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A study of natural convection in three dimensional square plates is investigated numerically. Several
open boundaries co-exist in the physical domain, and a non-reflecting boundary condition applied at
the aperture is no longer suitable for solving the problem of this study. An absorbing boundary condition
is then adopted and modified in the solution processes. Methods of the Roe scheme, preconditioning and
dual time stepping matching LSUGS scheme are used to solve a situation of a low speed compressible
flow. The geometry of the physical model is the parallel square plates, and the parameter of Rayleigh
number is not high, and then phenomena observed are almost symmetrical. The results of the work have
good agreements with the experimental results of a previous paper.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

A subject of natural convection in parallel plates is still an
important and attractive topic in both fundamental and applica-
tional research. The subject involves problems of multiple open
boundaries which demarcate an inside and an outside of a domain
and have functions to allow fluids to flow into and out of the
domain reasonably and smoothly according to related physical
conditions. Therefore, characteristics of the open boundary deeply
affect the phenomena of the inside of the domain. From a view
point of theoretical analysis, a correct and appropriate treatment
of the open boundary becomes a complex and serious topic.

In order to study the problem induced by the open boundary in
an incompressible flow problem, a method [1] of addition of an ex-
tra region to the original domain is very popularly adopted. A fully
developed condition at the edge of the extra region is often accom-
panied with the usage of the method mentioned above, and approx-
imate results were obtained. Regretfully, in addition to extra
analyses due to the addition of the extra region, the method is often
used in analyzing an incompressible flow problem. The method has
difficulty to solve the existence of the pollution [2] caused by the
interference between the pressure wave reflected from the open
boundary and flowing fluids when a numerical computation of a
compressible flow is conducted. Therefore, a non-reflecting bound-
ary in which the interference mentioned above can be eliminated is
held on the open boundary and to solve the problem of the
ll rights reserved.
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compressible fluid flow. Rudy and Strikwerda [3] proposed a simple
non-reflecting boundary and the results were more consistent with
realistic situations than those obtained by a method based on a
pressure boundary. Poinsot and Lele [2] developed an ingenious
method of Navier–Stokes characteristics boundary condition
(NSCBC) to treat compressible fluids flowing through open bound-
aries of the domain and clarify the effect of the method on the
behaviors of compressible fluids flowing through the open bound-
aries of the domain. Polifke et al. [4] modified the linear relaxation
term of the NSCBC, and remarkable results of plane acoustic waves
of different frequencies being not reflected from the boundaries of
the domain were achieved. Available situations of the above litera-
ture [2] and [4] are obtained under the large Mach number M > 3 of
the speed of fluid. Fu and Li [5,6] proposed a modified method of the
NSCBC which can be adopted in all speeds of compressible flows.
However, sequential methods of the NSCBC are limited in the treat-
ment of the problem of the non-reflecting boundary on the cross
section of the open boundary having one normal direction such as
the physical model shown in [6]. And these methods have difficul-
ties to solve the domain having neighboring open boundaries which
is like parallel square plates shown in Fig. 1 in which planes of abdc,
bfhd, fegh and eacg have neighboring open boundaries. Related rea-
sons of the non-reflecting boundary being unavailable for the prob-
lem having neighboring open boundaries had been pointed out by
Yoo et al. [7] and Lodato et al. [8]. When the direction of the fluid
flow was not orthogonal to the non-reflecting boundary, transverse
terms were produced on the non-reflecting boundary that caused
unstable results induced by accumulation of reflection effects in
the corner and edge regions of neighboring non-reflecting bound-
aries to occur. Finally, the results trended to diverge. Therefore, a
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Nomenclature

A area (m2)
c speed of sound (m/s)
e internal energy (J/kg)
etarget target internal energy (J/kg)
g acceleration of gravity (m/s2)
k thermal conductivity (W/mK)
k0 surrounding thermal conductivity (W/mK)
l1 width of square plate (m)
l2 height between square plates (m)
l3 width of artificial buffer zone (m)
Nu local Nusselt number defined in Eq. (45)

Nu ¼ l2
k0ðTH�T0Þ kðTÞ @T

@y

h i
Nu averaged Nusselt number defined in Eq. (47)

Nu ¼ 1
A�t
R

A

R
t

l2
k0ðTH�T0Þ kðTÞ @T

@y

h i
dtdA

NuA area averaged Nusselt number defined in Eq. (46)

NuA ¼ 1
A

R
A

l2
k0ðTH�T0Þ kðTÞ @T

@y

h i
dA

P pressure (Pa)
P0 surrounding pressure (Pa)
Pr Prandtl number (m/a)
R gas constant (J/kg/K)
Ra Rayleigh number defined in Eq. (43). Ra ¼ Pr gq2

0ðTH�T0Þl32
T0lðTÞ2

Ra⁄ modified Rayleigh number defined in Eq. (44).
Ra� ¼ Ra� l3

l2
T temperature (K)
T0 temperature of surroundings (K)
TH temperature of heat surface (K)
t time (s)
u, v, w velocities in x, y and z directions (m/s)
utarget;v target;wtarget target velocities in x, y and z directions (m/s)
wx, wy, wz

lengths of artificial buffer zones in x, y and z directions
(m)

x, y, z Cartesian coordinates (m)
X, Z dimensionless Cartesian coordinates, x

l1
and z

l1

Greek symbols
a thermal diffusivity rate (m2/s)
q density (kg/m3)
q0 surrounding density (kg/m3)
l viscosity (N s/m2)
l0 surrounding viscosity (N s/m2)
c specific heat ratio
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method of an absorbing boundary was proposed to solve the do-
main of the problem including several neighboring open bound-
aries. In the method used by adding an absorbing boundary, an
artificial buffer zone is necessarily added to the original domain.
In the artificial buffer zone, two new terms of artificial convection
Fig. 1. Physical model of three dim
and damping terms are additionally added to the original governing
equations to eliminate the reflection of pressure wave from the
edge of the artificial buffer zone.

The basic theory of the absorbing boundary is mainly divided
into two parts of the perfectly matched layer (PML) and zonal
ensional parallel square plates.
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boundary. The PML was originally proposed by Berenger [9] to solve
the Maxwell equation and led electromagnetic waves of different
frequencies and incident angles to penetrate an absorbing layer
without reflection. Also, the PML was broadly applied to the
research of computational electromagnetics. In addition to the
extension of application of the PML [10,11], Hu [12] also modified
the PML for solving the Euler equation, but it was limited in inviscid
fluid flow problems. In order to match the demand of the neighbor-
ing open boundaries for viscous fluid flow problems, the zonal
boundary in which an artificial buffer zone was added to the origi-
nal domain was then proposed by Ta’asan and Nark [13] and Wasis-
tho et al. [14]. The method of the zonal boundary mainly adopted
the artificial convection and damping terms to eliminate the reflec-
tion pressure wave and decay the disturbances. Freund [15] inte-
grated the related theories proposed by Ta’asan and Nark [13]
and Wasistho et al. [14] and newly proposed an absorbing layer
to substitute the PML method mentioned above to solve problems
in viscous fluid flow situations. And the absorbing layer is success-
fully used to solve one dimensional compressible Navier–Stokes
equations indicated in the literature [15]. Based upon the theory
of [15], Fu and Li [16] modified the absorbing layer for treating a
two dimensional open boundary problem and applied it to solve a
two dimensional compressible flow problem with the open bound-
aries. However, when the modified method [16] was used to apply
to a three dimensional open boundary problem, it is rather difficult
to determine correct directions of the artificial convection and
damping terms in the intersection zone such as a rectangular cubic
zone shown in Fig. 1 of which the top and bottom surfaces are bb2-

b1b0 and dd2d1d0, respectively. Consequently, the problem of fluids
flowing through plates with a three dimensional open boundary,
which is one of the most realistic and important problems for
industrial applications, is still not clarified yet. A subject of natural
convection in parallel square plates is just a problem which is con-
sistent with the problem mentioned above.

Therefore, the study aims to develop a new available method to
solve natural convection of parallel square plates with a heated bot-
tom surface numerically. The modified method holds the absorbing
boundaries on the open boundaries. In this method the artificial con-
vection and damping terms in the artificial buffer zone are used to
avoid reflection phenomena occurring on the open boundaries.
Methods of the Roe scheme, preconditioning and dual time stepping
are combined and used simultaneously for solving governing
equations of the compressible flow induced by a high temperature
difference. The results show that the largest magnitude of fluid
velocity flowing into parallel squares is observed at the center region
of the bottom surface edge, and the largest magnitude of the local
Nusselt number is found to be close to the corner region of the bottom
surface.

2. Physical model

A physical model of three dimensional parallel square plates
mentioned above is indicated in Fig. 1. The three dimensional par-
allel square plates regarded as an original domain are composed of
the top surface of abfe and bottom surface of cdhg. Open boundaries
of the original domain are bfhd, fegh, eacg and abdc. The length of the
square plate is l1 and the height between the two squares is l2. The
temperature of the heated bottom square is TH, and the top square is
adiabatic. The direction of gravity is the negative y direction. Since
the absorbing boundary is used, an additional zone called an artifi-
cial buffer zone is necessarily added to the original domain and
indicated by dashed lines in Fig. 1. In this physical model, the direc-
tion of the normal line of the artificial buffer zone, in which the
surface of b2b1f1f0 is the top surface and the surface of d2d1h1h0 is
the bottom surface, directs in the positive x direction. Similarly,
the other three artificial buffer zones can be defined, and the three
directions of the normal lines of the artificial buffer zones are the
negative x direction and the positive and negative z directions,
respectively. However, an intersection artificial buffer zone of
neighboring artificial buffer zones can be observed at each corner
such as a cubic rectangle composed of the top surface of bb0b1b2

and the bottom surface of dd0d1d2. The intersection artificial buffer
zone includes two artificial buffer zones which have different direc-
tions of normal lines mentioned above, and the phenomena in the
intersection buffer zone are naturally different from those in the
artificial buffer zone described earlier. The solution methods used
in the true zone are then different. Therefore, the artificial buffer
zone should exclude the intersection artificial buffer zone, and
the residual zone, in which the surface of bff2b0 is the top surface
and the surface of dhh2d0 is the bottom surface for example, is
exclusively called by the artificial buffer zone afterwards. The dis-
tance between the boundaries of the original domain and artificial
buffer zones is l3. The temperature and pressure outside the artifi-
cial buffer zone are T0 = 300 K and P0 = 1 atm, respectively.

For facilitating the analysis, the following assumptions are made:

1. The flow is laminar flow.
2. The work fluid is ideal gas and follows the equation of state of

ideal gas.
3. Velocities on the walls satisfy no slip condition.

The governing equations described in the original domain in
which the parameters of viscosity and compressibility of the fluid
and gravity are considered simultaneously are shown in the fol-
lowing equations.

@U
@t
þ @F
@x
þ @G
@y
þ @H
@z
¼ S ð1Þ

P ¼ qRT ð2Þ

Contents of U,F,G,H and S are separately indicated as follows:

U¼

q
qu

qv
qw
qE

0
BBBBBB@

1
CCCCCCA

F¼

qu
qu2þP�sxx

quv�sxy

quw�sxz

qEuþPu�k@T
@x�usxx�vsxy�wsxz

0
BBBBBB@

1
CCCCCCA

G¼

qv
qu�syx

qv2þP�syy

qvw�syz

qEvþPv�k@T
@y�usyx�vsyy�wsyz

0
BBBBBB@

1
CCCCCCA

H¼

qw

qu�szx

qv�szy

qvwþP�szz

qEwþPw�k@T
@z�uszx�vszy�wszz

0
BBBBBB@

1
CCCCCCA

S¼

0
0

�ðq�q0Þg
0

�ðq�q0Þgv

0
BBBBBB@

1
CCCCCCA

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð3Þ
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The viscosity and thermal conductivity of the fluid are based
upon Sutherland’s law and shown as follows:

lðTÞ ¼ l0
T

T0

� �2
3 T0þ110

Tþ110

kðTÞ ¼ lðTÞcR
ðc�1ÞPr

E ¼ P
qðc�1Þ þ 1

2 ðu2 þ v2 þw2Þ

9>>>=
>>>; ð4Þ

where q0 = 1.1842 kg/m3, g = 9.81 m/s2, l0 = 1.85 � 10�5 Ns/m2,
c = 1.4, R = 287 J/kg/K and Pr = 0.72.

As for the governing equations described in the artificial buffer
zone [15], the artificial convection and damping terms are newly
adopted. The function of the artificial convection term mainly acceler-
ates outward velocities of fluids via the artificial buffer zone to reach a
high speed which almost reaches a supersonic speed at the edge of the
artificial buffer zone. And the function of the artificial damping term
eliminates the disturbances in the artificial buffer zone. Then general
forms of the governing equations in the artificial buffer zone can be
described as Eq. (5). Since Eq. (5) is exclusively adopted in the artificial
buffer zones, the source term induced by gravity does not exist that is
different from Eq. (3) in the original domain

@U
@t
þ @

eF
@x
þ @

eG
@y
þ @

eH
@z
þ ~r ¼ 0 ð5Þ

where

eF ¼Fþ ~gF ;~gF ¼

gxq
gxqu

gxqv
gxqw

gxqE

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

eG¼Gþ ~gG;~gG¼

gyq
gyqu

gyqv
gyqw

gyqE

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

eH¼Hþ ~gH;~gH¼

gzq
gzqu

gzqv
gzqw
gzqE

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð6Þ

and

~r ¼ ~rx þ ~ry þ ~rz ¼

rxðq� qtargetÞ
rxðqu� qutargetÞ
rxðqv � qv targetÞ
rxðqw� qwtargetÞ

rxðe� etargetÞ

2
6666664

3
7777775
þ

ryðq� qtargetÞ
ryðqu� qutargetÞ
ryðqv � qv targetÞ
ryðqw� qwtargetÞ

ryðe� etargetÞ

2
6666664

3
7777775

þ

rzðq� qtargetÞ
rzðqu� qutargetÞ
rzðqv � qv targetÞ
rzðqw� qwtargetÞ

rzðe� etargetÞ

2
6666664

3
7777775

ð7Þ

~gF , ~gG and ~gH are artificial convection terms, and ~rx, ~ry and ~rz are
artificial damping terms. gx, gy and gz included in ~gF , ~gG and ~gH

are separately shown as follows:

gx ¼
gx0l

wxl�x
wxl

� �bxl
0 6 x < wxl

0 wxl 6 x < xmax �wxr

gx0r
x�ðxmax�wxrÞ

wxr

h ibxr
xmax �wxr 6 x < xmax

8>>><
>>>: ð8Þ
gy ¼

gy0l
wyl�y

wyl

� �byl
0 6 y < wyl

0 wyl 6 y < ymax �wyr

gy0r
y�ðymax�wyrÞ

wyr

h ibyr
ymax �wyr 6 y < ymax

8>>>><
>>>>:

ð9Þ

gz ¼
gz0l

wzl�z
wzl

� �bzl
0 6 z < wzl

0 wzl 6 z < zmax �wzr

gz0r
z�ðzmax�wzrÞ

wzr

h ibzr
zmax �wzr 6 z < zmax

8>>><
>>>: ð10Þ

gx0, gy0 and gz0 are the target velocities at the edges of the artificial
buffer zones. rx, ry and rz are the artificial damping functions and
shown as follows:

rx ¼
rx0l

wxl�x
wxl

� �bxl
0 6 x < wxl

0 wxl 6 x < xmax �wxr

rx0r
x�ðxmax�wxrÞ

wxr

h ibxr
xmax �wxr 6 x < xmax

8>>><
>>>: ð11Þ

ry ¼

ry0l
wyl�x

wyl

� �byl
0 6 y < wyl

0 wyl 6 y < ymax �wyr

ry0r
y�ðxmax�wyrÞ

wyr

h ibyr
ymax �wyr 6 y < ymax

8>>>><
>>>>:

ð12Þ

rz ¼
rz0l

wzl�x
wzl

� �bzl
0 6 z < wzl

0 wzl 6 z < zmax �wzr

rz0r
z�ðxmax�wzrÞ

wzr

h ibzr
zmax �wzr 6 z < zmax

8>>><
>>>: ð13Þ

rx0, ry0 and rz0 are the target damping functions at the edges of the
artificial buffer zones.

Locations of /0 and /max and length of w/l and w/r are indicated
in Fig. 2. In order to balance the order of the acoustic wave speed
and both orders of the target velocities of the artificial convection
terms (Eqs. (8)–(10)) and the target damping functions of the arti-
ficial damping terms (Eqs. (11)–(13)), the process proposed by
Dennis et al. [17] is executed and the order of an original acoustic
wave speed is transformed into the similar order of a modified
acoustic wave speed. Then new target velocities of the artificial
convection terms and new target damping functions of the artifi-
cial damping terms are expressed as follows, respectively, and
can be adopted in a low speed compressible flow situation

gxo ¼ cF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ðH� 1Þ2 þ 4Hc2

q
2

ð14Þ

gyo ¼ cG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ðH� 1Þ2 þ 4Hc2

q
2

ð15Þ

gzo ¼ cH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2ðH� 1Þ2 þ 4Hc2

q
2

ð16Þ

rxo ¼ cx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ðH� 1Þ2 þ 4Hc2

q
2

ð17Þ

ryo ¼ cy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ðH� 1Þ2 þ 4Hc2

q
2

ð18Þ

rzo ¼ cz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2ðH� 1Þ2 þ 4Hc2

q
2

ð19Þ

where H � 100M2 and c is the speed of the sound.
From the previous study [16], the appropriate values of cF, cG, cH,

cx, cy, cz are cF = cG = cH = 1.15, cx = cy = cz = 0.05, and b = 3,
respectively.



Fig. 2. A diagram of one dimensional absorbing boundary condition.
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Thus the magnitudes of the artificial convection terms will be
equal to zero at the interface of the original domain and artificial
buffer zones and equal to the modified acoustic wave speed at
the edges of the artificial buffer zones. And the disturbances of
the flowing fluids are gradually reduced to zero accompanied with
the location close to the edge of the artificial buffer zone.

3. Numerical method

In natural convection, the speed of the compressible fluid flow
is much slower than that of the acoustic wave. The Roe Scheme
[18] coordinating the preconditioning method are then adopted
to resolve the governing equations shown in Eq. (1) which can be
derived as the following equation and shown in Eq. (20)

C
@Up

@s
þ @F
@x
þ @G
@y
þ @H
@z
¼ S ð20Þ

where C is the preconditioning matrix proposed by Weiss and
Smith [19] and Up is the primitive form of ½P;u;v;w; T�t .

The method of dual time stepping is added to calculate the tran-
sient state of the physical model. The derived equation is shown in
Eq. (21)

C
@Up

@s
þ @U
@t
þ @F
@x
þ @G
@y
þ @H
@z
¼ S ð21Þ

where s is an artificial time, t is a physical time and Up is the prim-
itive form of ½q;qu;qv;qw;qe�T .

When the discretization of Eq. (21) is executed, terms of @Up

@s and
@U
@t are differentiated by a first-order forward difference and a sec-
ond-order backward difference, respectively, and terms of @F

@x,
@G
@y,

and @H
@z are differentiated by a central difference, the following

equation can be obtained

C
Ukþ1

p �Uk
p

Ds þ3Unþ1�4UnþUn�1

2Dt
þ 1

Dx
Fkþ1

iþ1
2;j;k
�Fkþ1

i�1
2;j;k

� �
þ 1

Dy
Gkþ1

i;jþ1
2;k
�Gkþ1

i;j�1
2;k

� �
þ 1

Dz
Hkþ1

i;j;kþ1
2
�Hkþ1

i;j;k�1
2

� �
¼S ð22Þ

The terms of Uk+1 and Fk+1 in Eq. (22) are necessary to be linear-
ized and expressed as follows:

Ukþ1 ¼ Uk þMDUp ð23Þ

in which M ¼ @U
@Up

and Ap ¼ @Fk

@Up

Fkþ1 ¼ Fk þ ApDUp ð24Þ

Where Ap ¼ @F
@Up

is the flux jacobian and the same methods for
Bp ¼ @G

@Up
and Cp ¼ @H

@Up
are used in linearization of Gk+1 and Hk+1,

respectively.
Eqs. (23) and (24) are substituted into Eq. (22), the following

equation is derived
I
Ds
þ C�1M

3
2Dt
þ C�1 dxAk

p þ dyBk
p þ dzC

k
p

� �� �
DUp ¼ C�1Rk ð25Þ

where dx, dy, and dz are central-difference operators and

Rk ¼ S� 3Uk�4UnþUn�1

2Dt

� �
� ðdxFk þ dyGk þ dzH

kÞ.
The solver of Eq. (26) is the LUSGS implicit method proposed by

Yoon and Jameson [20]

Ap ¼ C�1Ak
p

Bp ¼ C�1Bk
p

Cp ¼ C�1Ck
p

ð26Þ

Eq. (25) can be rearranged as follows:

ðLþ Dþ UÞDUp ¼ C�1Rk ð27Þ

where

L¼� 1
Dx Aþp
� �

i�1;j;k
þ 1

Dy Bþp
� �

i;j�1;k
þ 1

Dz Cþp
� �

i;j;k�1

� �

D¼ I
DsþC�1M 3

2Dtþ 1
Dx Aþp
� �

i;j;k
� A�p
� �

i;j;k

� �
þ 1

Dy Bþp
� �

i;j;k
� B�p
� �

i;j;k

� �
þ 1

Dz Cþp
� �

i;j;k
� C�p
� �

i;j;k

� �� �

U¼ 1
Dx A�p
� �

iþ1;j;k
þ 1

Dy B�p
� �

i;jþ1;k
þ 1

Dz C�p
� �

i;j;kþ1

� �

9>>>>>>>=
>>>>>>>;
ð28Þ

As for the computation of Rk ¼ S� 3Uk�4UnþUn�1

2Dt

� �
� ðdxFk þ dyGk

þdzHkÞ in the right hand side of Eq. (27), the terms in F shown in
Eq. (3) can be divided into two parts. One is an inviscid term Finvis-

cid and the other is a viscous term Fviscid

F inviscid ¼

qu

qu2 þ P

quv
quw

qEuþ Pu

0
BBBBBB@

1
CCCCCCA

ð29Þ

Fviscous ¼

0
�sxx

�sxy

�sxz

�k @T
@x � usxx � vsxy �wsxz

0
BBBBBB@

1
CCCCCCA

ð30Þ

The methods of Roe scheme and preconditioning are utilized to
calculate the magnitude of Finviscid at the location of iþ 1

2

	 

between

the cells for a low Mach number condition

F inviscid;iþ1
2
¼ 1

2
ðFR þ FLÞ �

1
2
jC�1ApjDUP

n o
ð31Þ

The MUSCL scheme with a third order proposed by Abalakin
et al. [21] is used to compute Eq. (31). A forth order central differ-
ence is adopted to calculate the Fviscous, and Eq. (32) can be
obtained
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@u
@x
¼ ui�2 � 8ui�1 þ 8uiþ1 � uiþ2

12Dx
þ oðDx4Þ ð32Þ

In order to explain the calculation in the artificial buffer zones
and the intersection artificial buffer zones mentioned above, a
one-dimensional artificial buffer zone shown in Fig. 2 is used to de-
scribe the treatment of absorbing boundary conditions. The zones
of 1 and 3 are the artificial buffer zones, and the zone of 2 is the
original domain w indicates the length of the artificial buffer zone,
l and r mean the left and right sides, respectively. /0 and /max rep-
resent the start and end locations of the total domain including the
zones of 1, 2 and 3. In order to avoid the reflection of acoustic
waves at /0 and /max rebounding into the zone of 2, the artificial
convection term accelerates the velocities of fluids, which are in
the zones of 1 and 3 and flow out of the original domain, to be a
high speed and greater than the sound speed at edges /0 and
/max. The artificial damping term directly multiplies the distur-
bances of fluid velocities with an appropriate damping function
to cause the disturbances to be zero within the artificial buffer
zone.

Since phenomena in the artificial buffer zone and the inter-
section of artificial buffer zones mentioned above are rather dif-
ferent that leads the contents of the artificial convection and
damping terms in the governing equations Eq. (4) to be different.
Therefore, the governing equations of the artificial buffer zone
which is orthogonal to the x direction can be expressed as
follows:
eF ¼ F þ ~gF ; ~gF ¼

gxq
gxqu

gxqv
gxqw
gxqE

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

eG ¼ Gþ ~gG; ~gG ¼ 0eH ¼ H þ ~gH; ~gH ¼ 0

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð33Þ

~r ¼ ~rx ¼

rxðq� qtargetÞ
rxðqu� qutargetÞ
rxðqv � qv targetÞ
rxðqw� qwtargetÞ
rxðe� etargetÞ

2
6666664

3
7777775

ð34Þ

Governing equations of the artificial buffer zone which is
orthogonal to the z direction can be expressed as follows:
Fig. 3. Distributions of local Nusselt numbers along ij of different lengths of the
artificial buffer zone under Ra⁄ = 1.72 � 105.
eF ¼ F þ ~gF ; ~gF ¼ 0eG ¼ Gþ ~gG; ~gG ¼ 0

eH ¼ H þ ~gH; ~gH ¼

gzq
gzqu

gzqv
gzqw

gzqE

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð35Þ

~r ¼ ~rz ¼

rzðq� qtargetÞ
rzðqu� qutargetÞ
rzðqv � qv targetÞ
rzðqw� qwtargetÞ
rzðe� etargetÞ

2
6666664

3
7777775

ð36Þ

And governing equations used in intersections of artificial buf-
fer zones can be expressed as follows:
eF ¼ F þ ~gF ; ~gF ¼

gxq
gxqu

gxqv
gxqw

gxqE

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

eG ¼ Gþ ~gG; ~gG ¼ 0

eH ¼ H þ ~gH; ~gH ¼

gzq
gzqu

gzqv
gzqw

gzqE

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

ð37Þ

~r ¼ ~rx þ ~rz ¼

rxðq� qtargetÞ
rxðqu� qutargetÞ
rxðqv � qv targetÞ
rxðqw� qwtargetÞ
rxðe� etargetÞ

2
6666664

3
7777775
þ

rzðq� qtargetÞ
rzðqu� qutargetÞ
rzðqv � qv targetÞ
rzðqw� qwtargetÞ
rzðe� etargetÞ

2
6666664

3
7777775
ð38Þ

The direction of the fluid flow of the artificial buffer zone should
be outward relative to the original domain, and then in the zone of
1 (Fig. 2) a backward finite difference form is adopted to derive the
differential form. It can be expressed as Eq. (39). Similarly, in the
zone of 3 (Fig. 2) a forward finite difference form is adopted and
it can be expressed as Eq. (40).

For zone of 1

g/
@q
@/ ¼ g/

qi�qiþ1
D/

g/
@qu
@/ ¼ g/

qui�quiþ1
D/

g/
@qv
@/ ¼ g/

qv i�qv iþ1
D/

g/
@qw
@/ ¼ g/

qwi�qwiþ1
D/

g/
@qE
@/ ¼ g/

qEi�qEiþ1
D/

9>>>>>>>>=
>>>>>>>>;

ð39Þ

For zone of 3

g/
@q
@/ ¼ g/

qi�qi�1
D/

g/
@qu
@/ ¼ g/

qui�qui�1
D/

g/
@qv
@/ ¼ g/

qv i�qv i�1
D/

g/
@qw
@/ ¼ g/

qwi�qwi�1
D/

g/
@qE
@/ ¼ g/

qEi�qEi�1
D/

9>>>>>>>>=
>>>>>>>>;

ð40Þ
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/ ¼ x; z

Eqs. (39) and (40) are adopted for the artificial buffer zones of
the directions of x and z, respectively. For the intersection artificial
buffer zone, the finite difference derived in the x direction and the
finite difference derived in the z direction should be considered
simultaneously.

In order to solve the results of the original domain and artificial
buffer zone, Eqs. (1) and (5) are combined and the integration of
the governing equations can be indicated as follows:

@U
@t
þ @

eF
@x
þ @

eG
@y
þ @

eH
@z
þ ~rþ S ¼ 0 ð41Þ
Fig. 4. Distributions of velocity vectors and thermal field
For the calculation of the original domain, the artificial convec-
tion terms and damping terms are equal to zero. Oppositely, for the
calculation of the domain of the artificial buffer zone, the source
term is equal to zero. Thus a calculation procedure is briefly de-
scribed as follows:

(1) Assign the initial conditions of pressure, velocity and tem-
perature of the artificial buffer zone, intersection artificial
buffer zone and original domain. The temperature of the
heated bottom plate is TH = 700 K.

(2) Use the MUSCL method to calculate Eq. (25) and to obtain
the magnitude of DUp.
s of different cross-sections under Ra⁄ = 1.55 � 106.
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(3) Substitute the magnitude of DUp into Eq. (31) and use the
Roe scheme to calculate magnitudes of inviscid terms of
Finviscid.

(4) Calculate Eq. (32) to obtain magnitudes of viscous terms and
substitute into Eqs. (29) and (30).

(5) Solve Ukþ1
p by the following Eq. (42)
Ukþ1
p ¼ Uk

p þ DUk
p ð42Þ
(6) Calculate Eq. (22) and examine the convergence of the com-

putation of Ukþ1
p . Repeat (2)–(5) until the convergent criteria

are satisfied and the convergent magnitude of Ukþ1
p will be

regarded as that of Up of the (n + 1)th time step and the pro-
cess proceeds to the next time step. The convergent criteria

of variables are wnþ1�wn

wnþ1 < 10�3, w ¼ p;u; v;w; T .

4. Results and discussion

The height of parallel square plates is usually regarded as a
characteristic length when the Rayleigh number is defined and ex-
pressed as follows:

Ra ¼ Pr
gq2

0ðTH � T0Þl3
2

T0lðTÞ2
ð43Þ

However, the area of the heated bottom wall affects heat trans-
fer phenomena remarkably. In order to highlight the influence of
the area of the heated wall, the modified Rayleigh number Ra⁄ is
newly defined in the following equation:

Ra� ¼ Ra� l1

l2
ð44Þ

Besides, the local Nusselt number Nu, the area averaged Nusselt
number NuA and the average Nusselt number Nu are defined as fol-
lows, respectively
Fig. 5. Distribution of streamlines under Ra⁄ = 1.55 � 106.
Nu ¼ l2

k0ðTH � T0Þ
kðTÞ @T

@y

� �
ð45Þ

NuA ¼
1
A

Z
A

l2
k0ðTH � T0Þ

kðTÞ @T
@y

� �
dA ð46Þ

Nu ¼ 1
A � t

Z
A

Z
t

l2

k0ðTH � T0Þ
kðTÞ @T

@y

� �
dtdA ð47Þ

In this study, three different magnitudes of Ra⁄ s are considered,

and there are Ra� ¼ 1:72� 105 l1
l2
¼ 7

2

� �
, Ra� ¼ 1:55� 106 l1

l2
¼ 7

6

� �
and Ra� ¼ 4:31� 106 l1

l2
¼ 7

10

� �
.

In Fig. 3, in order to take care of both accuracy of the width of
the artificial buffer zones and computational efficiency, the local
Nusselt numbers distributed on the line ij of the heated bottom
surface with three different ratios of l3/l1 = 2/14, l3/l1 = 3/14 and
l3/l1 = 4/14 are indicated, respectively. The computational grids of
the original domain are 70 � 40 � 70, and the computational grids
distributed in the artificial buffer zone are 10, 15 and 20, respec-
tively. The total computational grids are 90 � 40 � 90,
100 � 40 � 100 and 110 � 40 � 110. According to the results, the
local Nusselt numbers of l3/l1 = 3/14 and l3/l1 = 4/14 cases are more
consistent than those of l3/l1 = 2/14 case. Then the width ratio of l3/
l1 = 4/14 is chosen to calculate the following results.

In Fig. 4a, velocity vectors distributed on the edge of the cross
section of ijnm are indicated. The longer the velocity vector is,
the quicker the velocity is. The bottom surface is heated, then cool
fluids are sucked from their surroundings and flow between the
parallel square plates along the bottom surface. Due to the effect
of the buoyancy force, the cool fluids heated by the bottom surface
ascend and impinge on the top surface. Finally, the cooling fluids
turn and flow out of the space between the parallel square plates.
As a result, the variation of the velocities of the cooling fluids flow-
ing into the plates at the edge of im is from quick to slow accom-
panied with a distance increasing from the bottom surface. At a
certain location away from the bottom surface, the velocities of
the cooling fluids become zero. Beyond the location shown in the
figure, the velocities of the cool fluids turn and are gradually accel-
erated to flow out of the plates. Near the bottom surface, the veloc-
ities of the cool fluids are affected by the buoyancy force, and the
velocities of the cool fluids move in a slightly upward direction.
The cool fluids flow out of the plates along the top surface after
they impinge on the top surface, and then the direction of the
velocities of the cool fluids is almost parallel to the top surface.
Fig. 6. Distributions of local Nusselt numbers along ij under different modified
Rayleigh numbers.



W.-S. Fu et al. / International Journal of Heat and Mass Transfer 56 (2013) 35–44 43
In Fig. 4b, velocity vectors distributed on the edge of the diago-
nal plane of gdbe are shown. Since the bottom surface is the square
plate, the amount of fluid flows into the plates mainly via edges of
cd; dh; hg and gc, and the velocity distribution of the amount of
fluid on the four edges mentioned above are the same and sym-
metric. Velocity vectors distributed on ge of the diagonal plane
are then extruded by those distributed on both sides of eacg and
efhg. Consequently, velocity vectors are smaller than those shown
in Fig. 4a.

In Fig. 4c, a thermal field which is the left half side of the cross
section of ijnm is indicated. The darker the color is, the lower the
temperature is. The cooling fluids are gradually heated by the bot-
tom surface from the edge to the center. Then a higher temperature
region is concentrated in a central region of the plates. A big dark
region beside the central region is observed. The phenomenon
means that some cool fluids in the dark region flowing into and
out of the plates are just induced by the ascending heated fluids
in the central region and not directly heated by the bottom surface.

A thermal field on the left half side of the diagonal cross section
is indicated in Fig. 4d. In the central region, the temperatures of the
cool fluids heated by the bottom surface increase and lead the cool
fluids to ascend to the top surface. This phenomenon naturally
causes the thermal field shown in Fig. 4d to be similar to that
shown in Fig. 4c.
Fig. 7. Distributions of (a) local Nusselt numbers along ij and gd (b) contour of local
Nusselt numbers on the heated bottom surface for Ra⁄ = 4.31 � 106.
In Fig. 5, a distribution of streamlines in the parallel square
plates is indicated. Based on the diagonal cross section, the stream-
lines distribute symmetrically. The phenomenon is consistent with
natural convection mode.

In Fig. 6, distributions of local Nusselt numbers along ij under
different modified Rayleigh numbers are shown. Naturally, the lar-
ger the Rayleigh number is, the more remarkable heat transfer rate
can be achieved. The cool fluids from the outside flow between the
plates which leads the magnitudes of the local Nusselt numbers to
be decreased from the edge to center of the bottom surface.

In Fig. 7a, a dimensionless parameter L means lengths of ij and
gd to be normalized by the length of gd. The temperatures of the
fluids in the central region are higher than those in the other
regions which causes the local Nusselt numbers in the central re-
gion to be lower than those in the other regions, and the results
are displayed in Fig. 7a. Shown in Fig. 7b, local Nusselt numbers
distributed on the heated bottom surface are indicated. The darker
the color is, the smaller the local Nusselt number is. Heated dis-
tances from the center (L = 0.5) to the locations of i and j are short-
er than those from the center to the location of g and d.
Consequently, the shape formed by the same local Nusselt num-
bers is similar to a concave quadrangle.
Fig. 8. Distributions of area averaged Nusselt numbers with time under different
modified Rayleigh numbers.

Fig. 9. Comparison of present results and results of Turgut and Onur [22].
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In Fig. 8, variations of area averaged Nusselt numbers obtained
by three different Rayleigh numbers with time are shown, respec-
tively. Naturally, the larger the Rayleigh number is, the larger the
area averaged Nusselt number can be achieved. Except for an early
stage of development, the variations of the local Nusselt numbers
reveal a steady phenomenon.

Shown in Fig. 9, the results of this work compared with the
experimental results of Turgut and Onur [22] are indicated. Main
ranges studied by both works have a slight deviation, and in the
overlap range both results have good consistency. The maximum
error of Nu under Ra⁄ = 1.72 � 105 between the present results
and existing experimental results is 2.72%.

5. Conclusions

A study of natural convection of fluids moving between parallel
squares plates is investigated numerically. Numerical methods of
the Roe scheme, preconditioning and dual time stepping are
adopted for solving governing equations of a low speed compress-
ible flow. Some conclusions are drawn as follows:

1. The model is parallel square plates, phenomena occurring in the
domain are mainly symmetrical. The cool fluids are sucked from
their surroundings and heated by the bottom surface and
ascend and impinge on the top surface.

2. In order to guarantee the accuracy and economize the compu-
tational time, the ratio of the length of the artificial buffer zone
to the length of the domain should be validated, in this work the
ratio is equal to 4/14.

3. The numerical results of this study have good consistency with
the experimental results of the previous study. The method is
suitable for solving other three dimensional problems.
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