

Diagonals and numerical ranges of weighted shift matrices Kuo-Zhong Wang [∗],1, Pei Yuan Wu2

Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC

ARTICLE INFO ABSTRACT

Article history: Received 17 May 2012 Accepted 13 August 2012 Available online 17 September 2012

Submitted by R.A. Brualdi

AMS classification: 15A60

Keywords: Numerical ranges Weighted shift matrix Compression

For any *n*-by-*n* matrix A, we consider the maximum number $k =$ $k(A)$ for which there is a k -by- k compression of A with all its diagonal entries in the boundary ∂*W*(*A*) of the numerical range *W*(*A*) of *A*. For any such compression, we give a standard model under unitary equivalence for *A*. This is then applied to determine the value of *k*(*A*) for *A* of size 3 in terms of the shape of *W*(*A*). When *A* is a matrix of the form

$$
\begin{pmatrix} 0 & w_1 & & & \\ & 0 & \ddots & & \\ & & \ddots & \ddots & \\ & & & w_{n-1} \\ w_n & & & 0 \end{pmatrix},
$$

we show that $k(A) = n$ if and only if either $|w_1| = \cdots = |w_n|$ or *n* is even and $|w_1|=|w_3|=\cdots=|w_{n-1}|$ and $|w_2|=|w_4|=\cdots=$ |*wn*|. For such matrices *A* with exactly one of the *wj*'s zero, we show that any $k, 2 \leq k \leq n-1$, can be realized as the value of $k(A)$, and determine exactly when the equality $k(A) = n - 1$ holds. © 2012 Elsevier Inc. All rights reserved.

1. Introduction

For an *n*-by-*n* complex matrix *A*, let $W(A) = \{ \langle Ax, x \rangle : x \in \mathbb{C}^n, ||x|| = 1 \}$ denote its *numerical range*, where $\langle \cdot, \cdot \rangle$ and $\| \cdot \|$ are the standard inner product and its associated norm in \mathbb{C}^n , respectively,

[∗] Corresponding author.

E-mail addresses: kzwang@math.nctu.edu.tw (K.-Z. Wang), pywu@math.nctu.edu.tw (P.Y. Wu).

¹ Research supported by the National Science Council of the Republic of China under NSC 99-2115-M-009-013-MY2.

² Research supported by the National Science Council of the Republic of China under NSC 99-2115-M-009-002-MY2 and by the MOE-ATU project.

and let $k(A)$ be the maximum number k of orthonormal vectors x_1, \ldots, x_k in \mathbb{C}^n with $\langle Ax_i, x_i \rangle$ in the *boundary ∂W(A)* of *W(A)* for all *j*. Note that *k*(*A)* is also the maximum size of a compression of *A* with all its diagonal entries in ∂*W*(*A*). Recall that a *^k*-by-*^k* matrix *^B* is a *compression* of *^A* if *^B* = *^V*∗*AV* for some *n*-by-*k* matrix *V* with $V^*V = I_k$. The number $k(A)$ was first introduced in [\[5](#page-18-0)]. It relates properties of the numerical range and the compressions of *A*. In particular, it was shown in [\[5,](#page-18-0) Lemma 4.1 and Theorem 4.4] that $2 \le k(A) \le n$ for any n -by- $n(n \ge 2)$ matrix A , and $k(A) = \lceil n/2 \rceil$ for any S_n -matrix $A(n \ge 3)$. Recall that an *n*-by-*n* matrix *A* is of *class* S_n if it is a *contraction*, that is, $||A|| \equiv \max_{||x||=1} ||Ax|| \le 1$, its eigenvalues are all in the open unit disc $\mathbb{D} \equiv \{z \in \mathbb{C} : |z| < 1\}$, and the rank of $I_n - A^*A$ equals one. One particular example is the *n*-by-*n Jordan block*

$$
J_n = \begin{pmatrix} 0 & 1 & & \\ & 0 & \ddots & \\ & & \ddots & \\ & & & 1 \\ & & & 0 \end{pmatrix}.
$$

In this paper, we proceed to study *k*(*A*) for other classes of *A*. In particular, we are interested in knowing when *k*(*A*) equals the size of *A*. In Section [2](#page-1-0) below, we first give a structure theorem (Theorem [2.7\)](#page-4-0) of *A* when it has a compression with all its diagonal entries in ∂*W*(*A*). This is then used to determine the value of *k*(*A*) for *A* of size 3 in terms of the shape of its numerical range *W*(*A*) (Proposition [2.11\)](#page-7-0). Then, in Section [3,](#page-8-0) we consider the *n*-by-*n* (*n* ≥ 2) *weighted shift matrix*

$$
A = \begin{pmatrix} 0 & w_1 \\ & 0 & \ddots \\ & & \ddots & w_{n-1} \\ & & & 0 \end{pmatrix} .
$$
 (1)

For such an *A*, we determine in Theorem [3.1](#page-8-1) exactly when its *k*(*A*) equals *n*. We show that this is the case if and only if either $|w_1| = \cdots = |w_n|$ or *n* is even and $|w_1| = |w_3| = \cdots = |w_{n-1}|$ and $|w_2| = |w_4| = \cdots = |w_n|$. In particular, this implies that, for *A* of the form [\(1\)](#page-1-1) with $n \ge 3$ and with exactly one zero weight, *k*(*A*) is never equal to *n*. We then concentrate on those *A*'s in this latter class, and show that in this case its $k(A)$ can be any integer between 2 and $n-1$ (Theorem [3.5\)](#page-11-0). We also completely characterize among such *A*'s those with $k(A) = n - 1$ (Theorem [3.10\)](#page-16-0).

Our reference for properties of the numerical range is [\[6](#page-18-1), Chapter 1].

We end this section by fixing some notations. For any finite square matrix A, we use Re $A =$ $(A + A^*)/2$ and Im $A = (A - A^*)/(2i)$ to denote its *real* and *imaginary parts*, respectively, and ker *A* and ran *A* to denote its *kernel* and *range*, respectively. *A* is said to be *reducible* if it is unitarily equivalent to the direct sum of two other matrices; otherwise, *A* is *irreducible*. The set of eigenvalues of *A* is denoted by σ (A). 0_n and I_n are the *n*-by-*n* zero and identity matrices, respectively. The *n*-by-*n* diagonal matrix with diagonals a_1, \ldots, a_n is diag (a_1, \ldots, a_n) . The *argument*, arg *z*, of a nonzero complex number *z* is the unique number θ in $[0, 2\pi)$ such that $z = |z|e^{i\theta}$; arg 0 can be any number in $[0, 2\pi)$. Finally, for any $n > 1$, the *nth primitive root of unity* $e^{2\pi i/n}$ *is denoted by* ω_n *.*

2. Generalities

In this section, we prove some general results on the number *k*(*A*) of a finite matrix *A*, and start by reviewing a few basic facts concerning the boundary points of *W*(*A*).

For an *n*-by-*n* matrix *A*, a point *a* in ∂*W*(*A*) and a supporting line *L* of *W*(*A*) which passes through *a*, there is a θ in [0, 2π) such that the ray R_θ from the origin which forms angle θ from the positive *x*-axis is perpendicular to *L* = *L*_θ (cf. Fig. [2.1\)](#page-2-0). In this case, Re ($e^{-i\theta}a$) is the maximum eigenvalue of

Fig. 2.1. Supporting line of *W*(*A*).

Re $(e^{-i\theta}A)$ with the corresponding eigenspace E_{a} , (A) ≡ ker Re $(e^{-i\theta}(A - a I_n))$. Let $K_a(A)$ denote the set $\{x \in \mathbb{C}^n : \langle Ax, x \rangle = a||x||^2\}$ and $H_a(A)$ the subspace generated by $K_a(A)$. If the matrix *A* is clear from the context, we will abbreviate these to $E_{a,L}$, K_a and H_a , respectively. Note that these three

sets are in general not equal. For example, if $A =$ $\sqrt{2}$ \mathbf{I} 1 0 0 0 ⎞ \int and $a = 0$ or 1, then $W(A) = [0, 1]$ has

infinitely many supporting lines *L* at *a*. It is easily seen that $E_{a,L}=\mathbb{C}^2$ if *L* is the *x*-axis, and $\mathbb{C}\oplus\{0\}$ if otherwise, and $K_a = H_a = \{0\} \oplus \mathbb{C}$ or $\mathbb{C} \oplus \{0\}$. On the other hand, if $0 < a < 1$, then *L* must be the *x*-axis, $E_{a,L} = H_a = \mathcal{C}^2$, and $K_a = \{(\sqrt{a}e^{i\theta_1}) \oplus (\sqrt{1-a}e^{i\theta_2}) : \theta_1, \ \theta_2 \in \mathbb{R}\}$. The next proposition gives precise information on their relationship.

Proposition 2.2. *Let A be an n-by-n matrix, a be a point in* $\partial W(A)$ *, and L be a supporting line of* $W(A)$ *which passes through a. Then the following hold:*

- (a) H_a *is contained in E_{a,L}.*
- (b) K_a *is a subspace of* $\ddot{\mathbb{C}}^n$, *that is*, $K_a = H_a$ *if and only if a is an extreme point of W(A).*
- (c) *If a is not extreme for W*(*A*), *then L is unique and* $H_a = \bigcup \{K_b : b \in L \cap \partial W(A)\}$ *.*
- (d) $H_a = E_{a,L}$ *if and only if either a is an extreme point of* $W(A)$ *and* $L \cap \partial W(A) = \{a\}$ *or a is not extreme for W*(*A*)*.*
- (e) *If L* ∩ ∂*W*(*A*) *is a* (*nondegenerate*) *line segment of* ∂*W*(*A*), *then* dim *Ea*,*^L* ≥ 2*. The converse is in general false.*
- (f) *If A is irreducible and dim* $E_{a,L} > n/2$, *then* $L \cap \partial W(A)$ *is a line segment.*

Proof. (a) is trivial, (b) and (c) were proven in [\[2](#page-17-0), Theorem 1], and (d) follows easily from (b) and (c). The assertion in (e) is trivial. For the converse, let

$$
A = \begin{pmatrix} 0 & 0 & -2\sqrt{3 + 2\sqrt{2}} & 0 \\ 0 & 0 & 0 & -2\sqrt{3 - 2\sqrt{2}} \\ 2\sqrt{3 + 2\sqrt{2}} & 0 & 4 & -4 \\ 0 & 2\sqrt{3 - 2\sqrt{2}} & 4 & 4 \end{pmatrix}.
$$

Then *W*(*A*) is as in Fig. [2.3](#page-3-0) with the *y*-axis as its supporting line *L*, which satisfies $L \cap \partial W(A) = \{0\}$ and dim E_0 _L = 2 (cf. [\[11,](#page-18-2) Example 4, Fig. 8]). It can be verified that the only (orthogonal) projection which commutes with A is 0_4 or I_4 , and thus A is irreducible.

Fig. 2.3. Numerical range of *A*.

(f) After an affine transformation of A, we may assume that *L* is the *y*-axis and $a = 0$ is an eigenvalue of Re *A* with multiplicity bigger than $n/2$, that is, $m \equiv \dim M > n/2$, where $M = \ker \text{Re } A$. Consider Re *A* as 0 ⊕ *B* on $\mathbb{C}^n = M \oplus M^\perp$. For any unit vector *x* in *M*, we have

 $\langle Ax, x \rangle = \langle (Re \space A) x, x \rangle + i \langle (Im \space A) x, x \rangle = i \langle (Im \space A) x, x \rangle.$

Assume that $L \cap \partial W(A) = \{0\}$. This implies that $\langle (\text{Im } A)x, x \rangle = 0$ for all *x* in *M*. Thus

$$
A = \begin{pmatrix} 0 & 0 \\ 0 & B \end{pmatrix} + i \begin{pmatrix} 0 & C \\ C^* & D \end{pmatrix} = \begin{pmatrix} 0 & iC \\ iC^* & B + iD \end{pmatrix}
$$

for some matrices *C* and *D*. Let *iC* = *USV* be the singular value decomposition of *iC*, where *U* and *V* are unitary and *S* is of the form

with $s_1 \geq \cdots \geq s_{n-m} \geq 0.$ Hence *A* is unitarily equivalent to a matrix *A'* of the form $\Big($ I 0 *S* −*S*[∗] *E* ⎞ \cdot If

 $s_{n-m}=0$, then *A'* is reducible, contradicting our assumption on the irreducibility of *A*. Thus we have *sn*−*^m* > 0. Therefore, we have

$$
\ker \operatorname{Im} A' = \ker \begin{pmatrix} 0 & -iS \\ iS^* & \operatorname{Im} E \end{pmatrix} = \{(\underbrace{0, \dots, 0}_{n-m}, x_{n-m+1}, \dots, x_m, \underbrace{0, \dots, 0}_{n-m}) : x_{n-m+1}, \dots, x_m \in \mathbb{C}\}
$$
\n
$$
\subseteq \ker \begin{pmatrix} 0 & 0 \\ 0 & \operatorname{Re} E \end{pmatrix} = \ker \operatorname{Re} A'.
$$

Hence

 $ker A' \cap ker A'^* = ker Re A' \cap ker Im A' = ker Im A',$

which is of dimension 2*m*−*ⁿ* > 0. This shows that *^A* is reducible, again a contradiction. Thus *^L*∩∂*W*(*A*) is a line segment. \Box

We remark that Proposition [2.2\(](#page-2-1)f) is a consequence of [\[1,](#page-17-1) Lemmas 2.1 and 2.2]. The proof here is more direct and matrix theoretic in nature. The case $n = 3$ was in [\[7,](#page-18-3) Proposition 3.2].

Using Proposition [2.2,](#page-2-1) we can give a lower bound for *k*(*A*).

Proposition 2.4. *Let A be an n-by-n matrix, a be a point in* $\partial W(A)$ *, and* $k = \dim H_a$ *. If* $W(A)$ *is either the singleton* $\{a\}$ *or a line segment* $[b, c]$ *with a in* (b, c) *, then* $k(A) = k = n$ *; otherwise,* $k(A) \geq k + 1$ *.*

Proof. If $W(A) = \{a\}$, then $A = aI_n$ and our assertion is obvious. On the other hand, if $W(A) = [b, c]$ with $a \in (b, c)$, then *A* is normal with eigenvalues in [*b*, *c*]. Hence we may diagonalize *A* to obtain $k(A) = n$. Since $H_a = \bigcup \{K_\lambda : \lambda \in [b, c]\} = \mathbb{C}^n$ by [\[2,](#page-17-0) Theorem 1] or Proposition [2.2\(](#page-2-1)c), we also have $k = \dim H_a = n$. For the remaining case, consider a supporting line L_θ of $W(A)$ at *a* with the associated angle θ in [0, 2 π) such that $H_a = E_{a,L_\theta}$ (cf. Proposition [2.2\(](#page-2-1)d)). Let $L_{\theta+\pi}$ be the supporting line of *W*(*A*) which is parallel to L_{θ} , and let *b* be any point in $L_{\theta+\pi} \cap \partial W(A)$. Then $E_{a,L_{\theta}}$ (resp., $E_{b,L_{A+\pi}}$) is the eigenspace of Re (*e^{−iθ}A*) for its maximum (resp., minimum) eigenvalue Re (*e^{−iθ}a*) (resp., Re (*e*−*i*^θ *^b*)). Since *^W*(Re (*e*−*i*θ*A*)) is not a singleton by our assumption, these two eigenvalues are distinct. Thus E_{a,L_θ} and $E_{b,L_{\theta+\pi}}$ are orthogonal to each other and hence the same is true for H_a and *H_b*. Therefore, we can find at least $m \equiv \dim H_a + \dim H_b$ many orthonormal vectors x_1, \ldots, x_m in \mathbb{C}^n with $\langle Ax_i, x_i \rangle$ in $\partial W(A)$ for all *j*. This shows that $k(A) \geq m = \dim H_a + \dim H_b \geq k + 1$ as asserted. \square

Similar arguments as above together with Proposition [2.2\(](#page-2-1)e) yield the following.

Corollary 2.5. Let A be an n-by-n $(n > 3)$ matrix

(a) *If* ∂*W*(*A*) *contains a line segment*, *then k*(*A*) ≥ 3*.*

(b) *If* $\partial W(A)$ *has two parallel line segments, then* $k(A) > 4$ *.*

Another easy corollary is the following necessary condition for $k(A) = 2$.

Corollary 2.6. *If A is an n-by-n nonscalar matrix with k*(*A*) = 2, *then* dim $H_a = 1$ *for all a in* ∂*W*(*A*).

The converse of the above is false. For example, if $A = J_5$, the 5-by-5 Jordan block, then it is known that dim *H_a* = 1 for all *a* in $\partial W(A) = \{z \in \mathbb{C} : |z| = \cos(\pi/6)\}$, but *k*(*A*) = 3 (cf. [\[5](#page-18-0), Theorem 4.4]). There are even 4-by-4 counterexamples to the converse as, for example, the matrix

 $A =$ $\sqrt{2}$ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ $0 \sqrt{2}$ 0 1 $0 \sqrt{2}$ 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

(cf. Theorem [3.10](#page-16-0) below). For 3-by-3 matrices, such a phenomenon cannot occur as will be seen in our discussions later in this section.

The main result of this section is the following structure theorem for matrix *A* which has a compression with diagonal entries all in ∂*W*(*A*).

Theorem 2.7. *An n-by-n* ($n > 2$) *matrix A has a k-by-k compression with all its diagonal entries in* $\partial W(A)$ *if and only if it is unitarily equivalent to a matrix of the form*

$$
\begin{pmatrix}\nB_1 & \cdots & 0 & e^{i\theta_1}C_1 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & B_m & e^{i\theta_m}C_m \\
-e^{i\theta_1}C_1^* & \cdots & -e^{i\theta_m}C_m^* & C\n\end{pmatrix},
$$
\n(2)

where $\theta_1, \ldots, \theta_m$ *are distinct numbers in* [0, π) *and* B_i , $1 \leq j \leq m$, *is of the form*

$$
\left(\begin{array}{ccc} \alpha_1^{(j)} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \alpha_{s_j}^{(j)} \end{array}\right) \qquad e^{i\theta_j}D_j
$$
\n
$$
-e^{i\theta_j}D_j^* \qquad \begin{array}{ccc} \beta_1^{(j)} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \beta_{t_j}^{(j)} \end{array}\right) \qquad (3)
$$

with $s_j+t_j\geq 1$ for all j , $\sum_{j=1}^m(s_j+t_j)=k$, Re $(e^{-i\theta_j}\alpha_1^{(j)})=\cdots=$ Re $(e^{-i\theta_j}\alpha_{s_j}^{(j)})=$ max σ (Re $(e^{-i\theta_j}A)$) *and* Re $(e^{-i\theta_j}\beta_1^{(j)}) = \cdots =$ Re $(e^{-i\theta_j}\beta_{t_j}^{(j)}) =$ min σ (Re $(e^{-i\theta_j}A)$).

Geometrically, the conditions on the matrix B_j simply say that its diagonal entries $\alpha_1^{(j)}, \ldots, \alpha_{s_j}^{(j)}$ (resp., $\beta_1^{(j)}, \ldots, \beta_{t_j}^{(j)}$) are on the supporting line L_{θ_j} (resp., the parallel supporting line $L_{$ (cf. Fig. [2.1\)](#page-2-0).

The proof of Theorem [2.7](#page-4-0) depends on the corresponding result for 2-by-2 matrices (cf. [\[15](#page-18-4), Corollary 4] or [\[5,](#page-18-0) Proposition 4.3]). This we state below for easy reference.

Proposition 2.8. *The following conditions are equivalent for a* 2*-by-*2 *matrix A* = $\sqrt{2}$ \mathbf{I} *a b c d* ⎞ \vert :

(a) *a* ∈ ∂*W*(*A*)*,* (b) $be^{-i\theta} + \overline{c}e^{i\theta} = 0$ for some θ in [0, 2 π), (c) $|b|=|c|$, (d) *d* ∈ ∂*W*(*A*)*.*

Under these conditions, if A is normal and $W(A)$ *equals the line segment* [a, d], then $b = c = 0$; *otherwise*, *the tangent lines to the* (*nondegenerate*) *ellipse* ∂*W*(*A*) *at a and d are parallel to each other with the common slope* $-\cot \theta$.

Proof of Theorem 2.7. We need only prove the necessity. Let *B* be a *k*-by-*k* compression of *A* with the asserted property. We may assume, after a unitary equivalence, that $A = [a_{ij}]_{i,j=1}^n$ and $B =$ $[a_{ij}]_{i,j=1}^k$. Consider all those diagonal entries of *B* which are on the same supporting line L_{θ_1} (resp., the parallel supporting line $L_{\theta_1+\pi}$) of $W(A)$ for some θ_1 in $[0,\pi).$ Call them $\alpha_1^{(1)},\ldots,\alpha_{s_1}^{(1)}$ (resp., $\beta_1^{(1)},\ldots,\beta_{t_1}^{(1)}$). Then Re $(e^{-i\theta_1}\alpha_j^{(1)}) = \max \; \sigma(\text{Re }(e^{-i\theta_1}A))$ for $1 \leq j \leq s_1$ (resp., Re $(e^{-i\theta_1}\beta_j^{(1)}) =$ min σ (Re ($e^{-i\theta_1}$ *A*)) for $1 \leq j \leq t_1$). After a suitable permutation of rows and columns, we may further assume that

520 *K.-Z. Wang, P.Y. Wu / Linear Algebra and its Applications 438 (2013) 514–532*

$$
a_{jj} = \begin{cases} \alpha_j^{(1)} & \text{for } 1 \le j \le s_1, \\ \beta_{j-s_1}^{(1)} & \text{for } s_1 + 1 \le j \le s_1 + t_1. \end{cases}
$$

Applying Proposition [2.8](#page-5-0) repeatedly to the 2-by-2 principal submatrices $\sqrt{2}$ \mathbf{I} *aii aij aji ajj* ⎞ $\Big\}$, $1 \leq i, j \leq n$, of *A*, yields that *A* is of the form

$$
\begin{pmatrix} B_1' & e^{i\theta_1}D_1 & e^{i\theta_1}C_1' \\ -e^{i\theta_1}D_1^* & B_1'' & e^{i\theta_1}C_1'' \\ -e^{i\theta_1}C_1'^* & -e^{i\theta_1}C_1''^* & E \end{pmatrix},
$$

where $B'_1 = \text{diag}(\alpha_1^{(1)}, \ldots, \alpha_{s_1}^{(1)})$ and $B^{''}_1 = \text{diag}(\beta_1^{(1)}, \ldots, \beta_{t_1}^{(1)})$. We next apply the above arguments to *E* to obtain

$$
E = \begin{pmatrix} B_2' & e^{i\theta_2} D_2 & e^{i\theta_2} C_2' \\ -e^{i\theta_2} D_2^* & B_2' & e^{i\theta_2} C_2' \\ -e^{i\theta_2} C_2'^* & -e^{i\theta_2} C_2'^* & E' \end{pmatrix},
$$

where $\theta_2 \in [0, \pi)$ and $\theta_2 + \pi$ are distinct from θ_1 and $\theta_1 + \pi$, $B'_2 = \text{diag}(\alpha_1^{(2)}, \dots, \alpha_{s_2}^{(2)})$ and $B_2^{''} = \text{diag}(\beta_1^{(2)}, \ldots, \beta_{t_2}^{(2)})$. For any 2-by-2 submatrix

$$
\left(\begin{array}{cc}a_{ii}&a_{ij}\\a_{ji}&a_{jj}\end{array}\right) \tag{4}
$$

with $1\leq i\leq s_1+t_1$ and $s_1+t_1+1\leq j\leq s_1+t_1+s_2+t_2,$ the diagonal entries a_{ii} (equal to either $\alpha^{(1)}_i$ or $\beta_{i-s_1}^{(1)}$) and a_{jj} (to $\alpha_{j-s_1-t_1}^{(2)}$ or $\beta_{j-s_1-t_1-s_2}^{(2)}$) are on distinct and nonparallel supporting lines of $W(A)$. Hence the submatrix [\(4\)](#page-6-0) is normal with numerical range equal to [*aii*, *ajj*]. We infer from Proposition [2.8](#page-5-0) that $a_{ij} = a_{ji} = 0$. Repeating the above to *E'* and so forth, we thus obtain the asserted form for *A*. The following lemma is useful on some occasions.

Lemma 2.9. *If* $A = A_1 \oplus A_2$ *with* $W(A_2)$ *contained in the interior of* $W(A_1)$ *, then* $k(A) = k(A_1)$ *.*

Proof. We obviously have $k(A) \geq k(A_1)$. To prove the converse inequality, assume that *A*, A_1 and A_2 are of sizes *n*, n_1 and n_2 , respectively. Let $k = k(A)$ and let $u_1 = x_1 \oplus y_1, \ldots, u_k = x_k \oplus y_k$ be orthonormal vectors in $\mathbb{C}^n = \mathbb{C}^{n_1} \oplus \mathbb{C}^{n_2}$ such that $a_i \equiv \langle Au_i, u_i \rangle$ is in $\partial W(A) = \partial W(A_1)$ for all *j*. We claim that y_i must all be 0. Indeed, if $y_i \neq 0$ for some *j*, then

$$
a_j = \langle A_1 x_j, x_j \rangle + \langle A_2 y_j, y_j \rangle
$$

= $||x_j||^2 \langle A_1 \frac{x_j}{||x_j||}, \frac{x_j}{||x_j||} \rangle + ||y_j||^2 \langle A_2 \frac{y_j}{||y_j||}, \frac{y_j}{||y_j||} \rangle$
= $||x_j||^2 b_j + ||y_j||^2 c_j$

if $x_i \neq 0$, and $a_i = c_i$ if otherwise. This shows that a_i is a convex combination of b_i and c_i . Since a_i , b_i and *cj* are in ∂*W*(*A*), *W*(*A*1) and *W*(*A*2), respectively, and *W*(*A*2) is contained in the interior of *W*(*A*1), we infer that $x_i \neq 0$ and a_j must be equal to b_j . It follows that $y_j = 0$, which is a contradiction. Thus $y_j = 0$ for all *j* and x_1, \ldots, x_k are orthonormal vectors in \mathbb{C}^{n_1} with $\langle A_1x_j, x_j \rangle = a_j$ in $\partial W(A_1)$ for all *j*. This shows that $k(A_1) \geq k = k(A)$ and hence $k(A) = k(A_1)$. \Box

An easy consequence of Theorem [2.7](#page-4-0) and Lemma [2.9](#page-6-1) is the following upper bound for *k*(*A*).

Proposition 2.10. *If A is an n-by-n* ($n \geq 3$) *matrix with* dim $H_a = 1$ *for all a in* $\partial W(A)$ *, then k*(*A*) ≤ *n*−1*.*

Proof. If $k(A) = n$, then, by Theorem [2.7,](#page-4-0) A is unitarily equivalent to a direct sum $\sum_{j=1}^{m} \oplus B_j$, where each *B_i* is of the form [\(3\)](#page-5-1). Our assumption on H_a implies that $\partial W(A)$ has no line segment and $H_a = E_{a,L}$ for any supporting line *L* of *W*(*A*) (cf. Proposition [2.2\(](#page-2-1)e) and (d)). As *W*(*A*) equals the convex hull of $∪_{j=1}^{m}$ *W*(*B_j*), these force the existence of some *j*₀, 1 ≤ *j*₀ ≤ *m*, such that *W*(*B_j*) is contained in the interior of $W(B_{i_0})$ for all $j \neq j_0$. Lemma [2.9](#page-6-1) then yields that $k(B_{i_0}) = k(A) = n$. If $m > 1$, then, obviously, $k(B_{j_0}) \le s_{j_0} + t_{j_0} < n$, which is a contradiction. Hence we must have $m=1$ or A is unitarily equivalent to B_1 . Then the fact that dim $E_{a,L} = 1$ for any a in $\partial W(B_1)$ and any supporting line *L* of $W(B_1)$ implies that $s_1, t_1 \leq 1$. Therefore, B_1 , together with *A*, is of size at most 2, which contradicts our assumption that $n \geq 3$. Thus $k(A) \leq n-1$ as asserted. \Box

We now combine Proposition [2.4](#page-4-1) and Proposition [2.10](#page-7-1) to determine *k*(*A*) for a 3-by-3 matrix *A*. Recall that, in this case, *W*(*A*) is of one of the following shapes (cf. [\[7\]](#page-18-3)):

- (a) a triangular region (or, in the degenerate case, a line segment or a singleton) if *A* is normal,
- (b) an elliptic disc,
- (c) an elliptic disc with a cone attached to it if *A* is unitarily equivalent to, say, $A' \oplus [a]$, where A' is a 2-by-2 nonnormal matrix and *^a* is not in the elliptic disc *^W*(*A*),
- (d) the convex hull of a heart-shaped region, in which case ∂*W*(*A*) contains a line segment, and
- (e) an oval region.

In cases (d) and (e) above, *A* is irreducible. The next proposition gives the value of *k*(*A*) in terms of the shape of *W*(*A*).

Proposition 2.11. Let A be a 3-by-3 matrix. Then $k(A) = 2$ if $W(A)$ is either an elliptic disc, except when *A* has an eigenvalue on $\partial W(A)$, or an oval region. In all other cases, $k(A) = 3$.

Proof. If $\partial W(A)$ contains a line segment, then $k(A) = 3$ by Corollary [2.5\(](#page-4-2)a). This covers cases (a), (c) and (d) above. For the remaining part of the proof, we assume that ∂*W*(*A*) contains no line segment. If *A* is irreducible, then dim $H_a = 1$ for all *a* in $\partial W(A)$ by Proposition [2.2\(](#page-2-1)a) and (f), and hence $k(A) \leq 2$ by Proposition [2.10.](#page-7-1) Therefore, in this case we have $k(A) = 2$ by Proposition [2.4](#page-4-1) or [\[5](#page-18-0), Lemma 4.1]. In particular, $k(A) = 2$ in case (e) above. For the remaining case (b), if *A* is irreducible, then $k(A) = 2$ as proven above. Now assume that *A* is reducible. Let *A* be unitarily equivalent to $A' \oplus [a]$, where A' is a 2 -by-2 nonnormal matrix and *a* is in $W(A')$. If *a* is in $\partial W(A')$, then $\dim H_a = 2$ and hence $k(A) = 3$ by Proposition [2.4.](#page-4-1) On the other hand, if *a* is in the interior of $W(A')$, then $\ddot{k}(A) = k(A') = 2$ by Lemma [2.9](#page-6-1) and [\[5,](#page-18-0) Lemma 4.1]. This completes the proof. $\; \square \;$

The next corollary is already proven in the above.

Corollary 2.12. *A* 3*-by-3 matrix A is such that k*(*A*) = 2 *if and only if* dim $H_a = 1$ *for all a in* ∂*W*(*A*).

Corollary 2.13. *The following conditions are equivalent for the matrix*

$$
A = \begin{pmatrix} 0 & a \\ 0 & b \\ c & 0 \end{pmatrix}:
$$

(a)
$$
k(A) = 3
$$
,
(b) $|a| = |b| = |c|$,

- (c) *A is normal*, *and*
- (d) *either* $A = 0_3$ *or* $\partial W(A)$ *contains a line segment.*

Proof. The equivalence of (b) and (c) was proven in [\[13,](#page-18-5) Proposition 4]; that of (b) and (d) was noted in [\[13,](#page-18-5) p. 248]. The implication (*d*) \Rightarrow (*a*) is by Corollary [2.5.](#page-4-2) Finally, assume that (*a*) is true and $A \neq 0_3$. According to Proposition [2.11,](#page-7-0) either *A* is unitarily equivalent to *A* ⊕[*a*], where *A* is a 2-by-2 nonnormal matrix and *^a* is in ∂*W*(*A*), or ∂*W*(*A*) has a line segment. The former cannot happen since *A* is unitarily equivalent to ω_3A (cf. [\[13,](#page-18-5) Proposition 3 (1)]). Thus (a) implies (d), completing the proof. \Box

In the next section, we consider the *n*-by-*n* weighted shift matrix [\(1\)](#page-1-1) and determine when its *k*(*A*) is equal to *n*, thus generalizing the preceding corollary.

3. Weighted shift matrices

An *n*-by-*n weighted shift matrix A* is one of the form [\(1\)](#page-1-1), where the *wj*'s are called the *weights* of *A*. Properties of such matrices, especially those concerning their numerical ranges, were studied recently in [\[13](#page-18-5)[,12](#page-18-6)]. Using the results there, we are able to give, among such matrices *A*, a characterization of the ones with $k(A) = n$.

Theorem 3.1. Let A be an n-by-n ($n > 2$) weighted shift matrix with weights w_1, \ldots, w_n . Then $k(A) = n$ *if and only if either* $|w_1| = \cdots = |w_n|$ *or n is even and* $|w_1| = |w_3| = \cdots = |w_{n-1}|$ *and* $|w_2| =$ $|w_4|=\cdots=|w_n|$.

The proof of this theorem depends on Theorem [2.7](#page-4-0) and a corrected version of [\[12,](#page-18-6) Theorem 4] on the reducibility of weighted shift matrices, which appears in ([\[4\]](#page-17-2), Theorem [3.1](#page-8-1) and Corollary 3.3).

Theorem 3.2. Let A be an n-by-n ($n \geq 2$) weighted shift matrix with weights w_1, \ldots, w_n . Then A is *reducible if and only if either at least two of the w_i's are zero or the moduli of the weights* $|w_i|$ *are periodic.* M oreover, if A is reducible and $w_j\neq 0$ for all j, then A is unitarily equivalent to $e^{i\phi}\sum_{k=0}^{m-1}\oplus \omega_n^k$ B, where $\phi = (\sum_{j=1}^n \arg w_j)/n$, p is the period of the $|w_j|$'s, $m = n/p$, and B is the p-by-p irreducible weighted *shift matrix with weights* $|w_1|, \ldots, |w_p|$ *.*

Recall that the *period* of $\{|w_j|\}_{j=1}^n$ is the smallest integer $p, 1 \leq p \leq n$, such that $|w_j| = |w_{p+j}|$ for all *j* ($w_m \equiv w_m \pmod{n}$ for $m > n$). $\{|w_j|\}_j$ is *periodic* if the above *p* is such that $1 \leq p < n$, in which case we necessarily have *p*|*n*.

The next two lemmas facilitate the proof of Theorem [3.1.](#page-8-1)

Lemma 3.3. Let A be an n-by-n $(n > 2)$ weighted shift matrix with nonzero weights w_1, \ldots, w_n , *a be a point in* $\partial W(A)$, and *L* be a supporting line of $W(A)$ which passes through a. Then dim $E_{a,L} \leq 2$. *Furthermore*, dim $E_{a,L} = 2$ *if and only if* $L \cap \partial W(A)$ *is a (nondegenerate) line segment.*

Proof. Let θ in [0, 2 π) be such that the ray R_θ from the origin which forms angle θ from the positive *x*-axis is perpendicular to *L* (cf. Fig. [2.1\)](#page-2-0), and let $x = [x_1, \ldots, x_n]^T$ be any vector in $E_{a,L}$ ker (Re $(e^{-i\theta} (A - aI_n))$). Then Re $(e^{-i\theta} A)x = \text{Re}(e^{-i\theta} a)x \equiv \lambda x$, which is the same as

$$
\frac{1}{2}(e^{-i\theta}w_1x_2 + e^{i\theta}\bar{w}_nx_n) = \lambda x_1,\n\frac{1}{2}(e^{i\theta}\bar{w}_{j-1}x_{j-1} + e^{-i\theta}w_jx_{j+1}) = \lambda x_j, \quad 2 \le j \le n - 1,
$$

and

$$
\frac{1}{2}(e^{-i\theta}w_nx_1+e^{i\theta}\bar{w}_{n-1}x_{n-1})=\lambda x_n.
$$

Hence

$$
x_2 = \frac{2\lambda e^{i\theta}}{w_1} x_1 - \frac{\bar{w}_n e^{2i\theta}}{w_1} x_n \equiv \alpha_2 x_1 + \beta_2 x_n,\tag{5}
$$

$$
x_{j+1} = \frac{2\lambda e^{i\theta}}{w_j} x_j - \frac{\bar{w}_{j-1} e^{2i\theta}}{w_j} x_{j-1}, \quad 2 \le j \le n-1
$$
 (6)

and

$$
x_{n-1} = -\frac{w_n e^{-2i\theta}}{\bar{w}_{n-1}} x_1 + \frac{2\lambda e^{-i\theta}}{\bar{w}_{n-1}} x_n \equiv \alpha_{n-1} x_1 + \beta_{n-1} x_n.
$$

Iterating [\(6\)](#page-9-0) and then applying [\(5\)](#page-9-1), we may express each x_{j+1} , $2 \le j \le n-3$, as $x_{j+1} = \alpha_{j+1}x_1 + \beta_{j+1}x_n$ for some scalars α_{j+1} and β_{j+1} . Let $u = [1, \alpha_2, \ldots, \alpha_{n-1}, 0]^T$ and $v = [0, \beta_2, \ldots, \beta_{n-1}, 1]^T$. Then *x* is a linear combination of *u* and *v*. Since *u* and *v* depend only on λ , θ and the w_j 's, we obtain $\dim E_{a,L} \leq 2$ as asserted. The second assertion was proven before in [13, Lemma 11]. \Box

Lemma 3.4. Let A be an n-by-n ($n \geq 2$) irreducible weighted shift matrix with nonzero weights. Then $k(A) = n$ *if and only if n* = 2*.*

Proof. Assume that $k(A) = n$. The irreducibility of *A* implies, by Theorem [2.7](#page-4-0) and Lemma [3.3,](#page-8-2) that *A* is unitarily equivalent to a matrix of one of the following forms:

$$
\left(\begin{array}{cc} \alpha_1 & * \\ * & \beta_1 \end{array}\right), \left(\begin{array}{cc|c} \alpha_1 & 0 & * \\ 0 & \alpha_2 & * \\ * & \beta_1 \end{array}\right) \text{ and } \left(\begin{array}{cc|c} \alpha_1 & 0 & * \\ 0 & \alpha_2 & * \\ * & \beta_1 & 0 \\ * & 0 & \beta_2 \end{array}\right),
$$

where α_1 and α_2 (resp., β_1 and β_2) are on a line segment of $\partial W(A)$. In particular, *n* can only be 2, 3 or 4. If $n = 3$ (resp., 4), then the existence of a line segment on $\partial W(A)$ yields that *A* is normal by Corollary [2.13](#page-7-2) (resp., *A* is unitarily equivalent to the direct sum of two 2-by-2 matrices by [\[13](#page-18-5), Proposition 12]), which contradicts the irreducibility of A. Thus we must have $n = 2$. Conversely, if $n = 2$, then $k(A) = 2$ by [\[5,](#page-18-0) Lemma 4.1], completing the proof. $\;\;\Box$

We are now ready to prove Theorem [3.1.](#page-8-1)

Proof of Theorem 3.1. Assume that $k(A) = n$. If *A* is irreducible, then $n = 2$ by Lemma [3.4](#page-9-2) and we are done. Hence we may assume that *A* is reducible and also $A \neq 0_n$. Then Theorem [3.2](#page-8-3) says that either at least two of the w_j 's are zero or $\{|w_j|\}_{j=1}^n$ is periodic. In the former case, we may express A as $A_1 \oplus \cdots \oplus A_m$, where each A_k is either the 1-by-1 zero matrix 0_1 or a n_k -by- n_k ($n_k \ge 2$) weighted shift matrix with exactly one zero weight. Since the numerical ranges of the *Ak*'s are either the singleton {0} or a circular disc centered at the origin (cf. [\[13,](#page-18-5) Proposition 3 (3)]), we may assume that there is some $l, 1 \le l \le m$, such that $W(A_1) = \cdots = W(A_l)$ and $W(A_{l+1}), \ldots, W(A_m)$ are all contained in the interior of $W(A_1)$. From Lemma [2.9,](#page-6-1) we deduce that $k(A) = k(A_1 \oplus \cdots \oplus A_l)$. Since $k(A) = n$ and $k(A_1 \oplus \cdots \oplus A_l) \leq \sum_{k=1}^l n_k \leq n$, we have $n = \sum_{k=1}^l n_k$ or $A = A_1 \oplus \cdots \oplus A_l$, where the A_k 's are each of size at least 2 and have equal numerical ranges. Note also that the *Ak*'s are irreducible. This is because if some

$$
A_k = \begin{pmatrix} 0 & u_1 & & & \\ & 0 & \ddots & & \\ & & \ddots & & \\ & & & & 0 \end{pmatrix},
$$

where $u_i \neq 0$ for all *j*, is reducible, say, it is unitarily equivalent to $A' \oplus A''$, where A' and A'' are of sizes *n'* and *n''* (1 \leq *n'*, *n''* \leq *n_k* − 1), respectively, then, since *A_k*, *A'* and *A''* are all nilpotent, we have $A_k^p = A'^p \oplus A'^{p} = 0_{n_k}$, where $p = \max \{n', n''\} \le n_k - 1$. This yields that

$$
A_k^{n_k-1} = \begin{pmatrix} 0 & \cdots & 0 & \prod_{j=1}^{n_k-1} u_j \\ 0 & & 0 \\ & \ddots & \vdots \\ & & 0 \end{pmatrix} = 0_{n_k},
$$

and hence some u_i is equal to 0, which contradicts our assumption. (This fact appeared in [\[4](#page-17-2), Proposition 3.2] with a different proof. The above was communicated to the second author by H.-L. Gau. Compare also [\[8](#page-18-7), Lemma 2.4].) Next we claim that the *Ak*'s are all of size exactly 2. To prove this, note that, by Theorem [2.7,](#page-4-0) *A* is unitarily equivalent to $\sum_{j=1}^{m} \bigoplus B_j$, where B_j , $1 \leq j \leq m$, is of the form [\(3\)](#page-5-1). Since each B_i can be further decomposed as the direct sum of irreducible matrices and the irreducible summands of any matrix are unique up to ordering and unitary equiv-alence (cf. [\[3](#page-17-3), Theorem 3.1]), we infer that B_i is unitarily equivalent to the direct sum of some of the A_k 's, say, $A_{j_1} \oplus \cdots \oplus A_{j_q}$. Note that for any point α in $\partial W(B_j) = \partial W(A_{j_i})$, $1 \le i \le q$, we have dim $E_{\alpha,L_{\alpha}}(B_j) = \sum_{i=1}^q \text{dim } E_{\alpha,L_{\alpha}}(A_{j_i}) = q$, where L_{α} is the unique supporting line of the circular disc $W(B_j)~=~W(A_{j_i})$ at α (cf. Lemma [3.6](#page-11-1) below). Since the diagonal entries $\alpha_1^{(j)},\ldots,\alpha_{s_j}^{(j)}$ (resp., $\beta_1^{(j)},\ldots,\beta_{t_j}^{(j)})$ of [\(3\)](#page-5-1) for B_j are all in $E^{(j)}_{\alpha_1,L_{\alpha_1}}(B_j)$ (resp., $E^{(j)}_{\beta_1,L_{\beta_1}}(B_j))$, we infer that the size s_j+t_j of *B_j* is at most 2q. Thus the same is true for $A_{j_1}\oplus\cdots\oplus A_{j_q}$. Since each A_{j_i} is of size at least 2, we $\sqrt{2}$ ⎞

conclude that it has size exactly equal to 2. The same holds for all the A_k 's. If $A_k =$ \mathbf{I} 0 *vk* 0 0 ⎠

for $1 \leq k \leq l$, the equality of their numerical ranges $\{z \in \mathbb{C} : |z| \leq |v_k|/2\}$ yields that $|v_1| =$ $\cdots = |v_l|$ ≡ *v*. Hence *n* is even and $|w_1| = |w_3| = \cdots = |w_{n-1}| = v$ and $|w_2| = |w_4| = \cdots$ $|w_n| = 0.$

We next consider the case of periodic weights. Assume that $w_j > 0$ for all *j* and $\{w_j\}_{j=1}^n$ is periodic with period $p \ge 3$. Theorem [3.2](#page-8-3) says that *A* is unitarily equivalent to $\sum_{k=0}^{m-1} \oplus \omega_n^k B$, where $m = n/p$ and *B* is the *p*-by-*p* irreducible weighted shift matrix with weights *w*1,..., *wp*. On the other hand, since $k(A) = n$, Theorem [2.7](#page-4-0) implies that *A* is also unitarily equivalent to $\sum_{i=1}^{q} \bigoplus B_i$, where each B_i is of the form [\(3\)](#page-5-1). Note that, by Lemma [3.3,](#page-8-2) B_i , $1 \le i \le q$, is of size at most 4. As before, by the uniqueness of the irreducible summands of *A* [\[3,](#page-17-3) Theorem 3.1], we infer that each *Bi* is unitarily equivalent to the direct sum of some of the $\omega_n^k B$'s. Since *B* is of size at least 3, each B_i can be of size 3 or 4 only. Hence B_i is unitarily equivalent to one single $\omega_n^k B$ and $\partial W(B_i) = \partial W(B)$ has a line segment by Lemma [3.3.](#page-8-2) These facts combined together yield, via Corollary [2.13](#page-7-2) or [\[13,](#page-18-5) Proposition 12], that *B* is reducible, which leads to a contradiction. Thus *p* must be equal to 1 or 2. This yields our assertion on the weights of *A*.

Conversely, if $|w_1| = \cdots = |w_n|$, then *A* is normal and is unitarily equivalent to $e^{i\phi}|w_1|B$, where $\phi = (\sum_{j=1}^n \arg w_j)/n$ and $B = \text{diag}(1, \omega_n, \dots, \omega_n^{n-1})$. Thus $k(A) = n$ obviously. On the other hand, if *n* is even and $|w_1|=|w_3|=\cdots=|w_{n-1}|$ and $|w_2|=|w_4|=\cdots=|w_n|$, then *A* is unitarily equivalent to $e^{i\phi} \sum_{k=0}^{(n/2)-1} \oplus \omega_n^k C$, where $C =$ $\sqrt{2}$ \mathbf{I} $0 |w_1|$ $|w_2|$ 0 ⎞ [⎠], by Theorem [3.2.](#page-8-3) We easily

obtain $k(A) = n$ from Proposition [2.8.](#page-5-0)

Note that under the conditions of Theorem [3.1,](#page-8-1) the numerical range of *A* is either a regular *n*polygonal region with vertices $e^{i(2k\pi + \sum_j \arg w_j)/n} |w_1|$, $0 \le k \le n - 1$, or the convex hull of the union of $n/2$ elliptic discs with foci $\pm e^{i(2k\pi+\sum_j \arg w_j)/n}|w_1w_2|,$ $0\leq k\leq (n/2)-1,$ and minor axis of length ||*w*1|−|*w*2||.

A consequence of Theorem [3.1](#page-8-1) is that if *A* is an *n*-by-*n* (*n* ≥ 3) weighted shift matrix with exactly one zero weight, then *k*(*A*) is never equal to *n*. In the remaining part of this section, we restrict ourselves to such matrices *A*. It turns out that in this case $k(A)$ can be any integer from 2 to $n-1$.

Theorem 3.5. *For any n* \geq 3 *and any k*, 2 \leq *k* \leq *n* − 1, *there is a matrix A of the form*

$$
\begin{pmatrix}\n0 & w_1 & & & & \\
0 & \ddots & & & & \\
& \ddots & & & & \\
& & & 0 & & \\
\end{pmatrix}
$$
\n
$$
(7)
$$

with $w_i \neq 0$ *for all j such that* $k(A) = k$.

This will be proven after a series of lemmas, the first of which gives conditions for two unit vectors *x* and *y* with $\langle Ax, x \rangle$ and $\langle Ay, y \rangle$ in $\partial W(A)$ to be orthogonal to each other.

Recall that the *numerical radius* $w(A)$ of a matrix *A* is the quantity max $\{|z| : z \in W(A)\}$.

Lemma 3.6. *Let A be an n-by-n* ($n \ge 2$) *matrix of the form* [\(7\)](#page-11-2) *with* $w_i > 0$ *for all j. Then the following hold:*

- (a) $W(A) = \{z \in \mathbb{C} : |z| < w(A)\}.$
- (b) There is a unique unit vector $x = [x_1, \ldots, x_n]^T$ in \mathbb{C}^n with $x_j > 0$ for all j such that $\langle Ax, x \rangle = w(A)$.
- (c) For any $a = w(A)e^{i\theta}$, $\theta \in [0, 2\pi)$, in $\partial W(A)$, let $x_{\theta} = [x_1, e^{i\theta}x_2, \dots, e^{(n-1)i\theta}x_n]^T$. Then $a = \langle Ax_{\theta}, x_{\theta} \rangle$ and H_a *is generated by* x_{θ} *.*
- (d) Let $a_j = w(A)e^{i\theta_j}$ ($\theta_j \in [0, 2\pi)$), $j = 1, 2$, *be two points in* $\partial W(A)$ *. Then* x_{θ_1} *and* x_{θ_2} *are orthogonal to each other if and only if* $e^{i(\theta_1-\theta_2)}$ *is a zero of the polynomial* $x_1^2 + x_2^2z + \cdots + x_n^2z^{n-1}$ *.*

Proof. Since $U^*_{\theta}AU_{\theta} = e^{i\theta}A$ for any real θ , where $U_{\theta} = \text{diag}(1, e^{i\theta}, e^{2i\theta}, \dots, e^{(n-1)i\theta})$ is unitary, (a) follows immediately. (b) is a consequence of [\[9,](#page-18-8) Proposition 3.3] since *A* is a nonnegative matrix with Re *A* (permutationally) irreducible. To prove (c), note that

$$
a = w(A)e^{i\theta} = \langle e^{i\theta}Ax, x \rangle = \langle U_{\theta}^*AU_{\theta}x, x \rangle
$$

= $\langle A(U_{\theta}x), U_{\theta}x \rangle = \langle Ax_{\theta}, x_{\theta} \rangle$,

which shows that x_θ is in H_a . That dim $H_a = 1$ is by [\[9](#page-18-8), Corollary 3.10]. Thus H_a is generated by x_θ . (d) follows from the fact that $\langle x_{\theta_1}, x_{\theta_2} \rangle = \sum_{k=1}^n e^{(k-1)i(\theta_1-\theta_2)} x_k^2$. This completes the proof. \Box

Thus, for a matrix *A* of the form [\(7\)](#page-11-2) with $w_j > 0$ for all *j*, $k(A)$ equals the maximum number of θ_1,\ldots,θ_k in [0, 2 π) for which $e^{i(\theta_j-\theta_l)}$ is a zero of $x_1^2+x_2^2z+\cdots+x_n^2z^{n-1}$ for all *j* and *l*, 1 $\leq j \neq n$ *l* ≤ *k*. To actually construct the matrix *A* in Theorem [3.5,](#page-11-0) we need another tool, namely, a parametric representation of the weights *wj* from [\[14,](#page-18-9) Theorem 3.1(b)].

Lemma 3.7. *Let A be an n-by-n* ($n \ge 2$) *matrix of the form* [\(7\)](#page-11-2) *with* $w_i > 0$ *for all j. Then there is a unique sequence* $\{a_j\}_{j=1}^n$ *with* $a_1 = -1, -1 < a_j < 1$ *for* $2 \leq j \leq n-1$ *, and* $a_n = 1$ *such that w*_j/*w*(*A*) = $\sqrt{(1 - a_j)(1 + a_{j+1})}$ *for all j. In this case, if y*₁ = 1, *y_j* = $\prod_{k=1}^{j-1} \sqrt{(1 - a_k)/(1 + a_{k+1})}$ *for* $2 \leq j \leq n$, and $y = [y_1, \ldots, y_n]^T$, then $\langle A(y/||y||), y/||y|| \rangle = w(A)$.

Proof. We need only prove the second assertion. Note that (Re *A*) $y = (1/2)[w_1y_2, w_1y_1+w_2y_3, \ldots,$ *wn*−2*yn*−² + *wn*−1*yn*, *wn*−1*yn*−1] *^T* . Here

526 *K.-Z. Wang, P.Y. Wu / Linear Algebra and its Applications 438 (2013) 514–532*

$$
w_1y_2 = w(A)\sqrt{(1-a_1)(1+a_2)}\sqrt{\frac{1-a_1}{1+a_2}} = w(A)(1-a_1) = 2w(A) = 2w(A)y_1,
$$

$$
w_j y_j + w_{j+1} y_{j+2}
$$

= $w(A) \left[\sqrt{(1 - a_j)(1 + a_{j+1})} \prod_{k=1}^{j-1} \sqrt{\frac{1 - a_k}{1 + a_{k+1}}} + \sqrt{(1 - a_{j+1})(1 + a_{j+2})} \prod_{k=1}^{j+1} \sqrt{\frac{1 - a_k}{1 + a_{k+1}}} \right]$
= $w(A) \left(\prod_{k=1}^{j} \sqrt{\frac{1 - a_k}{1 + a_{k+1}}} \right) \left[\sqrt{(1 - a_j)(1 + a_{j+1})} \sqrt{\frac{1 + a_{j+1}}{1 - a_j}} \right]$
+ $\sqrt{(1 - a_{j+1})(1 + a_{j+2})} \sqrt{\frac{1 - a_{j+1}}{1 + a_{j+2}}} \right]$
= $w(A) y_{j+1} [(1 + a_{j+1}) + (1 - a_{j+1})]$
= $2w(A) y_{j+1}, \quad 1 \le j \le n - 2,$

and

$$
w_{n-1}y_{n-1} = w(A)\sqrt{(1 - a_{n-1})(1 + a_n)}\prod_{k=1}^{n-2} \sqrt{\frac{1 - a_k}{1 + a_{k+1}}}
$$

= $w(A)\left(\prod_{k=1}^{n-1} \sqrt{\frac{1 - a_k}{1 + a_{k+1}}}\right)\sqrt{(1 - a_{n-1})(1 + a_n)}\sqrt{\frac{1 + a_n}{1 - a_{n-1}}}$
= $w(A)y_n(1 + a_n)$
= $2w(A)y_n$.

This shows that (Re A) $\nu = w(A)\nu$. Since

$$
\langle A\frac{y}{\|y\|}, \frac{y}{\|y\|}\rangle = \langle (\text{Re } A)y, y \rangle \frac{1}{\|y\|^2} + i \text{ Im } \langle A\frac{y}{\|y\|}, \frac{y}{\|y\|}\rangle = w(A) + i \text{ Im } \langle A\frac{y}{\|y\|}, \frac{y}{\|y\|}\rangle
$$

is in the circular disc $W(A) = \{z \in \mathbb{C} : |z| \leq w(A)\}$, we infer that $\langle A(y/||y||), y/||y|| \rangle = w(A)$ as asserted. \Box

Our construction of the matrix *A* in Theorem [3.5](#page-11-0) is based on the following lemma. Here, for any real *t*, let $\lfloor t \rfloor$ denote the largest integer which is less than or equal to *t*.

Lemma 3.8. *For any positive integers l and m*, *let*

$$
p(z) = (1+z)^{l} (1+z+\cdots+z^{m}) \equiv 1+\alpha_1 z+\cdots+\alpha_{l+m-1} z^{l+m-1}+z^{l+m}.
$$

Then the following hold:

- (a) $p(z)$ *is a self-inversive polynomial, that is, its coefficients satisfy* $\alpha_j = \alpha_{l+m-j}$ *for all j,* $1 \leq j \leq j$ $l + m - 1$.
- (b) $1 < \alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_{\lfloor (l+m)/2 \rfloor}$.
- (c) There is a sequence $\{a_j\}_{j=1}^{l+m+1}$ with $a_1=-1,$ $-1 < a_j < 1$ for $2 \leq j \leq l+m,$ and $a_{l+m+1}=1$ *such that* $\alpha_j = \prod_{k=1}^j (1 - a_k)/(1 + a_{k+1})$ for $1 \le j \le l+m-1$ and $\prod_{k=1}^{l+m} (1 - a_k)/(1 + a_{k+1}) = 1$.

Proof of (a) and (b). It is easily seen that

$$
\alpha_{j} = \begin{cases}\n\sum_{k=0}^{j} {l \choose k} & \text{if } 1 \leq j \leq l, \\
\sum_{k=0}^{l} {l \choose k} & \text{if } l+1 \leq j \leq m, \\
\sum_{k=j-m}^{l} {l \choose k} & \text{if } m+1 \leq j \leq l+m-1, \\
\sum_{k=j-m}^{l} {l \choose k} & \text{if } m+1 \leq j \leq l, \\
\sum_{k=j-m}^{l} {l \choose k} & \text{if } l+1 \leq j \leq l+m-1\n\end{cases}
$$
\n(8)

depending on whether $l \le m$ or $l > m$. (a) and (b) follow immediately.

Note that (a) can also be proved by comparing the coefficients of $p(z)$ and $z^{l+m} \overline{p(1/\overline{z})}$. The equality of these two polynomials follows from the fact that the leading coefficient, the constant term and the moduli of the zeros of $p(z)$ are all equal to 1 (cf. [\[10,](#page-18-10) p. 17, Theorem 2.1.2]).

To prove (c), we need another lemma.

Lemma 3.9. (a) If $1 < \alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_{n-1}$, then there is a sequence $\{a_j\}_{j=1}^n$ with $a_1 = -1$ and $-1 < a_j < 1$ for $2 ≤ j ≤ n$ such that $\alpha_j = \prod_{k=1}^{j} (1 - a_k)/(1 + a_{k+1})$ for $1 ≤ j ≤ n - 1$ *. (b)* Let *l* and *m* be positive integers such that $\overline{l} \ge m$ and $\overline{l} + m$ is even. If

$$
\alpha_j = \begin{cases} \sum_{k=0}^j \binom{l}{k} & \text{for } 1 \le j \le m, \\ \sum_{k=j-m}^j \binom{l}{k} & \text{for } m+1 \le j \le \frac{1}{2}(l+m), \end{cases}
$$

then, letting a_j , $1 \leq j \leq (l+m)/2$, *be as in (a) and a*_{(($l+m$)/2)+1 = 0, *we have* $\alpha_j = \prod_{k=1}^{j} (1-a_k)/(1+a_k)$} *a*_{k+1}) *for* $1 \le j \le (l+m)/2$ *.*

Proof. (a) Let $a_1 = -1$, and define a_i , $2 \leq j \leq n$, inductively by

$$
a_j = \left(\frac{1-a_{j-1}}{\alpha_{j-1}}\prod_{k=1}^{j-2}\frac{1-a_k}{1+a_{k+1}}\right) - 1.
$$

Then $\alpha_j = \prod_{k=1}^j (1 - a_k)/(1 + a_{k+1})$ for all *j*. Now we show that $-1 < a_j < 1$ for $2 \le j \le n$ by induction. Since $1 < \alpha_1 = 2/(1 + a_2)$, we have $-1 < a_2 < 1$. In general, if $-1 < a_{j_0} < 1$ for some j_0 , $2 \le j_0 < n$, then

$$
1 + a_{j_0+1} = \frac{1 - a_{j_0}}{\alpha_{j_0}} \prod_{k=1}^{j_0-1} \frac{1 - a_k}{1 + a_{k+1}} = \frac{1 - a_{j_0}}{\alpha_{j_0}} \alpha_{j_0-1} \le 1 - \alpha_{j_0} < 2,
$$

from which we obtain $-1 < a_{j_0+1} < 1$. Thus $-1 < a_j < 1$ for all *j* as asserted.

(b) Letting $n = (l + m)/2$, we need only show that $\alpha_n = \alpha_{n-1}(1 - a_n)$. This is done by first expressing $1 - a_j$, $2 \le j \le n$, in terms of $\alpha_0 \ (\equiv 1)$, $\alpha_1, \ldots, \alpha_{j-1}$, namely,

$$
1 - a_j = \frac{2}{\alpha_{j-1}} (\alpha_{j-1} - \alpha_{j-2} + \dots + (-1)^{j-1} \alpha_0).
$$
\n(9)

Indeed, for $j = 2$, we have

528 *K.-Z. Wang, P.Y. Wu / Linear Algebra and its Applications 438 (2013) 514–532*

$$
1-a_2=2-(1+a_2)=2-\frac{2}{\alpha_1}=\frac{2(\alpha_1-\alpha_0)}{\alpha_1}.
$$

Assume next that [\(9\)](#page-13-0) holds for all $j < j_0$, $2 \le j_0 \le n$. Then

$$
1 - a_{j_0} = 2 - (1 + a_{j_0}) = 2 - \frac{(1 - a_{j_0 - 1})\alpha_{j_0 - 2}}{\alpha_{j_0 - 1}}
$$

=
$$
2 - \frac{2}{\alpha_{j_0 - 1}}(\alpha_{j_0 - 2} - \alpha_{j_0 - 3} + \dots + (-1)^{j_0 - 2}\alpha_0)
$$

=
$$
\frac{2}{\alpha_{j_0 - 1}}(\alpha_{j_0 - 1} - \alpha_{j_0 - 2} + \dots + (-1)^{j_0 - 1}\alpha_0).
$$

Hence [\(9\)](#page-13-0) holds by induction. To complete the proof, we need the identity

$$
\alpha_n = 2(\alpha_{n-1} - \alpha_{n-2} + \dots + (-1)^{n-1}\alpha_0).
$$
\n(10)

Indeed, we have

$$
(-1)^{n-m-1}\alpha_m + (-1)^{n-m}\alpha_{m-1} + \dots + (-1)^{n-1}\alpha_0
$$

= $(-1)^{n-m-1}\sum_{k=0}^m {l \choose k} + (-1)^{n-m}\sum_{k=0}^{m-1} {l \choose k} + \dots + (-1)^{n-1}\alpha_0$

$$
- \int (-1)^{n-m-1}[(\begin{matrix} l \\ 0 \end{matrix}) + (\begin{matrix} l \\ 2 \end{matrix}) + \dots + (\begin{matrix} l \\ m \end{matrix})]
$$
 if *m* is even,

$$
= \begin{cases} (-1)^{n-m-1} \left[\binom{l}{0} + \binom{l}{2} + \cdots + \binom{l}{m} \right] \text{ if } m \text{ is even,} \\ (-1)^{n-m-1} \left[\binom{l}{1} + \binom{l}{3} + \cdots + \binom{l}{m} \right] \text{ if } m \text{ is odd,} \end{cases} (11)
$$

and

$$
\alpha_{n-1} - \alpha_{n-2} + \dots + (-1)^{n-m-2} \alpha_{m+1}
$$
\n
$$
= \sum_{k=n-m-1}^{n-1} {l \choose k} - \sum_{k=n-m-2}^{n-2} {l \choose k} + \dots + (-1)^{n-m-2} \sum_{k=1}^{m+1} {l \choose k}
$$
\n
$$
= \begin{cases}\n[{l \choose m+2} + {l \choose m+4} + \dots + {l \choose n-1}] - [{l \choose 1} + {l \choose 3} + \dots + {l \choose n-m-2}] & \text{if } n-m-1 \text{ is even,} \\
[{l \choose m+3} + {l \choose m+5} + \dots + {l \choose n-1}] - [{l \choose 2} + {l \choose 4} + \dots + {l \choose n-m-2}] & \text{if } n-m-1 \text{ is odd.} \\
+ [{l \choose 1} + {l \choose 2} + \dots + {l \choose m+1})] & \text{if } n-m-1 \text{ is odd.}\n\end{cases}
$$
\n(12)

For *m* and *n* − *m* − 1 both even, adding (11) and (12) yields

$$
2(\alpha_{n-1} - \alpha_{n-2} + \cdots + (-1)^{n-1}\alpha_0)
$$

= $2\left[\binom{l}{n-1} + \binom{l}{n-3} + \cdots + \binom{l}{0}\right] - 2\left[\binom{l}{n-m-2} + \binom{l}{n-m-4} + \cdots + \binom{l}{1}\right]$
= $2\left[\sum_{k=0}^{n-1} \binom{l-1}{k} - \sum_{k=0}^{n-m-2} \binom{l-1}{k}\right]$
= $2\left[\sum_{k=n-m-1}^{n-1} \binom{l-1}{k}\right],$

where the second equality follows by using the identity

$$
\binom{l}{k} = \binom{l-1}{k} + \binom{l-1}{k-1}.
$$

On the other hand, we also have

$$
\alpha_n = \sum_{k=n-m}^{n} {l \choose k} = \sum_{k=n-m}^{n} \left[{l-1 \choose k} + {l-1 \choose k-1} \right]
$$

=
$$
2 \left[\sum_{k=n-m-1}^{n-1} {l-1 \choose k} \right] - {l-1 \choose n-m-1} + {l-1 \choose n}
$$

=
$$
2 \left[\sum_{k=n-m-1}^{n-1} {l-1 \choose k} \right].
$$

This shows that (10) is indeed true in this case. For other parities of *m* and $n - m - 1$, analogous arguments as above show that (10) also holds. This completes the proof. $\ \Box$

Proof of Lemma 3.8(c). We need only check that there is a sequence $\{a_j\}_{j=1}^{\lfloor (l+m)/2 \rfloor + 1}$ with $a_1 = -1,$ $-1 < a_i < 1$ for $2 \le j \le \lfloor (l+m)/2 \rfloor + 1$, and, in addition, $a_{\lfloor (l+m)/2 \rfloor + 1} = 0$ if $l+m$ is even such that $\alpha_j = \prod_{k=1}^j (1 - a_k)/(1 + a_{k+1})$ for $1 \leq j \leq \lfloor (l+m)/2 \rfloor$. Indeed, if this is the case, then, letting $a_j = -a_{l+m+2-j}$ for $\lfloor (l+m)/2 \rfloor + 2 \leq j \leq l+m+1$, we obtain, by Lemma [3.8\(](#page-12-0)a), that

$$
\alpha_j = \alpha_{l+m-j} = \prod_{k=1}^{l+m-j} \frac{1 - a_k}{1 + a_{k+1}} = \prod_{k=1}^j \frac{1 - a_k}{1 + a_{k+1}}
$$

for $\lfloor (l+m)/2 \rfloor + 1 \le j \le l+m-1$ and $\prod_{k=1}^{l+m} (1 - a_k)/(1 + a_{k+1}) = 1$ as required.

Now consider the case of odd $l + m$. Since $1 < \alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_{\lfloor (l+m)/2 \rfloor}$ by Lemma [3.8\(](#page-12-0)b), Lemma [3.9\(](#page-13-1)a) yields a sequence $\{a_j\}_{j=1}^{\lfloor (l+m)/2\rfloor +1}$ with the properties in the preceding paragraph. Next assume that $l + m$ is even. If $l \leq m$, then [\(8\)](#page-13-2) yields that $\alpha_j = \sum_{k=0}^j \binom{l}{k}$ for $1 \leq j \leq l$. Hence Lemma [3.9\(](#page-13-1)b) (with $l = m$) guarantees the existence of $\{a_j\}_{j=1}^{l+1}$ with $a_1 = -1, -1 < a_j < 1$ for $2 \le j \le l$, and $a_{l+1} = 0$ such that $\alpha_j = \prod_{k=1}^{j} (1 - a_k)/(1 + a_{k+1})$ for $1 \le j \le l$. If $l \le m - 1$, then, letting $a_j = 0$ for $l + 2 \leq j \leq \left((l + m)/2\right) + 1$, we have, by Lemma [3.8\(](#page-12-0)a) and [\(8\)](#page-13-2),

$$
\alpha_j = \alpha_{l+m-j} = \prod_{k=1}^{l+m-j} \frac{1 - a_k}{1 + a_{k+1}} = \prod_{k=1}^{l} \frac{1 - a_k}{1 + a_{k+1}} = \alpha_l
$$

for $l + 1 \leq j \leq (l + m)/2$. This shows that the required properties for $\{\alpha_j\}_{j=1}^{((l+m)/2)+1}$ in the first paragraph are satisfied, and thus we are done.

Finally, consider $l > m$. In this case, we have

$$
\alpha_j = \begin{cases} \sum_{k=0}^j \binom{l}{k} & \text{if } 1 \le j \le m, \\ \sum_{k=j-m}^j \binom{l}{k} & \text{if } m+1 \le j \le (l+m)/2 \end{cases}
$$

by [\(8\)](#page-13-2). Lemma [3.9\(](#page-13-1)b) yields a sequence $\{a_j\}_{j=1}^{((l+m)/2)+1}$, which satisfies the required properties in the first paragraph. This completes the proof.

Now we are ready to prove Theorem [3.5.](#page-11-0)

Proof of Theorem 3.5. For the given *n* and *k*, let

$$
p(z) = (1 + z)^{n-k} (1 + z + \dots + z^{k-1}) \equiv 1 + \alpha_1 z + \dots + \alpha_{n-2} z^{n-2} + z^{n-1}.
$$

Let $\{a_j\}_{j=1}^n$ be the sequence given in Lemma [3.8\(](#page-12-0)c) with $a_1 = -1, -1 < a_j < 1$ for $2 \le j \le n - 1$, $a_n = 1$ such that $\alpha_j = \prod_{k=1}^j (1 - a_k)/(1 + a_{k+1})$ for $1 \le j \le n-2$ and $\prod_{k=1}^{n-1} (1 - a_k)/(1 + a_{k+1}) = 1$, let $w_j = \sqrt{(1 - a_j)(1 + a_{j+1})}$ for $1 \le j \le n-1$, and let

$$
A = \begin{pmatrix} 0 & w_1 & & & \\ & 0 & \ddots & & \\ & & \ddots & w_{n-1} & \\ & & & 0 & 0 \end{pmatrix}.
$$

If $y = [1, \sqrt{\alpha_1}, \ldots, \sqrt{\alpha_{n-2}}, 1]^T$, then $\langle Ay, y \rangle = ||y||^2 w(A)$ by Lemma [3.7.](#page-11-3) Hence, according to Lemma [3.6\(](#page-11-1)d), *k*(*A*) equals the maximum number of θ_1,\ldots,θ_k in [0, 2 π) for which $e^{i(\theta_j-\theta_l)}$ is a zero of $p(z)$ for all *j* and $l, 1 \leq j \neq l \leq k$. Since the zeros of $p(z)$ are $-1, \omega_k, \omega_k^2, \ldots, \omega_k^{k-1}$, one maximal choice of the θ_i 's is $2\pi j/k$, $0 \le j \le k - 1$, and thus $k(A) = k$ as required.

Our final result is a characterization of the *n*-by-*n* weighted shift matrices *A* with exactly one zero weight for which $k(A) = n - 1$.

Theorem 3.10. *For* $n \geq 3$ *, let*

$$
A = \begin{pmatrix} 0 & w_1 & & \\ & 0 & \ddots & \\ & & \ddots & \\ & & & w_{n-1} \\ & & & 0 \end{pmatrix}
$$

with $w_i \neq 0$ *for all j and* $w(A) = 1$ *. Then* $k(A) = n - 1$ *if and only if either*

- (a) *n* is even, $|w_1| = |w_{n-1}| = \sqrt{2}$ and $|w_2| = \cdots = |w_{n-2}| = 1$, or
- (a) *n* is even, $|w_1| = |w_{n-1}| = \sqrt{2}$ and $|w_2| = \cdots = |w_{n-2}| = 1$, or
(b) *n* is odd, and $|w_1| = 2/\sqrt{1 + \alpha}$, $|w_{2j}| = 2\alpha/(1 + \alpha)$, $|w_{2j+1}| = 2/(1 + \alpha)$ for $1 \le j \le n$ *n* is out, that $|w_1| = 2/\sqrt{1 + \alpha}$, $|w_{2j}| = 2\alpha/(1 + \alpha)$
 $(n-3)/2$, and $|w_{n-1}| = 2\sqrt{\alpha/(1 + \alpha)}$ for some $\alpha > 0$.

Proof. We may assume that $w_i > 0$ for all *j*.

(a) If *n* is even and $w_1 = w_{n-1} = \sqrt{2}$ and $w_2 = \cdots = w_{n-2} = 1$, then $x \equiv (1/\sqrt{n-1})[1/\sqrt{2}]$, (a) If *n* is even and $w_1 = w_{n-1} = \sqrt{2}$ and $w_2 = \cdots = w_{n-2} = 1$, then $x \equiv (1/\sqrt{n} - 1)[1/\sqrt{2}]$, $1, \ldots, 1, 1/\sqrt{2}]^T$ is the unique unit vector in \mathbb{C}^n with positive components such that $\langle Ax, x \rangle = 1$ *w*(*A*). Hence, by Lemma [3.6\(](#page-11-1)d), $k(A)$ equals the maximum number of $\theta_1, \ldots, \theta_k$ in [0, 2π) for which $e^{i(\theta_j - \theta_l)}$ is a zero of the polynomial $p(z) = (1/(2(n-1)))(1 + 2z + \cdots + 2z^{n-2} + z^{n-1})$ for all $j \neq l$. Since the zeros of $p(z)$ are -1 and $\omega^j_{n-1},$ 1 \leq j \leq $n-2$, we infer that a maximal choice of the θ_j 's are 0 and $2\pi j/(n-1)$, $1 \le j \le n-2$, and hence $k(A) = n-1$.

Conversely, if *n* is even and $k(A) = n - 1$, then let $x = [x_1, \ldots, x_n]^T$ be the unit vector in \mathbb{C}^n with $x_j > 0$ for all *j* such that $\langle Ax, x \rangle = w(A) = 1$, and let $p(z) = x_1^2 + x_2^2z + \cdots + x_n^2z^{n-1}$. Since $x' \equiv [x_1, e^{i\pi}x_2, \ldots, e^{(n-1)i\pi}x_n]^T$ is a unit vector satisfying $\langle Ax', x' \rangle = -1$ and is orthogonal to *x* (because they are eigenvectors of Re *A* corresponding to the eigenvalues −1 and 1, respectively), by Lemma [3.6\(](#page-11-1)d), -1 is a zero of $p(z)$. On the other hand, since $k(A) = n - 1$ and $p(1) = 1 \neq 0$, there are $\theta_1,\ldots,\theta_{n-1}$ with $0\leq\theta_1<\theta_2<\cdots<\theta_{n-1}< 2\pi$ such that $e^{i(\theta_j-\theta_l)},$ $1\leq j\neq l\leq n-1,$

are all zeros of $p(z)$. Note that, except -1 , the zeros of the real polynomial $p(z)$ appear in conjugate pairs. Thus for each fixed *l*, 1 $\leq l \leq n-1,$ the zeros of $p(z)$ are exactly -1 together with $e^{i(\theta_j - \theta_l)}$, 1 ≤ *j* = *l* ≤ *n* − 1. Since the latter are counterclockwise around the unit circle, we have, in particular, that $e^{i(\theta_2-\theta_1)}=e^{i(\theta_3-\theta_2)}$ and $e^{i(\theta_3-\theta_1)}=e^{i(\theta_4-\theta_2)}$. Hence

$$
(\theta_3 - \theta_1) - (\theta_2 - \theta_1) = (\theta_4 - \theta_2) - (\theta_3 - \theta_2) = \theta_4 - \theta_3 = (\theta_4 - \theta_1) - (\theta_3 - \theta_1).
$$

In a similar fashion, we may show that $(\theta_{j+1} - \theta_1) - (\theta_j - \theta_1) = (\theta_{j+2} - \theta_1) - (\theta_{j+1} - \theta_1)$ for all *j*, ¹ ≤ *^j* ≤ *ⁿ* − 2 (θ*ⁿ* ≡ ²π + θ1). Therefore, *^ei*(θ*j*+1−θ1) , 1 ≤ *j* ≤ *n* − 2, are equally distributed over the unit circle, that is, $e^{i(\theta_{j+1}-\theta_1)}=\omega_{n-1}^j$ for all *j*. It follows that

$$
p(z) = \frac{1}{2(n-1)}(1+z)(1+z+\cdots+z^{n-2}) = \frac{1}{2(n-1)}(1+2z+\cdots+2z^{n-2}+z^{n-1}),
$$

that is, $x_1 = x_n = 1/\sqrt{2(n-1)}$ and $x_2 = \cdots = x_{n-1} = 1/\sqrt{n-1}$. Let $\{a_j\}_{j=1}^n$ be the sequence given by Lemma [3.7](#page-11-3) such that $a_1 = -1$, $-1 < a_j < 1$ for all j , $2 \le j \le n-1$, $a_n = 1$ and *w_j* = $\sqrt{(1 - a_j)(1 + a_{j+1})}$ for all *j*. Moreover, if *y*₁ = 1 and *y_j* = $\prod_{k=1}^{j-1} \sqrt{(1 - a_k)/(1 + a_{k+1})}$ for $2 ≤ j ≤ n$, then *x* is the normalized vector of $y ≡ [y_1, ..., y_n]^T$. Thus $\prod_{k=1}^{j-1}(1 - a_k)/(1 + a_{k+1}) = 2$ for all *j*, $2 \le j \le n - 1$, from which we obtain $a_j = 0$ for $2 \le j \le n - 1$. Hence $w_1 = w_{n-1} = \sqrt{2}$ and $w_2 = \cdots = w_{n-2} = 1$ as asserted.

(b) Assume that *n* is odd. We may argue analogously as before except that this time −1 and $\omega_{n-1}^{(n-1)/2}$ coincide. So, for one direction, if the *w_j*'s are of the asserted form for some $\alpha > 0$, then α_{n-1} confides so, for one unection, if the w_j s are of the asserted form for some $\alpha > 0$, then $x = (1/\sqrt{(n-1)(1+\alpha)})[1, \sqrt{1+\alpha}, \ldots, \sqrt{1+\alpha}, \sqrt{\alpha}]^T$ is the unique unit vector in \mathbb{C}^n with $\langle Ax, x \rangle = 1 = w(A)$, and $p(z) = (1/((n-1)(1+\alpha)))(1 + (1+\alpha)z + \cdots + (1+\alpha)z^{n-2} + \alpha z^{n-1})$ has zeros $-1/\alpha$ and ω_{n-1}^j , $1 \leq j \leq n-2$. From this, we infer as before that $k(A) = n-1$.

Conversely, if $k(A) = n-1$, let $x = [x_1, ..., x_n]^T$, $p(z) = x_1^2 + x_2^2 z + \cdots + x_n^2 z^{n-1}$, and $\theta_1, ..., \theta_{n-1}$ with $0 \le \theta_1 < \theta_2 < \cdots < \theta_{n-1} < 2\pi$ be as in (a). Then for each fixed *l*, $1 \le l \le n-1$, the $n-2$ distinct numbers $e^{i(\theta_j-\theta_l)}$, $1\leq j\neq l\leq n-1$, are zeros of $p(z)$. Let the real β be the remaining zero of *p*(*z*). As before, we have $e^{i(\theta_{j+1}-\theta_1)} = \omega_{n-1}^j$ for $1 \le j \le n-2$ and hence

$$
p(z) = \frac{1}{(n-1)(1-\beta)}(-\beta + z)(1 + z + \dots + z^{n-2})
$$

=
$$
\frac{1}{(n-1)(1-\beta)}(-\beta + (1-\beta)z + \dots + (1-\beta)z^{n-2} + z^{n-1}).
$$

In particular, this implies that $\beta < 0$ and $x_1 = \sqrt{-\beta/((n-1)(1-\beta))}$, $x_j = 1/\sqrt{n-1}$ for 2 $\leq j \leq$ *n* − 1, and $x_n = 1/\sqrt{(n-1)(1-\beta)}$. Let $\alpha = -1/\beta$ and let $\{a_j\}_{j=1}^n$ be as given in Lemma [3.7.](#page-11-3) We can derive as before that the w_j 's are of the form as asserted. $\;\;\Box$

Acknowledgement

We thank Hsin-Yi Lee for his suggestions, which lead to the present improved Proposition [2.10.](#page-7-1)

References

- [1] J. Eldred, L. Rodman, I.M. Spitkovsky, Numerical ranges of companion matrices: flat portions on the boundary, Linear Multilinear Algebra 60 (2012), in press.
- [2] M.R. Embry, The numerical range of an operator, Pacific J. Math. 32 (1970) 647–650.
- [3] J.S. Fang, C.-L. Jiang, P.Y. Wu, Direct sums of irreducible operators, Studia Math. 155 (2003) 37–49.

^[4] H.-L. Gau, M.C. Tsai, H.-C. Wang, Weighted shift matrices: unitary equivalence, reducibility and numerical ranges, preprint, arXiv: 1206.1975.

- [5] H.-L. Gau, P.Y. Wu, Numerical ranges and compressions of *Sn*-matrices, Oper. Matrices, in press.
- [6] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, Cambridge, 1991.
- [7] D.S. Keeler, L. Rodman, I.M. Spitkovsky, The numerical range of 3×3 matrices, Linear Algebra Appl. 252 (1997) 115–139.
- [8] D.P. Kimsey, H.J. Woerdeman, Minimal normal and commuting completions, Int. J. Inf. Syst. Sci. 4 (2008) 50–59.
- [9] C.-K. Li, B.-S. Tam, P.Y. Wu, The numerical range of a nonnegative matrix, Linear Algebra Appl. 350 (2002) 1–23.
- [10] G.V. Milovanović, D.S. Mitrinović, Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994.
- [11] H. Nakazato, Quartic curves associated to 4 by 4 matrices, Sci. Rep. Hirosaki Univ. 43 (1986) 209–221.
- [12] M.C. Tsai, Numerical ranges of weighted shift matrices with periodic weights, Linear Algebra Appl. 435 (2011) 2296–2302.
- [13] M.C. Tsai, P.Y. Wu, Numerical ranges of weighted shift matrices, Linear Algebra Appl. 435 (2011) 243–254.
- [14] K.-Z. Wang, P.Y. Wu, Numerical ranges of weighted shifts, J. Math. Anal. Appl. 381 (2011) 897–909.
- [15] H.-Y. Zhang, Y.-N. Dou, M.-F. Wang, H.-K. Du, On the boundary of numerical ranges of operators, Appl. Math. Lett. 24 (2011) 620–622.