
G(A) = (U c,~(A)> .
the convex hull of UL, Ci(A), and
G'(A) = [{G(U*AU) : U n-by-n unitary matrix}.

The Ci(A)’s, G(A) and G’ (A) are called the Gersgorin discs, GerSgorin region and unitarily reduced Gersgorin
region of A, respectively. The purpose of this paper is to discuss when W(A) and G(A) (respectively,
G'(A)) are equal.

The set |J; Gi(A) was first proposed by S. GerSgorin [4] in 1931 to serve as an inclusion region for the
eigenvalues of A. Its relation to W (A) was considered by C. R. Johnson [9]; he proved that W(A) € G(A)
is always true. Note that both W(A) and G'(A) are invariant under the unitary similarity of A while
G(A), depending on the entries of A, is not. From these, we easily obtain W(A) € G'(A). The main
concern now is when the extremum cases W (A) = G(A) and W(A) = G'(A) hold.

In Section 2 below, we first prove a decomposition theorem (Theorem 2.4) for a matrix A with
G(A) contained in the closed half-plane H = {z € C : Rez > 0} and with W(A) N dH nonempty.
It says that in this case A is permutationally similar to a direct sum Ay & - - - & Ay @ B, where each
Ak, 1 < k < ¢, is such that Re Ay, is permutationally irreducible, W (A;) N 0H is a singleton together
with many other nice properties, and B satisfies W(B) N dH = . This will be the main tool in proving
conditions for W(A) = G'(A) and W(A) = G(A) in Sections 3 and 4, respectively. Using this, we derive
in Proposition 2.6 that if Re A is permutationally irreducible, then W (A) N dG(A) is contained in the
circle with center (1/n) trA and radius (3_}_; gi(A)) /n. In Section 3, we consider the equality of W (A)
and G'(A). Among other things, we show that (1) if W(A) = G'(A), then dW (A) consists of circular
arcs and line segments and, moreover, if A is unitarily irreducible, then W (A) must be a circular disc
(Theorem 3.4), (2) a 2-by-2 matrix A satisfies W(A) = G'(A) if and only if it is unitarily similar to

0b
W(A) = G'(A), then it is unitarily similar to

a0 ab
|: } or |: :| for some scalars a and b (Proposition 3.5), and (3) if a 3-by-3 matrix A satisfies
0a

a ab ab
(1) b |, (i) |0a |, or (iii) acl,

for some a, b and c, and, conversely, if A is of one of these forms with |b| = |c| in (iii), then it satisfies
W(A) = G'(A) (Proposition 3.6). Finally, in Section 4, we study the property W(A) = G(A). The main
results here (Theorems 4.2 and 4.4) say that an n-by-n matrix A satisfies W(A) = G(A) if and only if it
is permutationally similar to a direct sumD @ A; @ - - - ® Ay @ B, where D is a diagonal matrix, each
Ar, 1 < k < £, is such that Re Ay is permutationally irreducible and W (Ay) is a circular disc which
coincides with all the GerSgorin discs Cj(Ax), and B satisfies G(B) C W(D@D A1 B - - - D A¢). In this case,
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if Re A is permutationally irreducible, then n must be even. Complete characterizations for 2-by-2 and
4-by-4 matrices A with W(A) = G(A) are obtained (Propositions 4.5 and 4.6).

For any nonzero complex number z, its argument, arg z, is the unique number 6 in [0, 27) such
that z = |z|e‘9. The trace of a matrix A is denoted by trA, and its real part (A + A*) /2 and imaginary
part (A — A*) /(2i) by Re A and Im A, respectively. AT is the transpose of A. We use diag (a1, . . ., a,)
to denote the n-by-n diagonal matrix with eigenvalues ay, ..., a,. A permutation matrix is one each
of whose rows and columns contains exactly one 1 and whose all other entries are 0. Two n-by-n
matrices A and B are said to be permutationally similar if there is a permutation matrix P such that
PTAP = B; they are unitarily similar if U*AU = B for some unitary matrix U. In this paper, two notions
of irreducibility will be used. An n-by-n matrix A is permutationally reducible if eithern = 1and A = [0]

B C
orn > 2 and there is an n-by-n permutation matrix P such that PTAP is of the form |: } , where B
oD

and D are square matrices; otherwise, A is permutationally irreducible. It is obvious that A = [aij-]lf'd-=1
is permutationally irreducible if and only if for any i and j with 1 < i #% j < n, there are distinct
indices ro = i,r1,...,r¢—1,7¢ = jsuchthatforalls,1 < s < ¢, ar_,;, is nonzero. A is unitarily
reducible if it is unitarily similar to a direct sum of other matrices; otherwise, it is unitarily irreducible.

01
Note that these two notions are different. For example, [ :| is permutationally irreducible but
10

unitarily reducible, while 2 :) is unitarily irreducible but permutationally reducible. It is known
that every matrix is permutationally similar (respectively, unitarily similar) to a direct sum of matrices
with permutationally irreducible real parts (respectively, a direct sum of unitarily irreducible matrices),
and the summands are unique up to permutations and permutational similarities (respectively, unitary
similarities). In particular, the real part of a unitarily irreducible matrix must be permutationally
irreducible. The above permutationally irreducible assertion can be proven by an easy graph-theoretic
argument while the unitarily irreducible assertion was proven in [2, Corollary 3.2]. The former notion
will be mostly referred to in Sections 2 and 4 while the latter in Section 3.

The general references for this paper are the two monographs [7,8] by Horn and Johnson. In partic-
ular, [7, Sections 6.1 and 6.2] contains some discussions on GerSgorin discs, [8, Chapter 1] on numerical
ranges, and [8, p. 39, Problem 4] specifically asks whether W(A) = G'(A) is true. Other references for
the numerical range are [5] and [6, Chapter 22]. [9] contains results on numerical ranges of 3-by-3
matrices, which will be used in Section 3. In the literature, there are papers discussing the containment
relations between (generalized) GerSgorin regions and (generalized) numerical ranges. It seems that,
other than [8, p. 39, Problem 4] and [17, Question 2], none has touched on their equality.

2. Nonemptiness of W(A) N dG(A)

We start by aresult relating the attaining vector for a point of W (A) to the entries of A.IfA = [aij]?, =1

and K = {ki, ..., kp} € {1,2,...,n} with1 < k; < --- <k, < n, we let AII denote the p-by-p
matrix [a 17 j—;.-

Proposition 2.1. LetA = [aij]gjz1 and let z = (Ax, x) be a point in W(A), where x = [x; ...x,]" isa

unit vector in C". If K = {i : x; % 0} = {k1, ..., kp}, where 1 < ky < --- <k, < n, then
4 2 4 2 K
2= g Pa] < X Ix e (A1) (1)
i=1 i=1

Moreover, (1) is an equality if and only if the following two conditions hold:
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@Ifz = XilxlPag. then AK1 = diag (i, ..., ai,k,); otherwise, arg (ai kX Xe;) =

arg (z — 2 |xk |2akiki) = 0 for all ks # k; with ay, 7 0.
(b) |xk,| = |xk,| for all ks # k¢ with ay, or ay,k, nonzero.

In particular, if (1) is an equality and ay, # O for some ks # ki, then x, = xkrei(gsf_e), where O =
arg Ak, -
Proof. Since
n 14
— 2 —
2= aix%i = Y aglx*+ D Qiki Xl Xk; 5
ij=1 i=1 1<IA<p

we have

= Z ak,‘ijijki
I<iA<p

p
2
z— z |Xk,'| akik,‘
i=1

N

1
2 |akikj||xkj||xki| = 5 2 |ij||xki|(|akikj| + |akjki|) (2)
i#] i#]

1

— > (x> + 13k 1) (g | + lagge, ) 3)
i#]

> %k P kg | + g )

i

=3 b (A1)

i=1

N

1
2

This proves (1). Moreover, (1) becomes an equality if and only if the inequalities in (2) and (3) are
equalities, which are equivalent to (a) and (b).
Finally, if (1) is an equality and ayk, 7 O for some ks # k;, then

O, — — i0
|k, 1€ X, Ko, = Qe Xiee Kby = | Qe || Xk, | Xk €

— |ak5kt |xktefx(argxk,)%ez(arg Xks) 610 ,

where the second equality is ensured by (a). Since a,, Xk, and x, are all nonzero, we obtain el (—=0)
= ¢/@T8x—al8xk) Together with (b), this yields x;, = xi, e/® =% as asserted. [

Note that if Re A is permutationally irreducible, then Proposition 2.1(b) is equivalent to
() |xi| =1//p foralli,1 <i<p.

Indeed, under the irreducibility of ReA, for any
ro = i,1,...,re—1, ¢ = jsuch that for all s, 1
Hence Proposition 2.1(b) implies that

1 < i # j < p, there are distinct indices
< s < ¢, either i,k OF Gy is nonzero.

Ts

x| = X, | = =[xk, | =[xl

This obviously yields (b’). That (b") implies (b) is trivial.
In the following, we will frequently use some easily derived properties of G(A), which we gather
together in the next lemma.
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Lemma 2.2. IfAis an n-by-n matrix, then

(a) G(aA + bl,) = aG(A) + b for any scalars a and b,
(b) G(A) = G(U*AU) for any diagonal unitary matrix U, and
(c) G(A) D G(B) for any principal submatrix B of A.

We now apply Proposition 2.1 to derive some necessary conditions for the nonemptiness of W (A) N
dG(A).
Proposition 2.3. LetA = [a,-j]lfsz1 be such that G(A) CH = {z € C: Rez > 0} and W(A) N 0H # @.
Ifz = (Ax, x) is in W(A) N dH, where x = [x;...X,]" is a unit vector in C", K = {i : x; # 0} =
{ki, ..., kp}with1 <k; <--- <k, <nand] = {j : G(A) N IH # @}, then the following hold:

(@) K< J.
(b) Reayk; = gk (A) foralli, 1 < i< p.
(©) |z = 2 Ik Pang| = X0y I P (A).
(d) Imz = 3P, x| Im ag,.
(e) IfRe ay, = 0 foralli, then AK] = diag (akky» - - - » akpkp). Otherwise, if Re ay,,; > 0 for somei, then
forallks # ke withayy, # 0,wehavex,, = —xi,e/(@8%sk) and, inparticular, arg ay, = arg g,
for ayk, , ak,k, 7 O.
(f) g (A[K]) =g (ReA[K]) = g1, (A) = gk, (ReA) foralli, 1 <i < p.
(g) Ais permutationally similar to A1 @ B for some (n — p)-by-(n — p) matrix B.
Proof. Since G(A) C H, we have Reaj; > gj(A) forallj, 1 <j < n,and Re g;; = g;j(A) ifand only if j is
in].

(a) Toprove K C J,assume to the contrary that thereisa kg in K \ J. The inequality (1) in Proposition
2.1 says that

p
g Z |Xk,' |2gk,‘ (A)

i=1

p
2
z— z |Xk,'| Qje;k;
i=1
Hence

p p
0=Rez>Re (Z |xk,-|2ak,.k,.> — > |xk I8 (A)
i=1

i=1

p
= > i 1> (Re g, — 8k (A)) > [xky 1 (Re agory — 8o (A)) > 0
i=1

since kg € J\ K implies thatxy, # 0and Re ay,k, > &k, (A). This contradiction yields thatK C J.
(b) Since each k;, 1 < i < p, in K is in J by (a), we have Ci;(A) N 0H # ¢ and hence Re ay
=gk (A) = 0.
(c) From (b), we derive that

=

p
Re (z = XK Izak,k,)‘ (4)

p
2
zZ— z |xki| Ak
i=1 i=1

p p p
= > xiPRe g, = D [xi e (A) > D Ixi, e (A7)

i=1 i=1 i=1
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Combined with inequality (1), this yields equalities throughout. In particular, we have

p
= > |xi|°gi; (A).

i=1

p
2
2= 2 Il ag
i=1

(d) As all the inequalities in (4) are equalities, we deduce from its first one that
Imz =3 [x]° Im ag,

(e) IfRe ay,;, = Oforalli, thenz = > |x, |2¢1k,-k,- by (d) and hence AKXl = diag (@kykeys -+ - » Aiyky) DY
Proposition2.1(a). On the other hand, ifRe ay,x, > Oforsomei, thenz # > ; |xki|2akik,. by (4).Note
thatz—3; |xk|*ak, is real and equals — 3; |xy, |2 Re ay,k, by (d). Thus arg (z — > %k, |2ak,.k,.) =
7. Therefore, Proposition 2.1(a) ensures that xy, = —xy, e/(@/8 %ske) forany ks # k; withayy, 7 0.

(f) Sincegy, (A) = gi(A¥) foralli, 1 < i < p,theequalitiesin (4)yield that they are actually equal to
each other. To prove g; (A[K]) =g (Re A[K]), we need show that |ax, | 4 |ak.k, | = |ak.k, + Tick, |
for all ks # k.. If one of ay ., and a,k, is zero, then this is obvious; otherwise, this follows from
arg ayk, = arg ik, in (e). Finally, from

g (ReA) < g, (A) = gi (A1) = gi (ReAlM)) < g, (Re A),

where the two equalities have just been proven, we infer that gi, (A) = g, (Re A) as asserted.
(g) Since g; (A[K]) = g, (A) for 1 < i < p from (f), we obtain ai; = aj, = 0forallj ¢ K. This
yields the permutational similarity of A and A/X] & B for some B. O

Geometrically, condition (b) of the preceding proposition says that all the Ger3gorin discs Cy, (A),
1 < i < p, are tangent to the y-axis dH. Moreover, if Re A is permutationally irreducible, then |x;,| =
1//p for all i (by condition (b’) after Proposition 2.1), and hence (d) says that the “height” of z on H
is an average of those of the centers of the Cy, (A)’s.

We are now ready for the main result of this section, a decomposition theorem for A with G(A) C H
and W(A) N dH # (. It refines Proposition 2.3.

Theorem 2.4. Let A = [aij]?’jz1 be such that G(A) C H={z € C: Rez > 0} and W(A) N dH # {.
Then A is permutationally similar to a matrix of the form Ay @ - - - @ Ay @ B, where £ = dim ker(Re A),
W(B) N 0H = ¥, and foreach k, 1 < k < £, Ay = [ai(jk)]ﬂ’jzl is a matrix of size ny, which satisfies the
following conditions:

(a) Re a,-(ik) = gi(Ay) = gi(ReAy) foralli, 1 < k < L.

(b) Re Ay is permutationally irreducible.

(c) If z = (Agx, x) is in W(Agx) N o0H, where x = [xq .. .xnk]T is a unit vector in C™, then Imz =

(Z?Ll Im af,-k)) /ny and |xi| = 1/./ny for alli. In particular, W (A,) N 0H is a singleton.
. (k)
(d) Ifng > 1, thenRe al-(ik) > 0 foralliand xs = —xtel(arga“ )for all s # t with agf) #0.
(e) dimker(ReAy) = 1.
. . ng
(f) IfU = diag (e'(arg’“), e e'(arg"”k)) and U*AU = [bi(jk)]i,;:f then Re bl-(ik) > 0 foralliand

by < 0foralli # |
Proof. Letz' = (Ax',x') be a point in W(A) N 9H, where ¥’ = [x] ...x,]" is a unit vector in C", and

letK ={i:x #0} = {kq, ..., kp} with1 < k; < --- < k, < n. We may choose z’ and X to be such
that p is the smallest. Then, by Proposition 2.3(g), A is permutationally similar to A1 & B for some
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p)-by-(n — p) matrix By. Let A; = AKl = [ l(jl)l,j 1.We now show that A; satisfies the asserted

properties (a) ~ (f) with n; there replaced by p.

(a)
(b)

This follows from Proposition 2.3(b) and (f).
Assume that Re A is permutationally reducible. Using Proposition 2.3(e), we deduce that A,
is permutationally similar to, say, A1) @ A2l where {K;, K>} is a partition of K. Since 2/ =

(A1x",X"), where x” = [x] .. .xg]T is a unit vector in CP given by x{’ = x for 1 < i < p,

A
we have 7 € W(A;) N dH. Furthermore, since W(A;) = (W (A[Kl]) uUw (A[KZ])) , we may
assume that W (A[m)ﬂaH #O.IK = {r1,...,rg}with1 <r; < --- < ry < p,thenthereis

aunitvectoru = [us ... ug]" in C7 such that (A[Kl]u, u> isinW(AK ) NaH. Letv = [vq ... v,]T
be given by

u; ifj =k, forsomei, 1 <i < q,
Vi =
j .

0 otherwise.

Then v is a unit vector in C" and (Av, v) = (AlK1ly, u) is in W(A) N 9H. Since the cardinality of
{j : vj # 0} is at most q, which is in turn strictly less than p, this contradicts our choice of p in
the first place. Hence Re A is indeed permutationally irreducible.

If z = (A1x, x) is any point in W (A1) N 0H, where x = [x;.. .xp]T is a unit vector in CP,
then the x;’s must all be nonzero. This is because if some of the x;'s are zero, then Proposition
2.3(g) applied to A; gives the permutational reducibility of Re A, which contradicts (b). By
Propositions 2.3(c) and 2.1(b’), we have |x;| = 1//p for all j. Hence Proposition 2.3(d) yields

Imz = (Zp 1 Im am) /p as required. In particular, this shows that z is unique and thus z = 2/
and W (A7) N 0H is a singleton.
Ifp > 1andRe a(l) = 0 for some i, then (a) implies that g;(Re A;) = 0. This would result in the

(1)

permutational reducibility of Re Aj, contradicting (b). Hence we must have Re a;; © > 0 for all i.

Proposition 2.3(e) then implies that x; = —xe (argast ) for all s # t with a(l) # 0.

Since Re A7 is permutationally irreducible by (b), for eachj, 1 < j < p, there are distinct indices

ro=j,r1,...,Tq—1,Tq = 1such that either aﬁs)lrs or aﬁslr)s , isnonzero foralls, 1 < s < q. Let

. 1
o (i) el 20,
P — ] . ]
= s (o) w0

for 1<{s<(q. Note thatifboth ars 1o and arsrs_ arenonzero, thenarg ( aﬁs )m) = arg (—agr)S ])

by Proposition 2.3(e), and thus the 91-5 above is well-defined. Moreover, when ars s 7 0, we

i(argal, ) . .
have x,. , = —x;.e s=1's) by Proposition 2.3(e) again. Thus
s—1 s
; (1) )
ar s
Xr | = erel(ﬂ+ gars,lrs) = x, 619] )

Similarly, the same is true for arsrs , #0.Foreachj,1 <j<p,letf; =1, 6. Then

it} i0]+67) _ .

(s N :
i . 67 .
Xj = XrO = Xl']e ] = sze 25*1 J) 191_

. :xrqe( = xq€

. . T
Thus x = x4 [1 etz eleﬁ} and hence dim ker(Re A;) = 1.
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T

(f) IfA] = U*AU = [b,-(j])]szl andy =|1//p...1/4/p | ,thenUy = xand
. - g =
p

(Aly,y) = (U*A Uy, y) = (Aix,x) =z =17

Note that G(A]) € H and z’ is in W(A}) N dH. Thus Proposition 2.3(e) applied to y yields that

. (1)
1/p=— (1/@) e'(argb“ ) for any s # t with bﬁ? # 0. Hence bs(tl) < Ofors # t. On the

other hand, since bs(s]) = a§}), we have Re bg) =Re a§}) =gs(A1) > O0by (a).

Note that if W(B;) N 0H = @, then we are done; otherwise, apply the above arguments to B,
and proceed repeatedly. [

In the remaining part of this section, we use the preceding theorem to derive properties of W (A) N
dG(A) and G(A). For convenience, we restrict ourselves to matrices with Re A permutationally irre-
ducible.

Proposition 2.5. LetA = [a,j]}fj:1 be such that Re A is permutationally irreducible.

(a) IfW(A) N dG(A) consists of two points, then the a;;’s are on a line and G(A) is the convex hull of two
circular discs.

(b) IfW(A) N dG(A) consists of at least three points, then the Gersgorin discs Cj(A)’s all coincide with
each other and thus a1 = ayy = - - - = apy and G(A) is a circular disc.

Proof. (a) Assume that W(A) N dG(A) = {z1,22} (z1 # z2). Let Lj, j = 1,2, be a supporting
line of G(A) at z;. After a translation and rotation, we may assume that L; is the y-axis and
G(A) C {z € C : Rez > 0}. Thus Theorem 2.4 is applicable. Condition (a) there says that
each Gersgorin disc Ci(A), 1 < i < n, is tangent to both L;’s. Thus their centers a;; are all on
the bisecting line of L; and Ly, and G(A) is the convex hull of the two Gersgorin discs which are
farthest apart.

(b) Assume that z;, z, and z3 are three distinct points in W(A) N 0G(A). Let Lj, 1 < j < 3,bea
supporting line of G(A) at z;. As above, each Cj(A), 1 < i < n, is tangent to all the L;’s. Note
that the L;’s are distinct. Indeed, if Ly = L, = L, then L contains two distinct points z; and z,
of W(A) N dG(A). This contradicts the assertion in Theorem 2.4(c) that W (A) N L is a singleton.
On the other hand, since the L;’s are all supporting lines of the convex set G(A), they cannot be
all parallel to one another nor can they intersect at one single point. Thus the centers a;; of the
Gi(A)'s,1 < i < n, are all on all three bisecting lines of the L;s. It follows that the C;(A)’s, and,
in particular, their centers aj; all coincide and hence G(A) = C;(A) is a circular disc. (]

The next two propositions give more information on the points in W(A) N dG(A).

Proposition 2.6. Let A = [a,j]}fj:l (n = 2) be such that Re A is permutationally irreducible. Then
W (A) N dG(A) is contained in the circle with center (1/n) trA and radius (3}, gi(A))/n.

Proof. Let z = (Ax, x) be any point in W(A) N dG(A), where x = [x; . ..x,]" is a unit vector in C",
and let L be a supporting line of G(A) at z. After a translation and rotation, we may assume that L is the
y-axis and G(A) C {z € C : Rez > 0}. Applying Theorem 2.4(c) and (f), we may further assume that
xj = 1/4/nforalljand a; < 0 foralli # j. Hence

1 1 1
zZ= z a;ixiX; = —trA + — Z aj.
ij=1 n M1 <itign
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It follows that

1
z— —trA| =
n

_*Zalj Zgi(A)-

M iz
Thus z is indeed on the asserted circle. [

Note that, in the above proof, the asserted circle is also tangent to L. This is because
1 1
Re ( trA) Z Reai = — D gi(A)
n -,
1

by Theorem 2.4(a).

Proposition 2.7. LetA = [a,-j]}fj:1 be such that Re A is permutationally irreducible. If there are distinct
indices kj, 1 < j < p, with 1 < k;j < n for all j so that some permutation k]f, 1 < j < p, of them satisfies
k]f # k;j for all j and Apyky > -+ + > Akl £ 0, then W(A) N dG(A) consists of at most p points, and these

points are some of the vertices of a regular p-gon inscribed on the circle with center (1/n) trA and radius
(il &) /n.

Proof. Let z = (Ax,x) and Z = (Ay, y) be points in W(A) N dG(A), where x = [x;...x,;]’ and
y = [y1...yn]" are unit vectors in C", and let L be a supporting line of G(A) at z’. As before, we may
assume thatL is the y-axis, G(A) € {z € C : Rez > 0},y; = 1/+/nforallj, and aj < Oforalli # j.
On the other hand, after a translation and a rotation by 8 (0 < 6 < 2m), we also have, by Theorem
2.4(c)and (d), |x¢| = 1/4/n for all t and

X, = —x, el OHAT8a) _ y o6

forall s # t with ase 7 0. In particular, this is true for all x,’s and x;’s. Hence
J

p p p
[Ts, - (H) o’ = (H)
j=1 =1 i=1

from which we deduce that e?? = 1. Thus aXjX; = (l/n)aijeie for all i # j, and therefore
1 n 1M eie
Z——tA= D ax¥— - D aGi=— Y. G
n ij=1 nis N <izign
and, similarly,
1 12 1
7 - —trA = Z ayiyi — EZa,-i = > gy

i,j=1 i=1 1<i#j<n

It follows that z — (1/n) trA = (' — (1/n) trA)e and

1
:_E Zau Zgl(A) O
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3. Equality of W(A) and G’ (A)

In this section, we consider matrices A for which W(A) and G'(A) are equal, obtain some neces-
sary/sufficient conditions, and give complete characterizations when A is of size 2. In contrast, we
remark that if the unitary similarity of A in the definition of G’ (A) is replaced by similarity, then the
intersection is much easier to characterize: ({G(X~'AX) : X invertible} is equal to the convex hull of
the spectrum of A (see [7, p. 351, Problem 2] or [8, p. 60, Problem 30]). This can be proven by invoking
the Jordan canonical form of A, which is in turn similar to a direct sum of matrices of the form

ae

a .

with arbitrarily small positive €. Note also that the containment W (A) C G'(A) is always true (cf. [9]).
We start with the following lemma.

Lemma 3.1. IfA is an n-by-n matrix with G’ (A) contained in the closed right half-plane H = {z € C :
Rez > 0}, then there is an n-by-n unitary matrix U such that G(U*AU) is contained in H.

Note that, in general, it may happen that a sequence of compact convex sets has its intersection
contained in H, but none of these sets is in H. One example is given by the closed discs {z € C :
|z— 1| <14 (1/n)},n > 1.Lemma 3.1 says that this is not the case for G'(A).

Proof of Lemma 3.1. For each t, = —1/k, k > 1, our assumption of G'(A) € H implies that there
is an n-by-n unitary matrix Uy such that ty is not in G (U,’fAUk). Let Ly and My, be two supporting lines
of G (UjAUi) which pass through ti, and let Hy denote the closed sector in the open left half-plane
{z € C : Rez < 0} formed by L, and Mj with vertex t. The convexity of G (U,’fAUk) implies that
G (UyAU) N Hg = @ (cf. Figure 1). Note that there is a subsequence {Uy; }]ﬁ] which converges to a

unitary matrix U. Then G (Uf; AUkj) converges to G (U*AU) in the Hausdorff metric as j approaches
infinity. We infer that G (UfAU) N Hy = @ for all k > 1. Thus

oo
G (U*AU) "M = G (U*AU) N (U Hk> =0,
k=1

that is, G (U*AU) C H as asserted. [J

Recall that the Hausdorff metric h is defined, for nonempty compact subsets A1 and A, of the plane,
by

h(A1, Ay) = max{ max min |z; — z3|, max min |z; — z3]}.
Z]EA] ZzEAz ZzEAz Z]EA]

It can be proven that if {A;}2; is a sequence of n-by-n matrices which converges to A in norm, then
G(Ayg) converges to G(A) in the Hausdorff metric.

To prepare for the next theorem, we state some general facts concerning the support function
of a compact convex subset of the complex plane. Recall that if A is a nonempty compact convex
subset of C, then its support function d(0) is, for each real 6, the signed distance from the origin to
the supporting line Ly of A which is perpendicular to the ray Ry from the origin forming angle 0
from the positive x-axis (cf. Figure 2). Thus Ly is given by the equation xcosf + ysin6 = d(0),
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Fig. 1. Disjointness of G(U;AU) and Hy.

Y

=]

Fig. 2. Support function d(@) of A.

d(0) = max{Re (e™z) : z € A}, and A = Nycr{z € C : Re (e72) < d()). If the origin is in A
(respectively, in the interior of A), then d(6) > 0 (respectively, d(8) > 0) for all 6. One reference for
the support function is [16, Part V, Section A].

Lemma 3.2. Let A, d(0) and Ly be given as above. Then

(a) d(0) is both left and right differentiable for all 6,

(b) d(0) is continuously differentiable for all but a countable number of values of 6,

(c) d is differentiable at 6 if and only if Ly N d A is a singleton, in which case Ly N d A consists of the
point (d(9) + id'(9))e', and

(d) disnotdifferentiable at 6 if and only if d A contains a line segment on Ly, in which case the endpoints
of the line segment are (d(0) + id/, 6))e'.

Proof. (a)follows form [16, Theorem 10.5] and (b) from [16, Corollary 10.3] or [1, Section 1.4, Corollary
3.2]. We now prove that Ly N9 A is the line segment with endpoints (d(0) +id’, (0))e? . (c)and (d) will
then follow from this easily. Indeed, after a rotation of Ry by the angle —0, we may assume that A has
avertical supporting line L = Ly given by the equation x = d(0) and the corresponding perpendicular
ray Ry (cf. Figure 3). We check that the lowest point of L N d A is d(0) + id”_(0). Indeed, from Figure 3
we have

d(a) —d(0 ay coso — (ay + by tan(—a
7o tim @O (du + by tan(—a)
a—0" o a—>0" o
. cosa — 1 tan .
= lim (aa~7+ba~ )=O+ lim by, =c.
a—0— o o a—>0"

Similarly, the highest point of L N 0 A is d(0) + id’Jr (0). This proves our assertion and hence also (c)
and (d). O

The next lemma gives a condition for a part of the boundary of a compact convex set to be a circular
arc.
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Y L=1Lgy
AN

O 4
d(a) ]

Fig. 3. Proof for lowest point of L N 9 A.

Lemma 3.3.

(a) Let A be a nonempty compact convex subset of the plane, and let « be an arcwise connected subset
of dA. Then « is a circular arc if and only if there is a point p in C such that, for any q in «, the
supporting line Ly of A at q is perpendicular to the line L,q connecting p and q.

(b) Let A be an n-by-n matrix and let 0W (A) be composed of the algebraic arcs o1, . .., ay. Then, for
any oy, 1 < k < m, and any point p in C, either ay, is a circular arc with center p or there are only
finitely many points q in oy with supporting line Ly of W (A) at q perpendicular to Lp,.

Proof.

(a) If @ is a circular arc, then with p the center of o we have the asserted perpendicular property.
For the converse, we may assume that p is the origin. Let d(€) be the support function of A and
let (01, 6,) correspond to the arc . Our assumption on « implies that it cannot contain any line
segment. Hence d(0) is differentiable for all f in (01, 92) by Lemma 3.2(c) or (d). Thus each point
q of « is given by both (d(0) + id’ (9))e‘9 and d(t9)e . Their equality then yields thatd’(§) = 0
or d(0) is a constant for all 6 in (61, 6,). Thus « is a circular arc.

Note that, by [11, Theorem 10], the boundary of the numerical range of a matrix is always
composed of finitely many algebraic curves. Let oy, 1 < k < m, be given by

Ry = Y adlxy =o,

0<i+j<L

—
o
=

where f;, is an irreducible polynomial of degree £j. An implicit differentiation of f; with respect
to x yields

Za(k) (ix’_ly’ —|—jx’y’_1—y) =0.
dx

Let p = (xg, ¥o) and ¢ = (X1, ¥1). The perpendicular condition says that

Y %1y )_sk(xl»YI) 1
—(x1,y1) = = =5
dx (X1, y1) o

where s (x,y) = — X a; aixi—1y and r(x, y) = Zl]a(k)]x’y’ 1 that is, (x,y1) is a zero of
the polynomial

g(x,y) = sk(x, )y — yo) + re(x, y) (x — xo)

of degree /. If fi and g have a common factor, then the irreducibility of f; implies that f; is a
factor of gi. Thus all the points of oy have the perpendicular property. (a) then implies that oy is
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a circular arc with center p. On the other hand, if f; and g have no common factor, then Bézout's
theorem [12, Theorem 3.9] implies that the number of their common zeros is at most Kﬁ. In this

case, there are at most Eﬁ many points q in o with Ly perpendicular to L,q. O

We are now ready to prove the main result of this section. It gives the possible shape of the numerical
range W (A) of Awhenitis equal to G’ (A). Note that though the boundary of G(A) consists of circular arcs
and line segments, that of G’ (A) can in general be quite arbitrary as witness the fact that any nonempty
convex compact subset of the plane is the intersection of closed polygonal regions (respectively, closed
circular discs) containing it.

Theorem 3.4. Let A be an n-by-n matrix with W(A) = G (A).

(a) IfAis nonscalar, then dW (A) is composed of finitely many circular arcs and line segments.
(b) IfAis unitarily irreducible, then W (A) is a circular disc centered at (1/n)trA and A is unitarily similar

to a matrix B = [bj] of the form

n
ij=1

i (%U’A) I By
(2A) by B,

- Be
L (% trA) Iy |
with b > 0 foralli # j.
Proof.
(a) Assume that 0W(A) is composed of the algebraic curves «, . . ., oy,. Let A be unitarily similar

(b

=

to Ay @ - - - ® Ay, where each A;, 1 < j < r, is unitarily irreducible (cf. [2, Corollary 3.2]). For
each ordered sequence of indices 1 < iy < --- < is < r,let B = A;; @ --- @ A, and let
pi = (1/m;) trB;, where m; is the size of B;. Assume that some ; is not a circular arc nor a line
segment. Then, by Lemma 3.3 (b), for each p; there are only finitely many points g in & such that
the supporting line L; of W(A) at q is perpendicular to Ly,q, the line connecting p; and q. Since «;
contains infinitely many points, by the pigeonhole principle, there is a point qg in «; which is not
equal to any of such ¢’s, that is, the supporting line Ly, of W (A) at qg is not perpendicular to Ly, ¢,
for all the p;’s. Let H be the closed half-plane with boundary Lq, which contains W(A) = G (A).
By Lemma 3.1, there is a unitary matrix U such that G(U*AU) is contained in H. Now apply
Theorem 2.4 to infer that U*AU is permutationally similar to a matrix of the form A} @- - - ®A; BB,
where AL, 1 < k < t,is an ng-by-ny matrix with Re AL permutationally irreducible, W(A;() NLg,
is the singleton {qo} (because «; is not a line segment) and the line perpendicular to Ly, at qo
passes through the point (1/ nk)trA§<. Since each Af< (and also B) is unitarily similar to a direct
sum of unitarily irreducible matrices and the unitarily irreducible decomposition is unique (up
to the permutations and unitary similarities of the summands) by [2, Theorem 3.1], we obtain
the unitary similarity of each A}, to some B;. Hence the line perpendicular to Ly, at qo passes
through p; = (1/my;) trB;, that is, Ly, is perpendicular to Ly,q,, contradicting our choice of qq. It
follows that each «; is either a circular arc or a line segment.

In this case, for any point go on dW (A), let L be a supporting line of W (A) at qo. Apply Lemma
3.1 to obtain a unitary matrix U such that G (U*AU) is contained in the closed half-plane which
contains W(A) = G'(A) and has boundary L. Theorem 2.4 then implies that W(A) N'L = {qo}
and the line perpendicular to L at gy passes through (1/n) trA. Hence W (A) is a circular disc
centered at (1/n) trA by Lemma 3.3(a).
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To prove the remaining part, we may assume, by considering A — ((1/n)tr A)I,, instead of A,
that trA = 0 and hence W(A) = G'(A) = {z € C : |z| < r} (r > 0). Since G'(rl, — A)
H = {z € C : Rez > 0}, Lemma 3.1 implies the existence of a unitary matrix U such that
G (rl, — U*AU) C H. Applying Theorem 2.4(b) and (f) to rl, — U*AU, we obtain that Re U*AU is
permutationally irreducible and there is a diagonal matrix V such that all nondiagonal entries
of (UV)*A(UV) are nonnegative. [13, Theorem 1] then says that (UV)*A(UV) is permutationally
similar to a matrix of the form

We can now characterize 2-by-2 matrices A for which W(A) = G'(A).

Proposition 3.5. A 2-by-2 matrix A is such that W(A) = G'(A) if and only if it is unitarily similar to

a0 ac
or for some scalars a, b and c.
0b 0a

Since the unitary similarity of two 2-by-2 matrices is equivalent to the equality of their numerical
ranges, the preceding proposition says that, for a 2-by-2 matrix A, a necessary and sufficient condition
for W(A) = G'(A) is that W(A) equals a singleton, a line segment or a circular disc.

ac
Proof of Proposition 3.5. Let A be unitarily similar to B = |: b} for some a, b and c. Assume
0

first that W(A) = G'(A). If A is unitarily reducible, then ¢ = 0 and we are done. Otherwise, W (A)
is a circular disc by Theorem 3.4(b). Since a and b are the foci of the elliptic disc W(A) = W(B), we

ac a0
must have @ = b and hence A is unitarily similar to { :| as asserted. Conversely, If B = |: b :|
0a 0

0a

b (respectively, the circular disc with center a and radius |c|/2). In either case, we obviously have
W(A) = W(B) = G'(B) = G'(A). O

ac
(respectively, B = { :|), then W(B) and G(B) both equal the line segment with endpoints a and

The next proposition gives necessary/sufficient conditions for a 3-by-3 matrix A to satisfy W(A) =
G (A).

Proposition 3.6. If a 3-by-3 matrix A is such that W(A) = G’ (A), then it is unitarily similar to a matrix
of the form

a ab ab
(i) b , (i) a or (iii) ac
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for some scalars a, b and c. Conversely, if A is of one of the above forms with |b| = |c| in (iii), then it satisfies
W(A) = G (A).

Unfortunately, at the present time we are not yet able to verify whether a matrix of type (iii) above
with nonzero b and c satisfying |b| #~ |c| has the property W (A) ; G'(A).

Proof of Proposition 3.6. Let A be a 3-by-3 matrix with W(A) = G’(A). Obviously, we need only
consider the case of unitarily irreducible A. Let a4, a; and as be its eigenvalues. Under our assumptions,
W(A) is a circular disc with center (a; + a; + az)/3 by Theorem 3.4(b). It is known that, in this case,
two of the eigenvalues of A, say, a; and a; are equal to the center of W (A) (cf. [10, Corollary 2.5]). Hence
ay = ay = (a; + ay + as)/3, from which we obtain a; = a; = a3 = a. Thus A — als is nilpotent and
hence is unitarily similar to a matrix A’ of the form

0bd
0c
0
Since W(A") = W(A) — a is a circular disc, [10, Theorem 4.1] implies that becd = 0. If b or ¢ equals
0, then rankA’ = 1. In this case, A’ has the matrix representation A; @ A, on the decomposition
C3 = K @ K, where K is the span of the ranges of A’ and A”* with 1 < dimK < 2. This contradicts
our assumption on the unitary irreducibility of A. We conclude that b and c are both nonzero. Thus
d = 0 and hence A is of the form (iii) as required.
For the converse, if A is unitarily reducible, then it is unitarily similar to either
a ab
B= b or C= d
c c

In the former case, since W(A) = W(B) = G(B), we have W(A) = G'(A). For the latter, ifa # d and
b # 0, then

W(A) = W(C) = <w ([a bD U{c}) .
0d

In this case, the boundary of W(A) contains a (noncircular) elliptic arc, and hence W (A) g G'(A) by
Theorem 3.4(a). Thus we must have a = d. Then

W(A) = W(C) = G(C) D G'(C) = G'(A).

Hence W(A) = G'(A).
It remains to show that if

ab
A= ac|,
a
where |b| = |c| # 0, then W(A) = G'(A). We already know that W(A) < G'(A). To prove

the converse containment, we may assume, by considering U*((A — al3)/|b|)U, where U = diag
(1, e—(aIgh) o—(argh+arg C)), instead of A, that
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01
A= 01
0

In this case, W(A) is the circular disc with center the origin and radius 1/ /2. Let V be the unitary
matrix

1 1 -7 1 1% 1 -1 1 1,5 1 T
—_— —e 120 ——— ~e4 — e ' —— ~ed' — ——e 12
2J§+¢€ 23+2 +26 23+2 2./6
S NI BPE 2 A4 1T 11 i

J6 V3 , V6 23 V6 23

1 1 -1 1 1, % 1 - 1 1, % 1 8]
— — e 1! ——— — —e4 — e 12! — — —ed' — ——p 12
2J§+ J6 23 2 + 2.6 23 2 26

Via some computations, we obtain
1 424343 —4/2+/343
3V2 12 12
VFAV — 4/2-3-3 1 ﬁi V2-2/343
- 12 64/2 4 12
—4/2—/3-3  J242/3-3 1 + ﬁi
12 12 642 4

Its three GerSgorin discs are

C1 (V*AV) = ze(C:z—3:/§‘<2;/§],
Z_(_l ﬁ.) 52

G (V¥AV) =1z e C:

E—— 1
62 4

and

1 V3 52
GVA)=1zeC:lz—|-——2+ —i)| < —
2 (V°AY) ( 6v2 ' a ) S
Therefore, W(A) N 3G (V*AV) is the singleton {—1/ﬁ}. If Ug = diag (1, et?, em) for any real 9,
then UjAUg = e A. Hence we obtain W(A) N 3G ((UpV)*A(UpV)) = {— (l/ﬁ) eie}. This shows
that

G'(A) € [ G(UsV)*A(UV)) = W(A),
fecR

and thus W(A) = G'(A) as asserted. [J
We end this section by some remarks. It can be proven that if each A;, 1 < j < m, satisfies

W(Aj) = G'(Aj), thenA = A; @ - - - @ Ay, also satisfies W(A) = G'(A). However, the converse is false.
A counterexample is given by

011

02

A = and A; = 01
00

0
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Here W(A;) = G'(A1) = {z € C : |z| < 1}.Since A; is unitarily irreducible and dW (A) contains one
line segment (cf. [10, Corollary 3.3]), we have W (A;) ;Cé G'(Az) by Theorem 3.4(b). On the other hand,
since G(A;) = {z € C : |z] < 1}, we can derive that

W(A; @ Ay) = (W(A) UW(A2)" = (G(A2) UW(A2)" = G(A)
= (G(A1) UG(A2))" = G(A1 @ Ap),

from which it follows that W (A; ®A,) = G'(A; @ A). More generally, using Lemma 3.1, we can prove
that if matrices A; and A, are such that W(A;) = G'(A;) and G(A;) € W(A;), thenA = A; @ A,
satisfies W(A) = G'(A).

4. Equality of W (A) and G(A)

In this section, we consider matrices A with the property W(A) = G(A). Complete characterizations
for such matrices are obtained. We also give more specific forms for such matrices of size 2 or 4.

Our first proposition relates the numerical radius w(A) = max{|z| : z € W(A)} and Gers-
gorin radius g(A) = max{|z| : z € G(A)} of a matrix A. Note that if A = [a;] then g(A) =

maxi<i<n 2 (lag| + lajil) /2.

n
ij=1"

Proposition 4.1. [fA = [a,-]-]{fj:1 is an n-by-n matrix, then w(A) < g(A). Moreover, if Re A is permuta-
tionally irreducible, then w(A) = g(A) if and only if W (A) and all the Gersgorin discs C;(A) have a common
supporting line L at a common point and the a;;’s and the origin are all on a line and on one side of L.

Proof. Since W(A) C G(A), we obviously have w(A) < g(A). Now assume that Re A is permutationally
irreducible and w(A) = g(A). Let zg in W(A) be such that |zg| = w(A), and let L be a supporting line
of W(A) at zg which is tangent to the circle |z] = w(A). Since |zg] = g(A) by our assumption and
W() C GA) € D = {z € C : |z < g(A)}, we infer that L is a common supporting line of
W (A) and G(A) at zg. After an affine transform of A, we may assume that zg = 0, L is the y-axis and
G(A) C {z € C : Rez > 0}. Since Re A is permutationally irreducible, in the decomposition of A in
Theorem 2.4 we have A = A;. Hence (a) there, together with C;(A) C D for all i, yields that the C;(A)’s
are all tangent to L at the common point zp, and the centers a;; of the C;(A)’s and zg are on a common
line and on the same side of L (cf. Figure 4). This proves the necessity. The sufficiency is trivial. O

The main results of this section are the following two theorems.

Theorem 4.2. LetA = [aij]lffj:1 be an n-by-n (n > 2) matrix with Re A permutationally irreducible. Then

the following conditions are equivalent:

(a) W(A) = G(A);
(b) W(A) is a circular disc, which coincides with all the Gersgorin discs C;(A);

Fig. 4. C;(A)’s with a common supporting line L.
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(c) there are a permutation matrix P and a diagonal unitary U such that B = (PU)*A(PU) = [bij]{szl
is of the form

i (%trA) I Bq i
(LeA) by By

(m = 2) (5)
. Bmoq
1
L (HfrA) Im |
with b;j = 0 for alli # j and g;(B)’s constant.
In this case, a;; and g;j(A), 1 < i < n, are both constants, and n is even.

Proof. By considering A — ((1/n) trA)I,, we may assume that trA = 0. The implication (a) = (b)
follows form Proposition 2.5(b). To prove (b) = (c), note that (b) implies that a;; = 0 for all i and the
gi(A)’s are equal to one another. Now apply Theorem 2.4 (f) to g1 (A)I, — A to obtain a permutation
matrix P; and a diagonal unitary V such that C = (P;V)*A(P1V) = [c,-j],ff =1 satisfies ¢;; = O foralliad
cij = Oforalli # j.Since W(C) = W(A) isacircular disc centered at the origin and Re C,as Re A, is per-
mutationally irreducible, [13, Theorem 1] says that there is another permutation matrix P, such that
B= PZTCPZ isof the form (5). Letting P = PP, and U = PZTVPz,we obtain B = (PU)*A(PU) as asserted.

We now prove (c) = (a). Under condition (c), we have g;(B) = gj(A) = g(A) for all i and hence
G(A) = G(B) = {z € C : |z] < g(A)}. Therefore, W(A) = W(B) C {z € C : |z] < g(A)}. On the
other hand, since B is unitarily similar to e”B for all real 6, its numerical range W(B) is also a circular
disc centered at the origin. Letting 1, denote the n-vector whose components are all equal to 1, we have

ReB)1, B)1,
W) = w(B) = [ReB] > I - )” I _ ”gﬁl)” N

It follows that w(A) = g(A). Hence W(A) = G(A) = {z € C : |z] < g(A)}, that is, (a) holds.
Finally, we show that n is even. Assume that By, 1 < k < m — 1, is an nyg-by-ny41 matrix, and let

3 32 (B1)j ifk=1and1 <i< ny,
fie®) =13 (an ' (Br—1)ji + T (Bk)z_]) if2<k<m-—1and1<i<ny,
an " (Bm-1)ji ifk=mand1 < i< np,

where, for any matrix D, (D);; denotes its (i, j)-entry. We have fi(B) = g(B) for all i and k. Hence
>, fie(B) = nig(B) for all k. Since

S g (B) = Z( k= lZf.k(m

k=1 k=1

{Z > B — (/2(31)11 + Z(Bz)u)

i=1j=1 i=1
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+(_1)m_2 i (Z(Bm 2)]1+Z(Bm 1)1]) + (= 1)m lzm: Z(Bm 1)]1i|

i=1 \ j=1 j=1 i=1 j=1
=0

and g(B) # 0 by the permutational irreducibility of Re A and Re B, we obtain > ;' , (=D n, = 0.
On the other hand, we also have >}’ ; n; = n. Adding these two together yields n = 2 >/, \ 44 T
which shows that n is even as asserted. [J

Note that if a matrix A is such that W (A) = G(U*AU) for some unitary U, then, obviously, W(A) =
G'(A). The converse is false as the following corollary shows. It is an easy consequence of Proposition
3.6 and Theorem 4.2.

Corollary 4.3. If

01
A= 01|,
0

then W(A) = G'(A), but W(A) & G(U*AU) for any unitary U.
The next theorem deals with general matrices with the property W(A) = G(A).

Theorem 4.4. Let A be an n-by-n matrix. Then W (A) = G(A) if and only if A is permutationally similar
to a matrix of the form D @ A1 @ - - - @ A¢ @ B, where D is a diagonal matrix, each Ay, 1 < k < 4, is
such that Re Ay is permutationally irreducible and satisfies W (Ax) = G(Ax), and B is such that G(B) C

(W(D) U (uf:1 W(Ak)))A. In this case, W(A) = W(D ® A, @ - - - © Ay).

Here it goes without saying that some of the summands in the above decomposition may be absent.
The proof of this theorem is analogous to the one for Theorem 3.4(a).

Proof of Theorem 4.4. Assume first that W(A) = G(A).Then W(A) = G’ (A) holds. Hence, by Theorem
3.4, the boundary of W (A) consists of circular arcs and line segments. Let « be one of such arcs. Note
that A is permutationally similar to a direct sum A} & --- @ A, with each ReA]’- permutationally
irreducible. For any AJ’- of sizenj > 2,letp; = (1/n) trA]f. We now show that one of the p;’s is the
center of the circular arc . Indeed, assume to the contrary that none of the p;’s is the center of «. Then
Lemma 3.3(b) implies that for any p; there are only finitely many points q in o with supporting line L
of W(A) at q perpendicular to the line Lp,q connecting p; and g. The pigeonhole principle guarantees
the existence of a point qg in & such that its supporting line Lg, is not perpendicular to Lpyq foranyj. Let
H be the closed half-plane with boundary Ly, which contains W(A) = G(A). Since W(A) N 0H # ¢,
an application of Theorem 2.4 yields some Ajf with all its GerSgorin discs tangent to Ly, at qo, and, in
particular, with Lg, perpendicular to Ly,q,. This contradicts our choice of qo. Hence « is indeed a circular

arc with center, say, pj,. Also, as the above arguments show, « and all the GerSgorin discs C; ( ) of
Aj’0 are tangent to each other at a common point. We infer from this and the fact that pj,, the center
of «, is the average of the centers of the G; (A}fo)’s that the G (Af )'s must all coincide and « is part of
their common boundary. On the other hand, since W (A]’ ) N Ly = {q} for all points q in & by Theorem
2.4(c), we also have @« C W (Af ) Hence C; (A/- ) - W(A/- ) by [14, Lemma] or [3, Theorem]. Since
W( 1/0) cG (Ajfo) =( ( ) they are equal to each other, that is, W (A/ ) = (Aj’b). Note that the
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above goes for every circular arc o of dW(A). Hence we may rename all those A;’s thus obtained as
A1, ..., Ap, let Dbe the direct sum of those A]f's which have size one, and let B be the direct sum of the
remaining A]’-'s. As

G(B) € G(A) = W(A) = (WD) U (Ui, wAw)) .

D@ AL & --- DAy @ Bis the asserted decomposition of A.
Conversely, if A is permutationally similar toD @ A; @ - - - @ A; @ B with the asserted properties,
then

¢ A
GA) =GDBA & - DA DB) = (G(D) U (U G(Ak)) U G(B))

) . k=1
C (W(D) U (U W(Ak))> C W(A).

k=1

Since W(A) C G(A) always holds, we obtain W(A) = G(A). [
We now characterize matrices A of small sizes for which W (A) and G(A) are equal. Since, by Theorem

4.2, A can only have an even size if this holds, in the following we only consider 2-by-2 and 4-by-4
matrices.

ao ab a0
Proposition 4.5. A2-by-2 matrix Asatisfies W (A) = G(A) ifand only ifA = , or

0b 0a b a
for some a and b.

This follows easily from Theorems 4.2 and 4.4.
The next proposition deals with 4-by-4 matrices.

Proposition 4.6. A 4-by-4 matrix A satisfies W(A) = G(A) if and only if it is permutationally similar to
one of the following forms:

(a) diag (a, b, c, d),

ab cO
(b) @ ,
| 0a 0d
[ab] cd
() ® .
_0 a | 0c
[ab] . .
(d) @ B, where B is a 2-by-2 matrix with G(B) C {z € C : |z — a| < |b|/2},
0a
(2 0ab
Acd .
(e) . with |a| = |d| # 0, |b| = |c| # 0, and arg(ad) = arg(bc), and
0
L A
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Aabo

A0c
(f) i d with |a] = |d| # O, |b] = |c| # 0, and arg(ac) = arg(bd).

A

Proof. Inview of Theorem 4.4 and Proposition 4.5, we need only prove, for a 4-by-4 matrix A with Re A
permutationally irreducible, that W (A) = G(A) if and only if A is permutationally similar to a matrix
of the form (e) or (f). Assume that W(A) = G(A), Re A is permutationally irreducible, and trA = 0.
Then, by Theorem 4.2(c), there are a permutation matrix P and a diagonal unitary matrix U such that
B = (PU)*A(PU) = [b"f]?,j=1 is of the form (5) with b;; = 0 for all i, bj > 0 fori # j and g;(B)’s
constant. It is easily seen that if

0a 0a 00a Oabc 000a
0b 00bc 00b 000 000D
B: ’ k] k] ,OI‘ El
0c 00 0c 000 000c
0 00 0 000 0

then the constancy of the g;(B)’s implies B = 0, contradicting the permutational irreducibility of Re B.
This leaves only the cases

00ab OaboO
00cd 00c

= or
00 00d
00 0

In either one, the constancy of the g;(B)’s yields thata = d > Oand b = ¢ > 0. If any of
them is zero, then Re B, and hence Re A, is permutationally reducible, again a contradiction. Let U =

diag (eie] ,el% el eie“) with real 6;’s. Then

0 0 gel@1=63) pei(01—04) 0 qel@1=02) pei01—03) 0
0 0 pei02—03) pi(62—04) 0 0 pel(62—04)
PTAP = UBU* = or , ,
0 0 0 aei(@3—04)
0 0 0

which shows that A is permutationally similar to a matrix of the form (e) or (f). ‘ ‘
Conversely, if A is of the form (e) with A = 0, then, letting U = diag (¢!, ¢%2, i3 ¢i) where
61 =0,0, = arga — argc = argh — argd, 63 = arga and 64 = arg b, we have

00 [a| [b]
i _ | 00 lel 1d]
0 0

0 0
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Thus W(A) = G(A) by Theorem 4.2. Similarly, if A is of the form (f)with A = 0,thenU = diag (¢!,
ei%3, eif) where §; = 0,0, = arga, 3 = argb and 6, = arga + argc = argbh + argd, is such that

0 fal Ib|
UAU* = 0 el
0 d

Again, we have W (A) = G(A) by Theorem 4.2. O
Our final example shows that, in the situation of Theorem 4.2, condition (c¢) there cannot be relaxed
to requiring that A be permutationally similar to a matrix B of the form (5) with g;(B)’s constant.

Example 4.7. Let
001 1
001 —1
00
00

11
Then G(A) = {z € C : |z] < 1}.Since A> = 0 and || |: } | = +/2, we have W(A) = {z € C :
1

lz| < ﬁ/z} (see[15, Theorem 2.1]). Thus W (A) ; G(A). A similar example of the form in Proposition
4.6(f) can also be constructed to this effect.

We conclude this paper by asking the following questions:

(a) Is it true that W(A) & G'(A) for

1b
A= 1c
1
with b,c > 0and b # c? If this is the case, then it yields, together with Proposition 3.6, a

complete characterization of 3-by-3 matrices A satisfying W (A) = G'(A).
(b) Does the n-by-n Jordan block

(01
01
Jn

-
0

satisfy W(J,) = G'(J,) for n > 4? Note that this is indeed the case for n = 2 (Proposition 3.5)
and n = 3 (Proposition 3.6).
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(c) Is there some general criterion of A for which W(A) = G'(A) holds, just as Theorems 4.2 and
4.4 for W(A) = G(A)? In particular, is there a complete characterization for 4-by-4 matrices
satisfying W(A) = G'(A)?
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