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This paper studies a two-machine flow shop scheduling problem with a supporting precedence relation.

The model originates from a real production context of a chemical factory that produces foam-rubber

products. We extend the traditional two-machine flow shop by dividing the operations into two

categories: supporting tasks and regular jobs. In the model, several different compositions of foam

rubber can be mixed at the foam blooming stage, and products are processed at the manufacturing

stage. Each job (product) on the second machine cannot start until its supporting tasks (parts) on the

first machine are all finished and the second machine is not occupied. The objective is to find a schedule

that minimizes the total job completion time. The studied problem is strongly NP-hard. In this paper,

we propose a branch-and-bound algorithm incorporating a lower bound and two dominance rules. We

also design a simple heuristic and an iterated local search (ILS) algorithm to derive approximate

solutions. The performances of the proposed algorithms are examined through computational

experiments.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

This research investigates a flow shop scheduling model
inspired by a real production line of polyurethane (PU) foam at
a manufacturing site in central Taiwan. Due to different chemical
compositions, various types of foams, including general-PU foam,
inert foam, viscoelastic (VE) foam and bamboo charcoal foam, can
be produced by mixing different materials on a foam blooming
machine. While only one foam blooming machine is available, a
certain amount of each composition type can be processed at a
time. When a composition is finished, the foam can be segmented
or sliced into specific sizes for different final products on another
machine. To synthesize a final product (job), different types of
compositions could be required. Consider the following example
production scenario. There are four products to be produced—

multi-layer mattress, single-layer mattress, memory pillow and
seat pad. Materials required for producing the above products
include general PU foam, inert foam and bamboo charcoal foam.
The combination of materials for the four products is shown
below:
Product 1
 Multi-layer mattress requires general-PU foam and
inert foam;
Product 2
 Single-layer mattress requires general PU foam;

Product 3
 Memory pillow requires inert foam;
ll rights reserved.
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Lin).
Product 4
 (Seat pad) requires general PU foam and bamboo
charcoal foam.
Fig. 1 depicts a production sequence (Product 2, Product 3,
Product 1, Product 4). Note that Product 1 cannot be produced
until the processing of general PU foam and inert foam is finished
at the first stage.

The above foam production environment can be modeled as a
two-machine flow shop. Johnson’s seminal work (1954) has
spurred extensive research works on flow shop scheduling with
new manufacturing settings and different objective functions (El-
Bouri et al., 2008; Fondrevelle et al., 2009; Haouari and Hidri,
2008; Haq et al., 2010; Yang, 2010). A flow shop consists of
several machines arranged in series, and each stage consists of a
single machine such that all jobs or products must visit the
machines along the specified route. To minimize the time
required for finishing all jobs in a two-machine flow shop,
Johnson (1954) proposed an elegant algorithm that can solve
the problem in polynomial time. In a two-machine flow shop,
each job (product) has two operations to process on the machines
subject to the specified route, i.e. all jobs need to visit the first
machine and then the second machine. Moreover, each operation
on the second machine cannot start until the corresponding
operation on the first machine is finished and the second machine
is not occupied. The problem studied in this research is an
extension of flow shop scheduling in the following aspects: For
a specific product, it requires one or more types of foams.
Preparation of the required foams is performed on the first
machine, while production of the final products is carried out
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Fig. 1. Gantt chart of an example production schedule.
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on the second machine. The production process of a product on
the second machine cannot start until the second machine is
available and all the required foams are prepared and ready for
use. The production model in this research exhibits a clear
difference from traditional two-machine flow shop scheduling.
A multiple-to-multiple relation exists between machine-one
operations and machine-two operations because a type of foam
can support one or more products and vice versa. This feature
exhibits a significant difference from the one-to-one relationship
inherent in the traditional two-machine flow shop. In summary,
in the studied model all operations are categorized into two
types: supporting tasks and regular jobs. Machine one is dedicated
to the supporting tasks and machine two to the regular jobs. A job
can be processed only if the second machine is free and all of its
supporting tasks have been done on the first machine. The model
was also studied by Chen and Lee (2009) in the context of cross-
docking to minimize the makespan of the jobs on the second
machine. This paper will investigate the scheduling problem of
minimizing the sum of job completion times on the second
machine, in short, the total job completion time. This objective
function reflects not only the service quality, indicating the
average customer waiting time, but also the work-in-process
inventory cost.

The rest of this paper is organized as follows. Section 2
presents formal statements of the problem definition as well as
reviews related previous works. In Section 3, we will propose an
integer linear programming model and some preliminary proper-
ties that will assist the development of solution algorithms.
Section 4 is dedicated to the development of a lower bound and
two dominance rules that are to be included in a branch-and-
bound algorithm for solving the problem optimally. To derive
production schedules in an acceptable time, two approximation
algorithms, including a greedy heuristic and an iterated local
search (ILS) algorithm, are designed in Section 5. A computational
study on the proposed algorithms is given in Section 6. We give
conclusions and suggest potential research directions in Section 7.
2. Problem statements and literature review

This section first gives formal statements of the studied
problem. Notation and an example follow. Review on related
works will also be presented.

The scheduling problem is formally defined as follows: There
are two disjoint sets of operations A¼ fa1,a2, . . . ,amg and
B¼ fb1,b2, . . . ,bng to process on two machines MA and MB, respec-
tively. Processing times of aiAA and bjAB are denoted by pa

i and
pb

j , respectively. The relation between the operations of sets A and
B is specified by the supporting relation RDA� B such that for
aiAA and bjAB, if ðai,bjÞAR then operation bj cannot start on
machine MB unless operation ai is complete on machine MA.
Hereafter, we call the elements of set A (supporting) tasks and
the elements of set B (regular) jobs. Let ai denote the subset of
jobs supported by task i, and bj the subset of tasks supporting job
j. For example, if R¼ fða1,b1Þ,ða1,b2Þ,ða2,b1Þ,ða3,b2Þg then
a1 ¼ f1,2g,a2 ¼ f1g,a3 ¼ f2g, and b1 ¼ f1,2g,b2 ¼ f1,3g.
The uniqueness of the studied problem lies in the virtual but
mandatory role of supporting operations of set A. The setting of
machine MA and machine MB can be treated as a flow shop. The
sum of processing times of the tasks in bj on machine MA

corresponds to the processing time of job bj on the first machine
in a traditional two-machine flow shop, where relationR is a one-
to-one and onto function, or in other words, 9ai9¼ 1 for all tasks ai

and 9bj9¼ 1 for all jobs bj. This is depicted in Fig. 2. In the studied
problem, the supporting tasks of a job are not always processed
consecutively on machine MA. Similarly, the jobs supported by a
task are not required to be executed consecutively on machine
MB, either. Therefore, the structure of the problem setting is much
more complicated. This paper investigates the objective function
of the total completion time.

Throughout the paper, a sequence of tasks on machine MA is
denoted by s¼ ðs1, . . . ,smÞ, and a sequence of jobs on machine MB

by S¼ ðS1, . . . ,SnÞ. In a particular schedule, CA
i denotes the com-

pletion time of task ai on MA, and CB
j the completion time of job bj

on MB. Function Zðs,SÞ gives the objective value under sequences s

and S. Later, we will show that parameter s can be omitted for it
can be determined once a job S is given.

To illustrate the problem definition, we consider the following
instance. There are five tasks A¼ fa1,a2,a3,a4,a5g and four jobs
B¼ fb1,b2,b3,b4g. The processing times are shown below.
tasks
 a1
 a2
 a3
 a4
 a5
pA
i

6
 3
 2
 5
 9
jobs
 b1
 b2
 b3
 b4
pj
B
 10
 3
 1
 7
The supporting relation is R¼ fða1,b1Þ,ða1,b3Þ,ða2,b1Þ,ða2,b4Þ,
ða3,b2Þ,ða3,b3Þ,ða4,b3Þ,ða5,b4Þg, as depicted in Fig. 3(a). Given
sequence s¼(3, 4, 1, 2, 5) on MA and sequence S¼(2, 3, 1, 4) on
MB, we have the corresponding Gantt chart shown in Fig. 3(b). The
completion times of the jobs on machine MB are 5, 14, 26 and 33.
Therefore, the total completion time is 78.

Since Johnson’s paper (1954), flow shop scheduling has been
widely studied in the literature. While the minimization of
makespan in a two-machine flow shop (F299Cmax) can be solved
by Johnson’s Oðn log nÞ-time algorithm, the minimization of total
completion time (F2J

P
Cj) is nevertheless strongly NP-hard

(Garey et al., 1976). With the strongly NP-hard F2J
P

Cj problem
as a special case, the problem we are considering is also
computationally intractable. To the best of our knowledge, there
are two models related to the production setting of this paper.
First, Chen and Lee (2009) studied a cross-docking problem where
a warehouse receives goods from various vendors and then
repackages the goods for distributions to various destinations.
The operations can be regarded as the two-machine flow shop
setting investigated in this paper. They proved the problem of
makespan minimization to be strongly NP-hard, proposed a
branch-and-bound algorithm, and designed a heuristic algorithm.
It is shown that the ratio between the heuristic solution and
optimal solution is not greater than 3/2. The second related model
is due to Lin et al. 2010 where all of the supporting tasks and the
regular jobs are processed on a single machine. The model stems
from streaming and scheduling of multi-media objects. They
discussed the complexity status of three objective functions,
namely Lmax,

P
wjCj, and

P
wjUj, on the single-machine setting

and extended the existing complexity results of single-machine
scheduling with precedence constraints.



Fig. 3. Example for problem definition. (a) Example of supporting relation. (b) Gantt chart of the example schedule.

Fig. 2. Flow shop with a supporting relation and traditional flow shop. (a) Flow shop with a supporting relation. (b) Traditional flow shop.
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3. Mathematical model and preliminary properties

In this section, a mathematical programming model will be
given to describe the problem. We will develop two properties
that not only address complexity issues but also serve as the base
of the development of exact and approximation algorithms.

Integer linear program. There are three approaches commonly
adopted for formulating scheduling problems into integer (linear)
programs; namely, positional, time-indexed, and sequencing
(Ziaee and Sadjadi, 2007). In this paper, we adopt positional
variables in the program. Let xik be a binary variable that equals
1 if task ai is scheduled at position k on machine MA and equals
0 otherwise. Let yjl be a binary variable that equals 1 if job bj is
scheduled at position l on machine MB and equals 0 otherwise.

ðILPÞ

Minimize
X

1r jrn

CB
½j� ð1Þ

subject to CA
½1� ¼

Xm

i ¼ 1

xi1pa
i ; ð2Þ

CA
½k� ¼ CA

½k�1� þ
Xm

i ¼ 1

xikpa
i , 2rkrm; ð3Þ

CB
½l�ZCB

½l�1� þ
Xn

j ¼ 1

yjlp
b
j , 2r lrn; ð4Þ

Xn

l ¼ 1

yjlC
B
½l�Z

Xm

k ¼ 1

xikCA
½k� þpb

j 8ði,jÞAR; ð5Þ
Xm

i ¼ 1

xik ¼ 1, 1rkrm; ð6Þ

Xn

j ¼ 1

yjl ¼ 1, 1r lrn; ð7Þ

Xm

k ¼ 1

xik ¼ 1, 1r irm; ð8Þ

Xn

l ¼ 1

yjl ¼ 1, 1r jrn; ð9Þ

xik,yjlAf0,1g, 1r i, krm, 1r j, lrn: ð10Þ

Eq. (1) gives the objective function of minimizing the sum of
job completion times. Constraints (2) enforce the processing of
any ai on machine MA to start from time 0 onward. Constraints (3)
dictate that a supporting task cannot be processed before its
immediate predecessor is completed on machine MA. Constraints
(4) give similar restrictions for jobs on machine MB. Constraints
(5) require that job bj cannot start on machine MB before all of its
supporting tasks are completed on machine MA. Constraints
(6) and (7) enforce that exactly one operation is allowed at any
specific position on either machine. On the contrary, any task or
any job can be allocated to exactly one position on their dedicated
machines. This is reflected in constraints (8) and (9). Constraints
(10) confine the decision variables to be either 0 or 1. The model
uses m2þn2 decision variables and O(mn) constraints.

Preliminary properties. In this section, we present the proper-
ties that will be used in the development of exact and approx-
imation algorithms. The first result states that if a processing
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sequence of jobs of set B is given a priori, then a sequence of
supporting tasks of set A which attains the minimum total
completion time can be determined in polynomial time.

Algorithm. S-to-s

Begin
Let S¼ ðS1, . . . ,SnÞ be a given job sequence, and s¼ ðÞ an

empty task sequence.
For j¼1 To n

Begin
Set s¼ s� sðSjÞ, where sðSjÞ is an arbitrary permutation of

the tasks of bSj
, and � is a sequence concatenation operator.

For j0 ¼ jþ1 To n

Begin
Set bSj0

¼ bSj0
\bSj

.

End
End
Return sequence s.

End

In the algorithm, the loop on index j iteratively augments
sequence s by appending a subsequence of tasks supporting job j,
and the loop on index j0 removes the newly sequenced tasks from
the supporting relation with the unscheduled jobs.

Theorem 1. Given a sequence S of jobs of set B, ALGORITHM S-to-s

optimally produces a sequence of tasks of set A in Oð9R9Þ time.

Proof. Let s0as be an optimal sequence of tasks on machine MA

subject to the given sequence S on machine MB. Assume i is the
smallest index such that sias0i. Then, in sequence s0, there must be
some position l4 i with si ¼ sl

0. Move task asl
0 backward to the

position immediately preceding task as0
i
. It is clear that the

completion time of any job will not increase after the move.
Repeating the move, if necessary, we can come up with sequence
s without increasing the total completion time. &

Theorem 1 states that when the sequence of jobs on machine
MB is settled, the sequence of tasks on machine MA can be
subsequently determined in a greedy manner. It is interesting to
consider the reverse of the scenario. Given a processing sequence
of tasks on MA, it however remains hard to determine an optimal
sequence of jobs on machine MB.

Theorem 2. Given a sequence s of tasks of set A, to determine an

optimal sequence of jobs of set B is strongly NP-hard.

Proof. We show the hardness of determining a optimal sequence
of jobs of B via a reduction from the single-machine scheduling
problem of minimizing total completion time subject to release
dates, i.e. 19ri9

P
Ci (Garey and Johnson, 1979). Consider an

instance of t jobs with processing times pi and release dates ri

of the 19ri9
P

Ci problem. Re-index the jobs in non-decreasing
order of release dates, i.e. r1rr2r � � �rrt . An instance of the
scheduling problem is constructed by letting
m¼ n¼ t; pa

1 ¼ r1; p
a
i ¼ ri�ri�1 for 2r irn; pb

j ¼ pj for 1r jrn.
Given the sequence s¼ ð1,2, . . . ,tÞ of supporting tasks, we want
to find an optimal sequence of jobs. Since this is equivalent to
solving an instance of the problem 19ri9

P
Ci which is NP-hard,

the problem considered is NP-hard as well. &

From the problem definition, to reach an optimal schedule the
decision is to compose an optimal combination of machine-one
sequence s and machine-two sequence S. The number of possible
combinations is Oðm!n!Þ, which explodes exceedingly fast when m

and n grow large. With the above two properties, it is evident that
the hardness of the studied problem is mainly due to the
sequencing issue on the second machine. Therefore, the develop-
ment of solution algorithms, either exact or approximation, can
be collated as sequencing the jobs rather than examining the
complicated combinations of task sequences and job sequences.
That is, the solution space is reduced to Oðn!Þ, although it is still
exponential in terms of input length.
4. Branch-and-bound algorithm

The strong NP-hardness indicates that it is very unlikely to
design a polynomial time algorithm for producing optimal solu-
tions. Branch-and-bound algorithm is one of the exact methods
widely adopted for tackling hard optimization problems. Effective
lower bounds and dominance rules, used to prune off non-
promising solutions, are crucial to the efficiency of branch-and-
bound algorithms. Based upon the optimality properties
addressed in the previous section, we develop a lower bound
and two dominance rules. To provide a better starting point for
the branch-and-bound algorithm, a heuristic is proposed to
provide the initial incumbent values. As for the branching rule,
we adopt the depth-first search strategy, which exhibits the
advantages of low memory requirement and easy implementa-
tions. The unscheduled jobs are examined for further recursion in
the order specified by Johnson’s sequence.

Lower bound. By Theorem 1, the enumeration tree will be
explored to enumerate all possible job sequences, i.e. each node
corresponds to a subset of scheduled jobs. Given a partial job
sequence, the algorithm in the search tree produces the corre-
sponding partial sequence of supporting tasks using ALGORITHM S-
to-s. Note that ALGORITHM S-to-s can be deployed to find a task
sequence minimizing the makespan (Cmax) as well because the
proof of Theorem 1 still works. The task sequence for minimizing
makespan subject to a given job sequence is crucial to further
discussion because it provides the validity of the development of
dominance rules and lower bounds.

To minimize the total job completion time, the studied
problem is reshaped into a single-machine scheduling problem
with different release times (i.e. 19rj9

P
Cj problem). Ahmadi and

Bagchi (1990) tackled this problem by exploiting the SRPT (Short-
est Remaining Processing Time) rule to solve the preemptive
relaxation in Oðn log nÞ time. Adjustment is needed before deploy-
ing the same technique. To create an instance of problem
19rj9

P
Cj, let pj

b be the processing time of job Jj, and let the sumP
iAbj

pa
i be the release date rj of job Jj. It is worthy to emphasize

again that the supporting tasks are shared. As a consequence,
given a partial sequence S in the enumeration tree, the release
date rj of unscheduled job Jj is recalculated by excluding the
supporting tasks that are already finished on machine MA. Then,
the adjusted release dates are used to implement the SRPT rule.

Herewith we use the same numerical example of Section 2.
Assume that the partial sequence S consists of only job b2. Then,
CA

1 ¼ 2 and CB
1 ¼ 5. The sums of processing lengths of supporting

tasks for the unscheduled jobs b1,b3,b4 become 9, 11 and 9,
respectively. The new release dates rj are now 11, 13 and 11,
respectively, by including CA

1. Consequently, the values shown in
Fig. 4 follow.

With CB
3ðSRPTÞ ¼ 14,CB

4ðSRPTÞ ¼ 21,CB
1ðSRPTÞ ¼ 31, the lower

bound on the total completion time is calculated as
5þ14þ21þ31¼71.

Dominance rules. Making good use of dominance rules can
curtail a great amount of unnecessary nodes of an enumeration
tree. Dominance rules tell that if certain conditions are met, then
some branches can be eliminated without sacrificing the optimal
solution.



Fig. 4. Result of the SRPT rule.
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D1: Consider a partial sequence s and two jobs bx and by to be

scheduled in the next two consecutive positions after s. If bxDby and

pb
x rpb

y , then the node rooted at partial schedule sbybx can be

eliminated.

Proof. Assume partial sequence s and jobs by,bx satisfy the
conditions of D1. Let t be the starting time of job by on MB subject
to sbybx. Because bxDby, job Jx is ready for processing on MB

when job by is finished. The sum of completion times of bx and by

in sequence sbybx is thus ðtþpb
yÞþðtþpb

yþpb
xÞ. Consider the

sequence sbxby obtained from swapping the positions of jobs by

and bx. The starting time t0 of job bx is not later than t, i.e. t0rt.
The starting time of job by is not greater than maxft,t0 þpb

xg. The
sum of completion times of bx and by in sbxby is not greater than
ðt0 þpb

xÞþðmaxft,t0 þpb
xgþpb

yÞ. The premises t0rt and pb
x rpb

y boil
down to ðt0 þpb

xÞþðmaxft,t0 þpb
xgþpb

yÞr ðtþpb
yÞþðtþpb

yþpb
x Þ.

Moreover, the completion time of sbxby is maxft,t0 þpb
xgþpb

y ,
which is not greater than the completion time tþpb

yþpb
x of partial

schedule sbybx. In other words, partial schedule sbxby has a
shorter completion time and a smaller total completion time
than partial schedule sbybx. &

Note that the two jobs of concern in D1 must be adjacent,
otherwise the rule may not work. The second dominance rule
follows from the calculation of the cost already incurred by the
scheduled jobs and an estimate of the cost of the remaining jobs.
Della Croce et al. (1996) deployed the basic concept of dynamic
programming approach to formulate a dominance rule, which
states that for two different partial schedules S and S0 of the same
subset B0 of jobs, if S has a smaller total completion time and a
shorter makespan, then schedule S0 can be pruned. To realize this
concept in the studied problem, we consider the following
inequality:

ZðSÞ�ZðS0Þþðn�9B09ÞðCS
max�CS0

maxÞr0, ð11Þ

where CS
max (respectively, CS0

max) denotes the makespan of S

(respectively, S0). If partial schedule S has a smaller objective
value and completes the jobs earlier, then Eq. (11) is satisfied and
the partial schedule S0 is fathomed. Note that in the case where
partial schedule S completes the jobs later (i.e. makespan is
larger), if the advantage in the total completion time (ZðSÞ�ZðS0Þ)
overrides the inferior influence over the unscheduled jobs
(ðn�9B09ÞðCS

max�CS0

maxÞ), then we still can curtail the branching
toward partial schedule S0. The discussion leads to the second
dominance rule.

D2: If inequality (11) is satisfied, then the subtree rooted at

partial schedule S0 can be eliminated.

Branch-and-bound algorithm. With the lower bound and two
dominance rules addressed above, we design a branch-and-bound
algorithm for deriving optimal solutions to the studied problem.
Depth-first search is employed as the branching strategy for the
branch-and-bound algorithm. Such a strategy merits simplicity in
implementation and avoids exceeding demand for computer
memory. The branch-and-bound algorithm starts with an initial
solution derived by a greedy heuristic algorithm designed in the
next section to have a better starting point. During the course of
exploration of the search tree, rule D1 is applied to determine if a
branch can be dropped or not. When the answer is negative, the
lower bound of the partial solution will be calculated. If the
incumbent value is less than or equal to the lower bound, then we
eliminate the node. If the node passes the two tests, rule D2 is
examined. The exploration proceeds until all nodes are visited or
pruned. If the algorithm can complete the exploration within a
given limit on the execution time, the optimal solution will be
found and reported. On the other hand, if the algorithm does not
complete its execution when the specified time limit is elapsed,
then it will abort with failure and report the best incumbent value
found thus far.
5. Heuristic algorithms

Although the branch-and-bound approach is designed to
produce optimal solutions, an exceedingly long running time
can be demanded when the problem size grows large. For large-
scale problems, optimal solutions cannot be obtained within
reasonable time. Therefore, seeking effective approximate solu-
tions is an alternative for decision makers in practical applica-
tions. In this section, we will develop a heuristic as well as a
meta-heuristic to produce quality schedules in an acceptable
time. The heuristic method dispatches the jobs in a greedy
manner. The algorithm is outlined as follows.

HEURISTIC G

Step 1 : Let A0 ¼ | be the set of scheduled supporting tasks.
Calculate the total processing time pj ¼ pb

j þ
P

iAbj
pa

i for
each job bj, where bj ¼ bj\A

0.
Step 2 : If there are jobs that will not induce idle times on

machine MB, then select from these jobs the one that
attains the minimum makespan when dispatched;
otherwise, select the job that has the minimum make-
span when dispatched. Call this job bjn . Set
A0 ¼ A0 [ bjn and bk ¼ bk\bjn for all unscheduled jobs bk.
Repeat the process until all jobs are scheduled.

Step 3 : Stop and report the solution.

Note that when selecting the next job to schedule, if there are
more than one job inducing the smallest makespan, we select the
one that has the largest number of supporting tasks. This can be
easily justified. If all of the supporting tasks on machine MA are
finished, then the remaining jobs on machine MB can be processed
by the SPT rule directly.

We next design an iterated local search (ILS) algorithm to
improve the solution derived by the greedy Heuristic G. Iterated
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local search is a simple and powerful meta-heuristic that itera-
tively applies local search to improve the solutions. ILS consists in
three main components: Local Search, Perturbation and Acceptance

Criterion. Local Search finds local optimum by an iterative
improvement method. The Perturbation phase is to avoid being
trapped at a local optimal solution so as to explore more regions
of the solution space. The Acceptance Criterion gives the condi-
tions of the acceptance of new solutions. With regard to the
literature, the basic structure of ILS is given in Stutzle (1998) and
can be found also in Lourenco et al. (2001). Stutzle (1998) and
Dong et al. (2009) applied ILS to solve the permutation flow shop
problem and compared it with other heuristics for performance
assessment. ILS is also applied to resource-constrained project
scheduling (Ballestin and Trautmann, 2008), vehicle routing
(Prins et al., 2009), scheduling of machines and automated guided
vehicles (Deroussi et al., 2007), just to name a few. Previous works
showed that ILS runs fast and can convey impressive solution
quality. The construct of ILS can be outlined as follows:
PROCEDURE ITERATED LOCAL SEARCH

Generate initial solution S0.
S¼ LocalSearch(S0).
repeat

S0 ¼ PerturbationðSÞ.

S00 ¼ LocalSearchðS0Þ:

S¼ AcceptanceCriterionðS,S00Þ:
until termination conditions are met.
Detail specifications for each stage of the iterated local search
are elaborated in the following.

Initial solution: The initial solution is generated by HEURISTIC G.
Local search: One of the major ingredients of local search

algorithms is concerned about the neighborhood struc-
tures. The approaches commonly adopted for defining
the neighborhood of a solution include, although not
limited to, (1) swap-moves that swap two neighboring
positions i and iþ1, (2) exchange-moves that swap two
arbitrary positions i and j, and (3) insertion-moves that
select two positions i and j and insert the job at the i-th
position to the j-th position (Stutzle, 1998). This paper
uses insertion-moves, which are realized by two for

loops to ensure that every pair of positions is consid-
ered. During the iterative process, if a better solution or
sequence is encountered, the local search procedure will
start the insertion-moves again from scratch.

Perturbation: Due to the fact that the solution yielded by a local
search algorithm is not necessarily global optimal, the
perturbation phase of solution modifications is a very
important mechanism to allow for the possibility of
exploring other regions of the solution space. It can
enable escape from local optimum. Ruiz and Stutzle
(2007) applies insertion neighborhood of perturbation,
which is commonly regarded as being a very good
choice for the permutation flow shop problem.
Tasgetiren et al. (2011) tested perturbation values ran-
ging from 1 to 20, and their experiments showed that
swap-moves or insertion-moves generated better
results with perturbation values equal to 1 or 2. In the
studied problem, the supporting relation in some sense
is a kind of precedence constraint, from tasks to jobs. If
we adopt a ‘‘macro’’ operation, say 2-opt moves, on S,
then the structure of sequence s will be drastically
changed. With such macro operations, diversity could
be achieved, but in the meantime fluctuation would also
emerge. Therefore, we adopt exchange-moves in the
perturbation phase. Applying an exchange-move of
two randomly selected job positions i and j to the
schedule S¼ ð1, . . . ,i, . . . ,j, . . . ,nÞ yields the new schedule
S0 ¼ ð1, . . . ,j, . . . ,i, . . . ,nÞ. After the perturbation, sequence
S0 is used as the seed for invoking local search. After that,
a new solution S00 emerges.

Acceptance criterion: As for acceptance criterion, we consider
the simple one that has been widely adopted by pre-
vious ILS works: If the objective value of new schedule
S00 is better than that of the original schedule S, then we
accept sequence S00 and replace the current schedule S

with it.
In the implementation of ILS for the studied problem, the
termination condition is defined by an upper limit on the number
of iterations exercised. The limit is set to be 200 iterations.
6. Computational study

Previous sections presented a branch and bound algorithm for
finding exact solutions, and a greedy heuristic and a meta-
heuristic ILS algorithm for approximate solutions. This section is
dedicated to computational experiments for comparison and
analysis of the performances of the proposed algorithms. The
programs were coded in Cþþ and executed on a personal com-
puter with an Intel Pentium(R) 4 CPU (3.4 GHz) with 0.99G RAM
running Microsoft Windows XP Professional. Function ‘‘srand((un-

signed)time(NULL))’’ was used to generate random numbers.
Processing times were randomly drawn from the uniform discrete
interval [1, 100]. For each pair of task ai and job bj, if a random
number drawn from interval [0, 1] is smaller than parameter 0.5,
then task ai supports job bj, i.e. ðai,bjÞAR. The parameters m and n

representing the numbers of operations on the two machines
were taken into account simultaneously for determining problem
sizes. For each combination of n and m, we generated and tested
10 independent instances. In the following, the numerical results
from the experiments are analyzed in two parts. The first part is
for exact solutions and the second part is for approximate
solutions.

In the first part concerning optimal solutions, two branch-and-
bound algorithms were examined. The first one (B&B) is equipped
with the lower bound derived from the SRPT solution of the
19rj9

P
Cj problem, and the second one (B&B_D) further incorpo-

rates two dominance rules D1 and D2. Heuristic G was deployed
to generate initial solutions for the branch-and-bound algorithms.
A limit of 30 min was given to the execution of the branch-and-
bound algorithms. If the algorithms could not completely exam-
ine the enumeration tree, then they aborted with failures. As
some of the instances were not successfully solved, we kept track
the detail statistics of only those optimally solved. The perfor-
mance indices investigated in the experiment include the number
of instances optimally solved (#Opt), the average number of
nodes explored (Nodes), and the average elapsed running time
(Time). The problem size n ranges from 10 to 40 with an
increment of 5. Table 1 summarizes the performance results of
the two branch-and-bound algorithms with the sizes of
m¼ d0:25ne, m¼ d0:5ne and n¼m. The numerical values for each
problem size n and m are averaged over the solved instances from
each 10 problem instances.

We can readily see from the statistics that the execution time
and the number of visited nodes are significantly reduced if the
two dominance rules are incorporated. For example, for solving
the setting of n¼25 and m¼ d0:25ne, the average running time of
algorithm B&B is 82.09 s, and that of algorithm B&B_D is only
3.57 s. The results also suggest that the values of m plays a crucial



Table 1
Computational results of branch-and-bound algorithms.

n #Opt B&B #Opt B&B_D

Time Node Time Node

Min Avg Max Min Avg Max Min Avg Max Min Avg Max

m¼0.25n

10 10 0.00 0.00 0.00 10 209 552 10 0.00 0.00 0.00 10 94 252

15 10 0.00 0.06 0.23 43 15,236 56,580 10 0.00 0.11 0.03 40 3023 11,454

20 10 0.02 0.58 3.34 1919 100,047 586,493 10 0.00 0.08 0.23 675 13,329 39,885

25 10 0.77 82.09 623.70 80,595 9,289,494 69,918,835 10 0.23 3.57 20.55 27,610 451,817 2,656,050

30 7 6.36 326.27 719.64 513,969 27,366,574 60,553,746 9 1.03 37.26 195.66 92,865 3,267,712 17,019,896

35 3 147.59 387.96 704.34 8,177,593 21,860,926 40,219,927 8 15.20 202.93 505.78 1,030,298 13,734,189 35,065,211

40 1 1327.81 1327.81 1327.81 57,060,164 57,060,164 57,060,164 4 102.56 501.39 876.92 5,226,700 27,285,385 49,296,815

m¼0.5n

10 10 0.00 0.00 0.02 37 616 2190 10 0.00 0.00 0.00 37 289 947

15 10 0.06 0.63 3.52 14,567 161,138 920,569 10 0.03 0.12 0.31 9264 29,908 78,183

20 10 1.27 22.97 97.97 146,826 2,923,146 12,515,288 10 0.25 1.76 4.33 33,639 233,734 572,985

25 8 62.50 524.13 1246.00 5,109,862 4,594,456 112,392,401 10 9.74 48.19 151.77 828,691 4,394,067 13,999,552

30 4 244.91 977.89 1400.33 14,997,852 21,267,628 88,587,485 7 35.09 205.82 427.63 2,339,135 13,765,936 28,691,204

35 1 1355.69 1355.69 1355.69 58,578,183 58,578,183 58,578,183 1 223.13 223.13 223.13 11,152,226 11,152,226 11,152,226

m¼n

10 10 0.00 0.01 0.03 357 3565 11,182 10 0.00 0.00 0.02 246 1339 2768

15 10 0.50 5.96 18.44 76,983 997,053 3,104,254 10 0.14 0.57 1.05 24,796 102,470 187,893

20 10 21.66 300.23 706.33 2,334,570 36,860,095 89,919,773 10 2.94 13.59 32.52 367,149 1,750,577 4,221,092

25 1 621.48 621.48 621.48 37,474,591 37,474,591 37,474,591 5 96.41 312.39 628.59 6,276,946 21,190,718 42,573,752
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role in determining the level of hardness of the problem. As the
number of tasks m grows, more entries would emerge in the
supporting relation and the problem thus becomes relatively hard
to solve. While all instances of 25 jobs with m¼ d0:25ne and
m¼ d0:5ne were solved by algorithm B&B_D, only 5 of the 10
instances with m¼n were solved. As shown in the literature, the
best exact algorithms of the classical F2J

P
Cj problem can solve

instances of around 40 jobs (Della Croce et al., 1996, 2002;
Hoogeveen et al., 2006; Lin and Wu, 2005). The problem setting
studied in this paper is much more complicated than F2J

P
Cj.

Therefore, the proposed properties are quite useful in curtailing
unnecessary branching.

The second part of the experiment was conducted for the
appraisal of two approximation algorithms. We used the same
test instances and the solution values derived by the branch-and-
bound as in Table 1 for m¼ d0:25ne. The test instances of the
settings m¼ d0:5ne and m¼ dne were not used because less exact
solutions were successfully reported. The greedy method Heur-
istic G was invoked first and then the ILS algorithm was applied
for further improvement. Solution values of the problems with n

ranging from 10 to 40 are shown in Table 2. The underlined
entries are the incumbent values reported when the branch-and-
bound algorithm aborted upon the limit of 30 min. The rows
entitled ‘‘avg’’ contain the average objective values over each 10
instances. The error ratios in percentages are calculated as

Avg_devð%Þ ¼
ðAppx�B&B_DÞ � 100%

Appx
,

where Appx and B&B_D respectively denote the solution values
given by the approximation approaches and the branch-and-
bound algorithms with two dominance rules. The error ratios of
ILS are around 0.1%. Examining the numerical results, we can find
that ILS even provides better solutions than the branch-and-
bound algorithms that failed to completely explore the enumera-
tion tree. Consider the last instance of (n¼40, m¼10) as an
example, the best solution value ever found before the termina-
tion of the two branch-and-bound algorithms is 37,191, while
that given by ILS is 36,051. In other words, ILS is not only efficient
(using less execution time) but sometimes more effective (giving
better solutions) than exact methods within a time limit of
30 min. Another observation is about the execution of branch-
and-bound algorithms. Consider the second instance of (n¼40,
m¼10). Although algorithm B&B_D encountered the optimal
solution value 39,713, it did not possess any information to
terminate the execution until the time limit was reached.

Next we examine all approaches, including CPLEX implemen-
tation of the proposed integer linear programming model, with 10
test instances of (n¼200, m¼50). The results are shown in
Table 3. For each instance, we first deployed the greedy heuristic
G and then improve the solution by ILS. The solutions generated
by heuristic G and ILS were used as the initial incumbent values
for the branch-and-bound algorithm. The corresponding columns
are B&BG and B&BI. A time limit of 30 min was also imposed on
the branch-and-bound algorithm and the CPLEX implementation.
The column entitled ILS contains the solution reported by two
execution runs of the ILS algorithm such that for a given instance,
ILS was invoked to provide an initial solution for the branch-and-
bound, and the incumbent solution kept at the termination of the
branch-and-bound algorithm was used as the seed solution for
further improvement by deploying ILS for another 200 iterations.
Such a design is due to the fact that the running time of ILS is less
than 1 min which is relatively negligible than the execution time
(30 min) of CPLEX implementation and branch-and-bound algo-
rithm. The results are shown in the column entitled B&BIþ ILS.
From Table 3, it is evident that the branch-and-bound algorithms
did not find solutions better than the initial values given by the
greedy heuristic or the ILS algorithm. Better solutions can be
found when the execution of the ILS algorithm was further
exercised. The CPLEX solutions are even more inferior. The
average CPLEX solution value is 1,491,376, while the average
B&BIþ ILS solution value is only 1,042,097.

From the above discussion, we may conclude that the pro-
posed lower bound and dominance rules really help to reduce the
efforts required for locating optimal solutions. For small-scale
instances, ILS can produce optimal solutions or approximate
solutions with negligible errors. When the instances contain more
jobs, ILS still exhibits impressive performances in comparison
with the exact approaches. The results suggest that if no stronger



Table 2
Solution quality for instances with 40 or less jobs.

Instance n¼ 10,m¼ 3 n¼ 15,m¼ 5 n¼ 20,m¼ 5 n¼ 25,m¼ 7

B&B B&B_D Greedy ILS B&B B&B_D Greedy ILS B&B B&B_D Greedy ILS B&B B&B_D Greedy ILS

1 2592 2592 2592 2592 5488 5488 5561 5488 8723 8723 8855 8723 13,628 13,628 14,570 13,628

2 3334 3334 3578 3334 5593 5593 6578 5593 9263 9263 9308 9263 13,398 13,398 14,065 13,398

3 2161 2161 2161 2161 4155 4155 5391 4155 9867 9867 10,645 9867 18,019 18,019 18,626 18,019

4 2525 2525 2944 2525 3107 3107 3343 3107 10363 10,363 10,391 10,363 14,327 14,327 16,061 14,327

5 2088 2088 2495 2088 5790 5790 6411 5790 8303 8303 8779 8341 13,529 13,529 13,740 13,529

6 1945 1945 2196 1945 4251 4251 4877 4251 9482 9482 9497 9482 14,865 14,865 14,865 14,865

7 1565 1565 1565 1565 4510 4510 4514 4510 7029 7029 7600 7029 13,504 13,504 13,808 13,573

8 2228 2228 2505 2228 5532 5532 5772 5532 7591 7591 7627 7591 15,593 15,593 17,265 15,593

9 2458 2458 2458 2458 4253 4253 4296 4253 9649 9649 9649 9649 13,860 13,860 15,403 13,914

10 2136 2136 2220 2136 5936 5936 5936 5936 7503 7503 7866 7503 12,880 12,880 13,658 12,880

Avg_obj 2303.2 2303.2 2471.4 2303.2 4861.5 4861.5 5267.9 4861.5 8777.3 8777.3 9021.7 8781.1 14,360.3 14,360 15,206 14,373

Avg_dev (%) 6.8 0.0 7.7 0.0 2.7 0.0 5.6 0.1

Instance n¼ 30,m¼ 8 n¼ 35,m¼ 9 n¼ 40,m¼ 10

B&B B&B_D Greedy ILS B&B B&B_D Greedy ILS B&B B&B_D Greedy ILS

1 20,369 20,369 21,237 20,369 28,890 28,888 30,784 28,888 35,532 35,398 35,532 35,532

2 19,555 19,555 20,319 19,555 25,894 25,894 26,746 25,971 39,713 39,713 40,050 39,713

3 18,772 18,772 20,797 18,772 22,639 22,379 23,708 22,482 38,273 38,273 40,505 37,814

4 20,086 20,069 20,086 20,069 21,284 21,160 21,563 21,284 39,819 39,819 41,023 39,819

5 18,113 18,113 18,119 18,113 30,380 30,302 32,575 30,338 36,939 36,055 38,701 36,055

6 21,873 21,873 24,129 21,873 31,744 31,744 34,824 31,744 38,275 36,767 38,532 36,527

7 22,724 22,724 23,087 22,832 26,373 26,373 26,728 26,373 35,681 35,681 36,174 34,768

8 15,799 15,799 16,080 15,799 24,588 24,588 24,699 24,588 37,456 36,724 39,997 36,464

9 16,397 16,397 17,034 16,397 29,020 29,020 29,700 29,020 40,824 40,389 42,272 39,060

10 18,227 18,227 19,437 18,227 28,687 28,452 31,151 28,452 37,191 37,191 37,363 36,051

Avg 19,601 19,092 20,027 19,104 27,096 27,192 28,498 27,221 39,819 37,746 38,826.5 37,779.8

Avg_dev(%) 5 0 4.6 0.1 2.8 0.1
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Table 3
Solution values of 10 large instances.

Instance n ¼200, m ¼50

B&BG B&BI Greedy B&BIþ ILS CPLEX

1 1,064,893 1,063,035 1,064,893 1,060,902 1,475,739

2 995,598 994,345 995,598 990,737 1,422,659

3 1,020,419 1,008,944 1,020,419 1,008,944 1,457,987

4 1,043,034 1,039,199 1,043,034 1,039,199 1,483,254

5 1,194,550 1,179,502 1,194,550 1,179,502 1,649,472

6 1,113,713 1,105,535 1,113,713 1,103,055 1,576,792

7 1,009,519 1,008,472 1,009,519 1,007,271 1,437,228

8 974,819 959,338 974,819 959,338 1,393,268

9 1,020,943 1,012,749 1,020,943 994,125 1,470,480

10 1,087,319 1,077,901 1,087,319 1,077,901 1,546,883

Avg 1,052,481 1,044,902 1,052,481 1,042,097 1,491,376
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properties can be developed for the exact approaches, then the
designed approximation approaches would be more appropriate
for dealing with the studied problem.
7. Concluding remarks

From a real production context of foam-related products, we
formulated a two-machine flow shop scheduling problem with
supporting precedences. The objective in this research is to
minimize the total job completion time. The unique feature of
the production model is the multiple-to-multiple relation
between machine-one and machine-two operations. We devel-
oped an integer linear programming model to interpret the
studied problem in a mathematical way. Two preliminary proper-
ties about sequencing of tasks and jobs on either machines were
proposed. The properties simplify the solution structures and
facilitate the development of solution algorithms. A lower bound
and two dominance rules were presented to design branch-and-
bound algorithms for producing optimal solutions. A greedy
heuristic and an ILS algorithm were designed to produce approx-
imate solutions. Through computational experiments, we studied
the performance of the proposed properties and algorithms. The
branch-and-bound algorithm incorporating the lower bound and
two dominance rules can solve the test instances with up to 40
jobs and 10 supporting tasks. The numerical results also suggest
that ILS is quite efficient and effective when applied to the test
instances with up to 200 jobs. The ILS algorithm resulted in
average deviations less than 0.109% from the optimum of the
small-scale problems.

For future research, design and analysis of approximation
algorithms for the studied problem could be an interesting topic.
Settling the complexity of some further restricted cases are also of
research interest. For example, the three special cases (1)
8iAAðpa

i ¼ 1Þ; (2) 8jABðpb
j ¼ 1Þ and (3) 8iAAðpa

i ¼ pÞ, 8jABðpb
j ¼ qÞ

may exhibit theoretical challenges. Moreover, we may include
another type of precedence among the regular jobs to reflect more
practical applications. For example, streaming and scheduling of
multi-media presentations especially demands specific subse-
quences of playbacks (jobs, in this paper).
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