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For any n-by-n matrix A, we consider the maximum number k =
k(A) forwhich there is a k-by-k compression ofAwith all its diagonal

entries in the boundary ∂W(A) of the numerical range W(A) of A.

For any such compression, we give a standard model under unitary

equivalence for A. This is then applied to determine the value of k(A)
for A of size 3 in terms of the shape of W(A). When A is a matrix of

the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 w1

0
. . .

. . . wn−1

wn 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

we show that k(A) = n if and only if either |w1| = · · · = |wn| or n
is even and |w1| = |w3| = · · · = |wn−1| and |w2| = |w4| = · · · =
|wn|. For such matrices Awith exactly one of thewj ’s zero, we show

that any k, 2 ≤ k ≤ n − 1, can be realized as the value of k(A), and
determine exactly when the equality k(A) = n − 1 holds.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

For an n-by-n complex matrix A, let W(A) = {〈Ax, x〉 : x ∈ C
n, ‖x‖ = 1} denote its numerical

range, where 〈·, ·〉 and ‖ · ‖ are the standard inner product and its associated norm inC
n, respectively,
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and let k(A) be the maximum number k of orthonormal vectors x1, . . . , xk in C
n with 〈Axj, xj〉 in the

boundary ∂W(A) ofW(A) for all j. Note that k(A) is also the maximum size of a compression of Awith

all its diagonal entries in ∂W(A). Recall that a k-by-kmatrixB is a compressionofA ifB = V∗AV for some

n-by-kmatrix V with V∗V = Ik . The number k(A)was first introduced in [5]. It relates properties of the

numerical range and the compressions of A. In particular, it was shown in [5, Lemma 4.1 and Theorem

4.4] that 2 ≤ k(A) ≤ n for any n-by-n (n ≥ 2)matrix A, and k(A) = 	n/2
 for any Sn-matrix A (n ≥ 3).

Recall that an n-by-nmatrix A is of class Sn if it is a contraction, that is, ‖A‖ ≡ max‖x‖=1 ‖Ax‖ ≤ 1, its

eigenvalues are all in the open unit disc D ≡ {z ∈ C : |z| < 1}, and the rank of In − A∗A equals one.

One particular example is the n-by-n Jordan block

Jn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

0
. . .

. . . 1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In this paper, we proceed to study k(A) for other classes of A. In particular, we are interested in

knowingwhen k(A) equals the size of A. In Section 2 below,we first give a structure theorem (Theorem

2.7) ofAwhen it has a compressionwith all its diagonal entries in∂W(A). This is thenused todetermine

the value of k(A) for A of size 3 in terms of the shape of its numerical range W(A) (Proposition 2.11).

Then, in Section 3, we consider the n-by-n (n ≥ 2) weighted shift matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 w1

0
. . .

. . . wn−1

wn 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

For such an A, we determine in Theorem 3.1 exactly when its k(A) equals n. We show that this is the

case if and only if either |w1| = · · · = |wn| or n is even and |w1| = |w3| = · · · = |wn−1| and|w2| = |w4| = · · · = |wn|. In particular, this implies that, for A of the form (1) with n ≥ 3 and with

exactly one zero weight, k(A) is never equal to n. We then concentrate on those A’s in this latter class,

and show that in this case its k(A) can be any integer between 2 and n − 1 (Theorem 3.5). We also

completely characterize among such A’s those with k(A) = n − 1 (Theorem 3.10).

Our reference for properties of the numerical range is [6, Chapter 1].

We end this section by fixing some notations. For any finite square matrix A, we use Re A =
(A + A∗)/2 and Im A = (A − A∗)/(2i) to denote its real and imaginary parts, respectively, and ker A

and ran A to denote its kernel and range, respectively. A is said to be reducible if it is unitarily equivalent

to thedirect sumof twoothermatrices; otherwise,A is irreducible. The set of eigenvalues ofA is denoted

by σ(A). 0n and In are the n-by-n zero and identity matrices, respectively. The n-by-n diagonal matrix

with diagonals a1, . . . , an is diag(a1, . . . , an). The argument, arg z, of a nonzero complex number z is

the unique number θ in [0, 2π) such that z = |z|eiθ ; arg 0 can be any number in [0, 2π). Finally, for

any n ≥ 1, the nth primitive root of unity e2π i/n is denoted by ωn.

2. Generalities

In this section, we prove some general results on the number k(A) of a finite matrix A, and start by

reviewing a few basic facts concerning the boundary points of W(A).
For an n-by-n matrix A, a point a in ∂W(A) and a supporting line L of W(A) which passes through

a, there is a θ in [0, 2π) such that the ray Rθ from the origin which forms angle θ from the positive

x-axis is perpendicular to L = Lθ (cf. Fig. 2.1). In this case, Re (e−iθa) is the maximum eigenvalue of
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Fig. 2.1. Supporting line ofW(A).

Re (e−iθA) with the corresponding eigenspace Ea,L(A) ≡ ker Re (e−iθ (A − aIn)). Let Ka(A) denote

the set {x ∈ C
n : 〈Ax, x〉 = a‖x‖2} and Ha(A) the subspace generated by Ka(A). If the matrix A is

clear from the context, we will abbreviate these to Ea,L , Ka and Ha, respectively. Note that these three

sets are in general not equal. For example, if A =
⎛
⎝ 1 0

0 0

⎞
⎠ and a = 0 or 1, then W(A) = [0, 1] has

infinitely many supporting lines L at a. It is easily seen that Ea,L = C
2 if L is the x-axis, and C ⊕ {0}

if otherwise, and Ka = Ha = {0} ⊕ C or C ⊕ {0}. On the other hand, if 0 < a < 1, then L must be

the x-axis, Ea,L = Ha = C
2, and Ka = {(√aeiθ1) ⊕ (

√
1 − aeiθ2) : θ1, θ2 ∈ R}. The next proposition

gives precise information on their relationship.

Proposition 2.2. Let A be an n-by-n matrix, a be a point in ∂W(A), and L be a supporting line of W(A)
which passes through a. Then the following hold:

(a) Ha is contained in Ea,L.

(b) Ka is a subspace of Cn, that is, Ka = Ha if and only if a is an extreme point of W(A).
(c) If a is not extreme for W(A), then L is unique and Ha = ∪{Kb : b ∈ L ∩ ∂W(A)}.
(d) Ha = Ea,L if and only if either a is an extreme point of W(A) and L ∩ ∂W(A) = {a} or a is not

extreme for W(A).
(e) If L ∩ ∂W(A) is a (nondegenerate) line segment of ∂W(A), then dim Ea,L ≥ 2. The converse is in

general false.

(f) If A is irreducible and dim Ea,L > n/2, then L ∩ ∂W(A) is a line segment.

Proof. (a) is trivial, (b) and (c) were proven in [2, Theorem 1], and (d) follows easily from (b) and (c).

The assertion in (e) is trivial. For the converse, let

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −2

√
3 + 2

√
2 0

0 0 0 −2

√
3 − 2

√
2

2

√
3 + 2

√
2 0 4 −4

0 2

√
3 − 2

√
2 4 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Then W(A) is as in Fig. 2.3 with the y-axis as its supporting line L, which satisfies L ∩ ∂W(A) = {0}
and dim E0,L = 2 (cf. [11, Example 4, Fig. 8]). It can be verified that the only (orthogonal) projection

which commutes with A is 04 or I4, and thus A is irreducible.
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Fig. 2.3. Numerical range of A.

(f) After an affine transformation of A, wemay assume that L is the y-axis and a = 0 is an eigenvalue

of Re A with multiplicity bigger than n/2, that is, m ≡ dim M > n/2, where M = ker Re A. Consider

Re A as 0 ⊕ B on C
n = M ⊕ M⊥. For any unit vector x in M, we have

〈Ax, x〉 = 〈(Re A)x, x〉 + i〈(Im A)x, x〉 = i〈(Im A)x, x〉.
Assume that L ∩ ∂W(A) = {0}. This implies that 〈(Im A)x, x〉 = 0 for all x inM. Thus

A =
⎛
⎝ 0 0

0 B

⎞
⎠+ i

⎛
⎝ 0 C

C∗ D

⎞
⎠ =
⎛
⎝ 0 iC

iC∗ B + iD

⎞
⎠

for some matrices C and D. Let iC = USV be the singular value decomposition of iC, where U and V

are unitary and S is of the form⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1 · · · 0

...
. . .

...

0 · · · sn−m

0 · · · 0

...
...

0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with s1 ≥ · · · ≥ sn−m ≥ 0. Hence A is unitarily equivalent to a matrix A′ of the form

⎛
⎝ 0 S

−S∗ E

⎞
⎠. If

sn−m = 0, then A′ is reducible, contradicting our assumption on the irreducibility of A. Thus we have

sn−m > 0. Therefore, we have

ker Im A′=ker

⎛
⎝ 0 −iS

iS∗ Im E

⎞
⎠={(0, . . . , 0︸ ︷︷ ︸

n−m

, xn−m+1, . . . , xm, 0, . . . , 0︸ ︷︷ ︸
n−m

) : xn−m+1, . . . , xm∈C}

⊆ ker

⎛
⎝ 0 0

0 Re E

⎞
⎠=ker Re A′.

Hence

ker A′ ∩ ker A′∗ = ker Re A′ ∩ ker Im A′ = ker Im A′,
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which is of dimension2m−n > 0. This shows thatA′ is reducible, againa contradiction. Thus L∩∂W(A)
is a line segment. �

We remark that Proposition 2.2(f) is a consequence of [1, Lemmas 2.1 and 2.2]. The proof here is

more direct and matrix theoretic in nature. The case n = 3 was in [7, Proposition 3.2].

Using Proposition 2.2, we can give a lower bound for k(A).

Proposition 2.4. Let A be an n-by-n matrix, a be a point in ∂W(A), and k = dim Ha. If W(A) is either
the singleton {a} or a line segment [b, c] with a in (b, c), then k(A) = k = n; otherwise, k(A) ≥ k + 1.

Proof. IfW(A) = {a}, then A = aIn and our assertion is obvious. On the other hand, ifW(A) = [b, c]
with a ∈ (b, c), then A is normal with eigenvalues in [b, c]. Hence we may diagonalize A to obtain

k(A) = n. Since Ha = ∪{Kλ : λ ∈ [b, c]} = C
n by [2, Theorem 1] or Proposition 2.2(c), we also

have k = dim Ha = n. For the remaining case, consider a supporting line Lθ of W(A) at a with the

associated angle θ in [0, 2π) such that Ha = Ea,Lθ (cf. Proposition 2.2(d)). Let Lθ+π be the support-

ing line of W(A) which is parallel to Lθ , and let b be any point in Lθ+π ∩ ∂W(A). Then Ea,Lθ (resp.,

Eb,Lθ+π ) is the eigenspace of Re (e−iθA) for its maximum (resp., minimum) eigenvalue Re (e−iθa)

(resp., Re (e−iθb)). Since W(Re (e−iθA)) is not a singleton by our assumption, these two eigenvalues

are distinct. Thus Ea,Lθ and Eb,Lθ+π are orthogonal to each other and hence the same is true for Ha and

Hb. Therefore, we can find at least m ≡ dim Ha + dim Hb many orthonormal vectors x1, . . . , xm in

C
n with 〈Axj, xj〉 in ∂W(A) for all j. This shows that k(A) ≥ m = dim Ha + dim Hb ≥ k + 1 as

asserted. �

Similar arguments as above together with Proposition 2.2(e) yield the following.

Corollary 2.5. Let A be an n-by-n (n ≥ 3) matrix

(a) If ∂W(A) contains a line segment, then k(A) ≥ 3.

(b) If ∂W(A) has two parallel line segments, then k(A) ≥ 4.

Another easy corollary is the following necessary condition for k(A) = 2.

Corollary 2.6. If A is an n-by-n nonscalar matrix with k(A) = 2, then dim Ha = 1 for all a in ∂W(A).

The converse of the above is false. For example, if A = J5, the 5-by-5 Jordan block, then it is known

that dim Ha = 1 for all a in ∂W(A) = {z ∈ C : |z| = cos(π/6)}, but k(A) = 3 (cf. [5, Theorem 4.4]).

There are even 4-by-4 counterexamples to the converse as, for example, the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√

2

0 1

0
√

2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(cf. Theorem 3.10 below). For 3-by-3 matrices, such a phenomenon cannot occur as will be seen in our

discussions later in this section.

The main result of this section is the following structure theorem for matrix A which has a com-

pression with diagonal entries all in ∂W(A).

Theorem2.7. Ann-by-n (n ≥ 2)matrix A has a k-by-k compressionwith all its diagonal entries in ∂W(A)
if and only if it is unitarily equivalent to a matrix of the form
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1 · · · 0 eiθ1C1

...
. . .

...
...

0 · · · Bm eiθmCm

−eiθ1C∗
1 · · · −eiθmC∗

m C

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

where θ1, . . . , θm are distinct numbers in [0, π) and Bj, 1 ≤ j ≤ m, is of the form⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α
(j)
1 · · · 0

...
. . .

...

0 · · · α
(j)
sj

eiθjDj

−eiθjD∗
j

β
(j)
1 · · · 0

...
. . .

...

0 · · · β
(j)
tj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

with sj+ tj ≥ 1 for all j,
∑m

j=1(sj+ tj) = k, Re (e−iθjα
(j)
1 )= · · · = Re (e−iθjα

(j)
sj )=max σ(Re (e−iθj A))

and Re (e−iθjβ
(j)
1 ) = · · · = Re (e−iθjβ

(j)
tj

) = min σ(Re (e−iθj A)).

Geometrically, the conditions on the matrix Bj simply say that its diagonal entries α
(j)
1 , . . . , α

(j)
sj

(resp., β
(j)
1 , . . . , β

(j)
tj

) are on the supporting line Lθj (resp., the parallel supporting line Lθj+π ) ofW(A)

(cf. Fig. 2.1).

The proof of Theorem2.7 depends on the corresponding result for 2-by-2matrices (cf. [15, Corollary

4] or [5, Proposition 4.3]). This we state below for easy reference.

Proposition 2.8. The following conditions are equivalent for a 2-by-2matrix A =
⎛
⎝ a b

c d

⎞
⎠ :

(a) a ∈ ∂W(A),
(b) be−iθ + c̄eiθ = 0 for some θ in [0, 2π),
(c) |b| = |c|,
(d) d ∈ ∂W(A).

Under these conditions, if A is normal and W(A) equals the line segment [a, d], then b = c = 0;
otherwise, the tangent lines to the (nondegenerate) ellipse ∂W(A) at a and d are parallel to each other

with the common slope − cot θ .

Proof of Theorem 2.7. We need only prove the necessity. Let B be a k-by-k compression of A with

the asserted property. We may assume, after a unitary equivalence, that A = [aij]ni,j=1 and B =
[aij]ki,j=1. Consider all those diagonal entries of B which are on the same supporting line Lθ1 (resp.,

the parallel supporting line Lθ1+π ) of W(A) for some θ1 in [0, π). Call them α
(1)
1 , . . . , α

(1)
s1 (resp.,

β
(1)
1 , . . . , β

(1)
t1

). Then Re (e−iθ1α
(1)
j ) = max σ(Re (e−iθ1A)) for 1 ≤ j ≤ s1 (resp., Re (e−iθ1β

(1)
j ) =

min σ(Re (e−iθ1A)) for 1 ≤ j ≤ t1). After a suitable permutation of rows and columns, we may

further assume that
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ajj =
⎧⎨
⎩ α

(1)
j for 1 ≤ j ≤ s1,

β
(1)
j−s1

for s1 + 1 ≤ j ≤ s1 + t1.

Applying Proposition 2.8 repeatedly to the 2-by-2 principal submatrices

⎛
⎝ aii aij

aji ajj

⎞
⎠ , 1 ≤ i, j ≤ n, of

A, yields that A is of the form⎛
⎜⎜⎜⎝

B′
1 eiθ1D1 eiθ1C′

1

−eiθ1D∗
1 B

′′
1 eiθ1C

′′
1

−eiθ1C′∗
1 −eiθ1C

′′∗
1 E

⎞
⎟⎟⎟⎠ ,

where B′
1 = diag(α

(1)
1 , . . . , α

(1)
s1 ) and B

′′
1 = diag(β

(1)
1 , . . . , β

(1)
t1

).We next apply the above arguments

to E to obtain

E =

⎛
⎜⎜⎜⎝

B′
2 eiθ2D2 eiθ2C′

2

−eiθ2D∗
2 B

′′
2 eiθ2C

′′
2

−eiθ2C′∗
2 −eiθ2C

′′∗
2 E′

⎞
⎟⎟⎟⎠ ,

where θ2 ∈ [0, π) and θ2 + π are distinct from θ1 and θ1 + π , B′
2 = diag(α

(2)
1 , . . . , α

(2)
s2 ) and

B
′′
2 = diag(β

(2)
1 , . . . , β

(2)
t2

). For any 2-by-2 submatrix⎛
⎝ aii aij

aji ajj

⎞
⎠ (4)

with 1 ≤ i ≤ s1+t1 and s1+t1+1 ≤ j ≤ s1+t1+s2+t2, the diagonal entries aii (equal to eitherα
(1)
i

or β
(1)
i−s1

) and ajj (to α
(2)
j−s1−t1

or β
(2)
j−s1−t1−s2

) are on distinct and nonparallel supporting lines of W(A).

Hence the submatrix (4) is normal with numerical range equal to [aii, ajj]. We infer from Proposition

2.8 that aij = aji = 0. Repeating the above to E′ and so forth, we thus obtain the asserted form for A.

The following lemma is useful on some occasions.

Lemma 2.9. If A = A1 ⊕ A2 with W(A2) contained in the interior of W(A1), then k(A) = k(A1).

Proof. We obviously have k(A) ≥ k(A1). To prove the converse inequality, assume that A, A1 and A2

are of sizes n, n1 and n2, respectively. Let k = k(A) and let u1 = x1 ⊕ y1, . . . , uk = xk ⊕ yk be

orthonormal vectors in C
n = C

n1 ⊕ C
n2 such that aj ≡ 〈Auj, uj〉 is in ∂W(A) = ∂W(A1) for all j. We

claim that yj must all be 0. Indeed, if yj �= 0 for some j, then

aj = 〈A1xj, xj〉 + 〈A2yj, yj〉
= ‖xj‖2

〈
A1

xj

‖xj‖ ,
xj

‖xj‖
〉

+ ‖yj‖2

〈
A2

yj

‖yj‖ ,
yj

‖yj‖
〉

≡ ‖xj‖2bj + ‖yj‖2cj

if xj �= 0, and aj = cj if otherwise. This shows that aj is a convex combination of bj and cj . Since aj , bj
and cj are in ∂W(A),W(A1) andW(A2), respectively, andW(A2) is contained in the interior ofW(A1),
we infer that xj �= 0 and aj must be equal to bj . It follows that yj = 0, which is a contradiction. Thus

yj = 0 for all j and x1, . . . , xk are orthonormal vectors in C
n1 with 〈A1xj, xj〉 = aj in ∂W(A1) for all j.

This shows that k(A1) ≥ k = k(A) and hence k(A) = k(A1). �
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An easy consequence of Theorem 2.7 and Lemma 2.9 is the following upper bound for k(A).

Proposition2.10. If A is ann-by-n (n ≥ 3)matrixwithdim Ha = 1 for all a in∂W(A), thenk(A) ≤ n−1.

Proof. If k(A) = n, then, by Theorem 2.7, A is unitarily equivalent to a direct sum
∑m

j=1 ⊕Bj , where

each Bj is of the form (3). Our assumption onHa implies that ∂W(A) has no line segment andHa = Ea,L
for any supporting line L of W(A) (cf. Proposition 2.2(e) and (d)). As W(A) equals the convex hull of

∪m
j=1W(Bj), these force the existence of some j0, 1 ≤ j0 ≤ m, such that W(Bj) is contained in the

interior of W(Bj0) for all j �= j0. Lemma 2.9 then yields that k(Bj0) = k(A) = n. If m > 1, then,

obviously, k(Bj0) ≤ sj0 + tj0 < n, which is a contradiction. Hence wemust havem = 1 or A is unitarily

equivalent to B1. Then the fact that dim Ea,L = 1 for any a in ∂W(B1) and any supporting line L of

W(B1) implies that s1, t1 ≤ 1. Therefore, B1, together with A, is of size at most 2, which contradicts

our assumption that n ≥ 3. Thus k(A) ≤ n − 1 as asserted. �

We now combine Proposition 2.4 and Proposition 2.10 to determine k(A) for a 3-by-3 matrix A.

Recall that, in this case, W(A) is of one of the following shapes (cf. [7]):

(a) a triangular region (or, in the degenerate case, a line segment or a singleton) if A is normal,

(b) an elliptic disc,

(c) an elliptic disc with a cone attached to it if A is unitarily equivalent to, say, A′ ⊕ [a], where A′ is
a 2-by-2 nonnormal matrix and a is not in the elliptic disc W(A′),

(d) the convex hull of a heart-shaped region, in which case ∂W(A) contains a line segment, and

(e) an oval region.

In cases (d) and (e) above, A is irreducible. The next proposition gives the value of k(A) in terms of the

shape ofW(A).

Proposition 2.11. Let A be a 3-by-3matrix. Then k(A) = 2 if W(A) is either an elliptic disc, except when

A has an eigenvalue on ∂W(A), or an oval region. In all other cases, k(A) = 3.

Proof. If ∂W(A) contains a line segment, then k(A) = 3 by Corollary 2.5(a). This covers cases (a), (c)

and (d) above. For the remaining part of the proof, we assume that ∂W(A) contains no line segment. If

A is irreducible, then dim Ha = 1 for all a in ∂W(A) by Proposition 2.2(a) and (f), and hence k(A) ≤ 2

by Proposition 2.10. Therefore, in this case we have k(A) = 2 by Proposition 2.4 or [5, Lemma 4.1]. In

particular, k(A) = 2 in case (e) above. For the remaining case (b), if A is irreducible, then k(A) = 2 as

proven above. Now assume that A is reducible. Let A be unitarily equivalent to A′ ⊕ [a], where A′ is a
2-by-2 nonnormal matrix and a is inW(A′). If a is in ∂W(A′), then dim Ha = 2 and hence k(A) = 3 by

Proposition 2.4. On the other hand, if a is in the interior of W(A′), then k(A) = k(A′) = 2 by Lemma

2.9 and [5, Lemma 4.1]. This completes the proof. �

The next corollary is already proven in the above.

Corollary 2.12. A 3-by-3 matrix A is such that k(A) = 2 if and only if dim Ha = 1 for all a in ∂W(A).

Corollary 2.13. The following conditions are equivalent for the matrix

A =

⎛
⎜⎜⎜⎝

0 a

0 b

c 0

⎞
⎟⎟⎟⎠ :

(a) k(A) = 3,

(b) |a| = |b| = |c|,
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(c) A is normal, and
(d) either A = 03 or ∂W(A) contains a line segment.

Proof. The equivalence of (b) and (c) was proven in [13, Proposition 4]; that of (b) and (d) was noted in

[13, p. 248]. The implication (d) ⇒ (a) is by Corollary 2.5. Finally, assume that (a) is true and A �= 03.

According to Proposition 2.11, eitherA is unitarily equivalent toA′⊕[a], whereA′ is a 2-by-2nonnormal

matrix and a is in ∂W(A′), or ∂W(A) has a line segment. The former cannot happen since A is unitarily

equivalent to ω3A (cf. [13, Proposition 3 (1)]). Thus (a) implies (d), completing the proof. �

In the next section, we consider the n-by-nweighted shift matrix (1) and determine when its k(A)
is equal to n, thus generalizing the preceding corollary.

3. Weighted shift matrices

An n-by-n weighted shift matrix A is one of the form (1), where the wj ’s are called the weights of A.

Properties of suchmatrices, especially those concerning their numerical ranges, were studied recently

in [13,12]. Using the results there, we are able to give, among such matrices A, a characterization of

the ones with k(A) = n.

Theorem 3.1. Let A be an n-by-n (n ≥ 2)weighted shift matrix with weights w1, . . . ,wn. Then k(A) = n

if and only if either |w1| = · · · = |wn| or n is even and |w1| = |w3| = · · · = |wn−1| and |w2| =
|w4| = · · · = |wn|.

The proof of this theorem depends on Theorem 2.7 and a corrected version of [12, Theorem 4] on

the reducibility of weighted shift matrices, which appears in ([4], Theorem 3.1 and Corollary 3.3).

Theorem 3.2. Let A be an n-by-n (n ≥ 2) weighted shift matrix with weights w1, . . . ,wn. Then A is

reducible if and only if either at least two of the wj’s are zero or the moduli of the weights |wj| are periodic.
Moreover, if A is reducible and wj �= 0 for all j, then A is unitarily equivalent to eiφ

∑m−1
k=0 ⊕ωk

nB, where

φ = (
∑n

j=1 arg wj)/n, p is the period of the |wj|’s, m = n/p, and B is the p-by-p irreducible weighted

shift matrix with weights |w1|, . . . , |wp|.
Recall that the period of {|wj|}nj=1 is the smallest integer p, 1 ≤ p ≤ n, such that |wj| = |wp+j| for

all j (wm ≡ wm (mod n) for m > n). {|wj|}j is periodic if the above p is such that 1 ≤ p < n, in which

case we necessarily have p|n.
The next two lemmas facilitate the proof of Theorem 3.1.

Lemma 3.3. Let A be an n-by-n (n ≥ 2) weighted shift matrix with nonzero weights w1, . . . ,wn, a

be a point in ∂W(A), and L be a supporting line of W(A) which passes through a. Then dim Ea,L ≤ 2.

Furthermore, dim Ea,L = 2 if and only if L ∩ ∂W(A) is a (nondegenerate) line segment.

Proof. Let θ in [0, 2π) be such that the ray Rθ from the origin which forms angle θ from the pos-

itive x-axis is perpendicular to L (cf. Fig. 2.1), and let x = [x1, . . . , xn]T be any vector in Ea,L =
ker (Re (e−iθ (A − aIn))). Then Re (e−iθA)x = Re (e−iθa)x ≡ λx, which is the same as

1

2
(e−iθw1x2 + eiθ w̄nxn) = λx1,

1

2
(eiθ w̄j−1xj−1 + e−iθwjxj+1) = λxj, 2 ≤ j ≤ n − 1,

and

1

2
(e−iθwnx1 + eiθ w̄n−1xn−1) = λxn.
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Hence

x2 = 2λeiθ

w1

x1 − w̄ne
2iθ

w1

xn ≡ α2x1 + β2xn, (5)

xj+1 = 2λeiθ

wj

xj − w̄j−1e
2iθ

wj

xj−1, 2 ≤ j ≤ n − 1 (6)

and

xn−1 = −wne
−2iθ

w̄n−1

x1 + 2λe−iθ

w̄n−1

xn ≡ αn−1x1 + βn−1xn.

Iterating (6) and then applying (5),wemayexpress each xj+1, 2 ≤ j ≤ n−3, as xj+1 = αj+1x1+βj+1xn

for some scalars αj+1 and βj+1. Let u = [1, α2, . . . , αn−1, 0]T and v = [0, β2, . . . , βn−1, 1]T . Then
x is a linear combination of u and v. Since u and v depend only on λ, θ and the wj ’s, we obtain

dim Ea,L ≤ 2 as asserted. The second assertion was proven before in [13, Lemma 11]. �

Lemma 3.4. Let A be an n-by-n (n ≥ 2) irreducible weighted shift matrix with nonzero weights. Then

k(A) = n if and only if n = 2.

Proof. Assume that k(A) = n. The irreducibility of A implies, by Theorem 2.7 and Lemma 3.3, that A

is unitarily equivalent to a matrix of one of the following forms:

⎛
⎝ α1 ∗

∗ β1

⎞
⎠ ,

⎛
⎜⎜⎜⎝

α1 0

0 α2

∗

∗ β1

⎞
⎟⎟⎟⎠ and

⎛
⎜⎜⎜⎜⎜⎜⎝

α1 0

0 α2

∗

∗ β1 0

0 β2

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

where α1 and α2 (resp., β1 and β2) are on a line segment of ∂W(A). In particular, n can only be 2, 3 or

4. If n = 3 (resp., 4), then the existence of a line segment on ∂W(A) yields that A is normal by Corollary

2.13 (resp., A is unitarily equivalent to the direct sum of two 2-by-2 matrices by [13, Proposition 12]),

which contradicts the irreducibility of A. Thuswemust have n = 2. Conversely, if n = 2, then k(A) = 2

by [5, Lemma 4.1], completing the proof. �

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Assume that k(A) = n. If A is irreducible, then n = 2 by Lemma 3.4 and we

are done. Hence we may assume that A is reducible and also A �= 0n. Then Theorem 3.2 says that

either at least two of thewj ’s are zero or {|wj|}nj=1 is periodic. In the former case, we may express A as

A1 ⊕· · ·⊕Am, where each Ak is either the 1-by-1 zeromatrix 01 or a nk-by-nk (nk ≥ 2) weighted shift

matrix with exactly one zero weight. Since the numerical ranges of the Ak ’s are either the singleton

{0} or a circular disc centered at the origin (cf. [13, Proposition 3 (3)]), we may assume that there is

some l, 1 ≤ l ≤ m, such that W(A1) = · · · = W(Al) and W(Al+1), . . . ,W(Am) are all contained in

the interior ofW(A1). From Lemma 2.9, we deduce that k(A) = k(A1 ⊕ · · · ⊕ Al). Since k(A) = n and

k(A1 ⊕ · · · ⊕ Al) ≤ ∑l
k=1 nk ≤ n, we have n = ∑l

k=1 nk or A = A1 ⊕ · · · ⊕ Al , where the Ak ’s are

each of size at least 2 and have equal numerical ranges. Note also that the Ak ’s are irreducible. This is

because if some

Ak =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 u1

0
. . .

. . . unk−1

0

⎞
⎟⎟⎟⎟⎟⎟⎠ ,
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where uj �= 0 for all j, is reducible, say, it is unitarily equivalent to A′ ⊕ A′′, where A′ and A′′ are of

sizes n′ and n′′ (1 ≤ n′, n′′ ≤ nk − 1), respectively, then, since Ak , A
′ and A′′ are all nilpotent, we have

A
p
k = A′p ⊕ A′′p = 0nk , where p = max {n′, n′′} ≤ nk − 1. This yields that

A
nk−1
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0
∏nk−1

j=1 uj

0 0

. . .
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= 0nk ,

and hence some uj is equal to 0, which contradicts our assumption. (This fact appeared in

[4, Proposition 3.2] with a different proof. The above was communicated to the second author by

H.-L. Gau. Compare also [8, Lemma 2.4].) Next we claim that the Ak ’s are all of size exactly 2. To

prove this, note that, by Theorem 2.7, A is unitarily equivalent to
∑m

j=1 ⊕Bj , where Bj , 1 ≤ j ≤ m,

is of the form (3). Since each Bj can be further decomposed as the direct sum of irreducible ma-

trices and the irreducible summands of any matrix are unique up to ordering and unitary equiv-

alence (cf. [3, Theorem 3.1]), we infer that Bj is unitarily equivalent to the direct sum of some of

the Ak ’s, say, Aj1 ⊕ · · · ⊕ Ajq . Note that for any point α in ∂W(Bj) = ∂W(Aji), 1 ≤ i ≤ q, we

have dim Eα,Lα (Bj) = ∑q
i=1 dim Eα,Lα (Aji) = q, where Lα is the unique supporting line of the

circular disc W(Bj) = W(Aji) at α (cf. Lemma 3.6 below). Since the diagonal entries α
(j)
1 , . . . , α

(j)
sj

(resp., β
(j)
1 , . . . , β

(j)
tj

) of (3) for Bj are all in E
(j)
α1,Lα1

(Bj) (resp., E
(j)
β1,Lβ1

(Bj)), we infer that the size sj + tj

of Bj is at most 2q. Thus the same is true for Aj1 ⊕ · · · ⊕ Ajq . Since each Aji is of size at least 2, we

conclude that it has size exactly equal to 2. The same holds for all the Ak ’s. If Ak =
⎛
⎝ 0 vk

0 0

⎞
⎠

for 1 ≤ k ≤ l, the equality of their numerical ranges {z ∈ C : |z| ≤ |vk|/2} yields that |v1| =
· · · = |vl| ≡ v. Hence n is even and |w1| = |w3| = · · · = |wn−1| = v and |w2| = |w4| = · · · =
|wn| = 0.

We next consider the case of periodic weights. Assume thatwj > 0 for all j and {wj}nj=1 is periodic

with period p ≥ 3. Theorem 3.2 says that A is unitarily equivalent to
∑m−1

k=0 ⊕ωk
nB, where m = n/p

and B is the p-by-p irreducible weighted shift matrix with weights w1, . . . ,wp. On the other hand,

since k(A) = n, Theorem 2.7 implies that A is also unitarily equivalent to
∑q

i=1 ⊕Bi, where each Bi
is of the form (3). Note that, by Lemma 3.3, Bi, 1 ≤ i ≤ q, is of size at most 4. As before, by the

uniqueness of the irreducible summands of A [3, Theorem 3.1], we infer that each Bi is unitarily equiv-

alent to the direct sum of some of the ωk
nB’s. Since B is of size at least 3, each Bi can be of size 3 or 4

only. Hence Bi is unitarily equivalent to one single ωk
nB and ∂W(Bi) = ∂W(B) has a line segment by

Lemma 3.3. These facts combined together yield, via Corollary 2.13 or [13, Proposition 12], that B is

reducible, which leads to a contradiction. Thus p must be equal to 1 or 2. This yields our assertion on

the weights of A.

Conversely, if |w1| = · · · = |wn|, then A is normal and is unitarily equivalent to eiφ |w1|B, where

φ = (
∑n

j=1 arg wj)/n and B = diag(1, ωn, . . . , ω
n−1
n ). Thus k(A) = n obviously. On the other

hand, if n is even and |w1| = |w3| = · · · = |wn−1| and |w2| = |w4| = · · · = |wn|, then A is

unitarily equivalent to eiφ
∑(n/2)−1

k=0 ⊕ωk
nC, where C =

⎛
⎝ 0 |w1|

|w2| 0

⎞
⎠, by Theorem 3.2. We easily

obtain k(A) = n from Proposition 2.8.

Note that under the conditions of Theorem 3.1, the numerical range of A is either a regular n-

polygonal region with vertices ei(2kπ+∑j arg wj)/n|w1|, 0 ≤ k ≤ n − 1, or the convex hull of the union

of n/2 elliptic discs with foci±ei(2kπ+∑j arg wj)/n|w1w2|, 0 ≤ k ≤ (n/2)−1, andminor axis of length

||w1| − |w2||.
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A consequence of Theorem3.1 is that ifA is ann-by-n (n ≥ 3)weighted shiftmatrixwith exactly one

zero weight, then k(A) is never equal to n. In the remaining part of this section, we restrict ourselves

to such matrices A. It turns out that in this case k(A) can be any integer from 2 to n − 1.

Theorem 3.5. For any n ≥ 3 and any k, 2 ≤ k ≤ n − 1, there is a matrix A of the form⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 w1

0
. . .

. . . wn−1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

with wj �= 0 for all j such that k(A) = k.

This will be proven after a series of lemmas, the first of which gives conditions for two unit vectors

x and y with 〈Ax, x〉 and 〈Ay, y〉 in ∂W(A) to be orthogonal to each other.

Recall that the numerical radius w(A) of a matrix A is the quantity max {|z| : z ∈ W(A)}.
Lemma 3.6. Let A be an n-by-n (n ≥ 2) matrix of the form (7) with wj > 0 for all j. Then the following

hold:

(a) W(A) = {z ∈ C : |z| ≤ w(A)}.
(b) There is a unique unit vector x = [x1, . . . , xn]T inC

n with xj > 0 for all j such that 〈Ax, x〉 = w(A).

(c) For any a = w(A)eiθ , θ ∈ [0, 2π), in ∂W(A), let xθ = [x1, eiθ x2, . . . , e
(n−1)iθ xn]T . Then

a = 〈Axθ , xθ 〉 and Ha is generated by xθ .

(d) Let aj = w(A)eiθj (θj ∈ [0, 2π)), j = 1, 2, be two points in ∂W(A). Then xθ1 and xθ2 are

orthogonal to each other if and only if ei(θ1−θ2) is a zero of the polynomial x21 + x22z+· · ·+ x2nz
n−1.

Proof. Since U∗
θ AUθ = eiθA for any real θ , where Uθ = diag(1, eiθ , e2iθ , . . . , e(n−1)iθ ) is unitary, (a)

follows immediately. (b) is a consequence of [9, Proposition 3.3] since A is a nonnegative matrix with

Re A (permutationally) irreducible. To prove (c), note that

a = w(A)eiθ = 〈eiθAx, x〉 = 〈U∗
θ AUθ x, x〉

= 〈A(Uθ x),Uθ x〉 = 〈Axθ , xθ 〉,
which shows that xθ is in Ha. That dim Ha = 1 is by [9, Corollary 3.10]. Thus Ha is generated by xθ . (d)

follows from the fact that 〈xθ1 , xθ2〉 = ∑n
k=1 e

(k−1)i(θ1−θ2)x2k . This completes the proof. �

Thus, for a matrix A of the form (7) with wj > 0 for all j, k(A) equals the maximum number of

θ1, . . . , θk in [0, 2π) for which ei(θj−θl) is a zero of x21 + x22z + · · · + x2nz
n−1 for all j and l, 1 ≤ j �=

l ≤ k. To actually construct the matrix A in Theorem 3.5, we need another tool, namely, a parametric

representation of the weights wj from [14, Theorem 3.1(b)].

Lemma 3.7. Let A be an n-by-n (n ≥ 2) matrix of the form (7) with wj > 0 for all j. Then there is a

unique sequence {aj}nj=1 with a1 = −1, −1 < aj < 1 for 2 ≤ j ≤ n − 1, and an = 1 such that

wj/w(A) =
√

(1 − aj)(1 + aj+1) for all j. In this case, if y1 = 1, yj = ∏j−1
k=1

√
(1 − ak)/(1 + ak+1) for

2 ≤ j ≤ n, and y = [y1, . . . , yn]T , then 〈A(y/‖y‖), y/‖y‖〉 = w(A).

Proof. Weneedonly prove the second assertion.Note that (Re A)y = (1/2)[w1y2, w1y1+w2y3, . . . ,
wn−2yn−2 + wn−1yn, wn−1yn−1]T . Here
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w1y2 = w(A)
√

(1 − a1)(1 + a2)

√
1 − a1

1 + a2
= w(A)(1 − a1) = 2w(A) = 2w(A)y1,

wjyj + wj+1yj+2

= w(A)

⎡
⎣√(1 − aj)(1 + aj+1)

j−1∏
k=1

√
1 − ak

1 + ak+1

+
√

(1 − aj+1)(1 + aj+2)

j+1∏
k=1

√
1 − ak

1 + ak+1

⎤
⎦

= w(A)

( j∏
k=1

√
1 − ak

1 + ak+1

)⎡⎣√(1 − aj)(1 + aj+1)

√√√√1 + aj+1

1 − aj

+
√

(1 − aj+1)(1 + aj+2)

√√√√1 − aj+1

1 + aj+2

⎤
⎦

= w(A)yj+1[(1 + aj+1) + (1 − aj+1)]
= 2w(A)yj+1, 1 ≤ j ≤ n − 2,

and

wn−1yn−1 = w(A)
√

(1 − an−1)(1 + an)
n−2∏
k=1

√
1 − ak

1 + ak+1

= w(A)

( n−1∏
k=1

√
1 − ak

1 + ak+1

)√
(1 − an−1)(1 + an)

√
1 + an

1 − an−1

= w(A)yn(1 + an)

= 2w(A)yn.

This shows that (Re A)y = w(A)y. Since

〈A y

‖y‖ ,
y

‖y‖〉 = 〈(Re A)y, y〉 1

‖y‖2
+ i Im 〈A y

‖y‖ ,
y

‖y‖〉 = w(A) + i Im 〈A y

‖y‖ ,
y

‖y‖〉

is in the circular disc W(A) = {z ∈ C : |z| ≤ w(A)}, we infer that 〈A(y/‖y‖), y/‖y‖〉 = w(A) as

asserted. �

Our construction of thematrix A in Theorem 3.5 is based on the following lemma. Here, for any real

t, let �t� denote the largest integer which is less than or equal to t.

Lemma 3.8. For any positive integers l and m, let

p(z) = (1 + z)l(1 + z + · · · + zm) ≡ 1 + α1z + · · · + αl+m−1z
l+m−1 + zl+m.

Then the following hold:

(a) p(z) is a self-inversive polynomial, that is, its coefficients satisfy αj = αl+m−j for all j, 1 ≤ j ≤
l + m − 1.

(b) 1 < α1 ≤ α2 ≤ · · · ≤ α�(l+m)/2�.
(c) There is a sequence {aj}l+m+1

j=1 with a1 = −1, −1 < aj < 1 for 2 ≤ j ≤ l + m, and al+m+1 = 1

such thatαj = ∏j
k=1(1−ak)/(1+ak+1) for1 ≤ j ≤ l+m−1 and

∏l+m
k=1(1−ak)/(1+ak+1) = 1.
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Proof of (a) and (b). It is easily seen that

αj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j∑
k=0

(
l

k

)
if 1 ≤ j ≤ l,

l∑
k=0

(
l

k

)
if l + 1 ≤ j ≤ m,

l∑
k=j−m

(
l

k

)
if m + 1 ≤ j ≤ l + m − 1,

or

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j∑
k=0

(
l

k

)
if 1 ≤ j ≤ m,

j∑
k=j−m

(
l

k

)
if m + 1 ≤ j ≤ l,

l∑
k=j−m

(
l

k

)
if l + 1 ≤ j ≤ l + m − 1

(8)

depending on whether l ≤ m or l > m. (a) and (b) follow immediately.

Note that (a) can also be proved by comparing the coefficients of p(z) and zl+mp(1/z̄). The equality
of these two polynomials follows from the fact that the leading coefficient, the constant term and the

moduli of the zeros of p(z) are all equal to 1 (cf. [10, p. 17, Theorem 2.1.2]).

To prove (c), we need another lemma.

Lemma 3.9. (a) If 1 < α1 ≤ α2 ≤ · · · ≤ αn−1, then there is a sequence {aj}nj=1 with a1 = −1 and

−1 < aj < 1 for 2 ≤ j ≤ n such that αj = ∏j
k=1(1 − ak)/(1 + ak+1) for 1 ≤ j ≤ n − 1.

(b) Let l and m be positive integers such that l ≥ m and l + m is even. If

αj =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

j∑
k=0

(
l

k

)
for 1 ≤ j ≤ m,

j∑
k=j−m

(
l

k

)
for m + 1 ≤ j ≤ 1

2
(l + m),

then, letting aj, 1 ≤ j ≤ (l+m)/2, be as in (a) and a((l+m)/2)+1 = 0,we haveαj = ∏j
k=1(1−ak)/(1+

ak+1) for 1 ≤ j ≤ (l + m)/2.

Proof. (a) Let a1 = −1, and define aj , 2 ≤ j ≤ n, inductively by

aj =
(
1 − aj−1

αj−1

j−2∏
k=1

1 − ak

1 + ak+1

)
− 1.

Then αj = ∏j
k=1(1 − ak)/(1 + ak+1) for all j. Now we show that −1 < aj < 1 for 2 ≤ j ≤ n by

induction. Since 1 < α1 = 2/(1 + a2), we have −1 < a2 < 1. In general, if −1 < aj0 < 1 for some

j0, 2 ≤ j0 < n, then

1 + aj0+1 = 1 − aj0

αj0

j0−1∏
k=1

1 − ak

1 + ak+1

= 1 − aj0

αj0

αj0−1 ≤ 1 − αj0 < 2,

from which we obtain −1 < aj0+1 < 1. Thus −1 < aj < 1 for all j as asserted.

(b) Letting n = (l + m)/2, we need only show that αn = αn−1(1 − an). This is done by first

expressing 1 − aj , 2 ≤ j ≤ n, in terms of α0 (≡ 1), α1, . . . , αj−1, namely,

1 − aj = 2

αj−1

(αj−1 − αj−2 + · · · + (−1)j−1α0). (9)

Indeed, for j = 2, we have
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1 − a2 = 2 − (1 + a2) = 2 − 2

α1

= 2(α1 − α0)

α1

.

Assume next that (9) holds for all j < j0, 2 ≤ j0 ≤ n. Then

1 − aj0 = 2 − (1 + aj0) = 2 − (1 − aj0−1)αj0−2

αj0−1

= 2 − 2

αj0−1

(αj0−2 − αj0−3 + · · · + (−1)j0−2α0)

= 2

αj0−1

(αj0−1 − αj0−2 + · · · + (−1)j0−1α0).

Hence (9) holds by induction. To complete the proof, we need the identity

αn = 2(αn−1 − αn−2 + · · · + (−1)n−1α0). (10)

Indeed, we have

(−1)n−m−1αm + (−1)n−mαm−1 + · · · + (−1)n−1α0

= (−1)n−m−1
m∑

k=0

(
l

k

)
+ (−1)n−m

m−1∑
k=0

(
l

k

)
+ · · · + (−1)n−1α0

=
⎧⎨
⎩ (−1)n−m−1

[( l
0

)
+
(
l

2

)
+ · · · +

(
l

m

)]
if m is even,

(−1)n−m−1
[( l

1

)
+
(
l

3

)
+ · · · +

(
l

m

)]
if m is odd,

(11)

and

αn−1 − αn−2 + · · · + (−1)n−m−2αm+1

=
n−1∑

k=n−m−1

(
l

k

)
−

n−2∑
k=n−m−2

(
l

k

)
+ · · · + (−1)n−m−2

m+1∑
k=1

(
l

k

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[( l

m+2

)
+
(

l

m+4

)
+ · · · +

(
l

n−1

)]−[( l
1

)
+
(
l

3

)
+ · · · +

(
l

n−m−2

)]
if n−m − 1 is even,[( l

m+3

)
+
(

l

m+5

)
+ · · · +

(
l

n−1

)]−[( l
2

)
+
(
l

4

)
+ · · · +

(
l

n−m−2

)]
+ [( l

1

)
+
(
l

2

)
+ · · · +

(
l

m+1

)]
if n − m − 1 is odd.

(12)

For m and n − m − 1 both even, adding (11) and (12) yields

2(αn−1 − αn−2 + · · · + (−1)n−1α0)

= 2

[(
l

n − 1

)
+
(

l

n − 3

)
+ · · · +

(
l

0

)]
−2

[(
l

n − m − 2

)
+
(

l

n − m − 4

)
+ · · · +

(
l

1

)]

= 2

⎡
⎣n−1∑
k=0

(
l − 1

k

)
−

n−m−2∑
k=0

(
l − 1

k

)⎤⎦

= 2

⎡
⎣ n−1∑
k=n−m−1

(
l − 1

k

)⎤⎦ ,

where the second equality follows by using the identity
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l

k

)
=
(
l − 1

k

)
+
(
l − 1

k − 1

)
.

On the other hand, we also have

αn =
n∑

k=n−m

(
l

k

)
=

n∑
k=n−m

[(
l − 1

k

)
+
(
l − 1

k − 1

)]

= 2

⎡
⎣ n−1∑
k=n−m−1

(
l − 1

k

)⎤⎦−
(

l − 1

n − m − 1

)
+
(
l − 1

n

)

= 2

⎡
⎣ n−1∑
k=n−m−1

(
l − 1

k

)⎤⎦ .

This shows that (10) is indeed true in this case. For other parities of m and n − m − 1, analogous

arguments as above show that (10) also holds. This completes the proof. �

Proof of Lemma 3.8(c). We need only check that there is a sequence {aj}�(l+m)/2�+1

j=1 with a1 = −1,

−1 < aj < 1 for 2 ≤ j ≤ �(l + m)/2� + 1, and, in addition, a�(l+m)/2�+1 = 0 if l + m is even such

that αj = ∏j
k=1(1 − ak)/(1 + ak+1) for 1 ≤ j ≤ �(l + m)/2�. Indeed, if this is the case, then, letting

aj = −al+m+2−j for �(l + m)/2� + 2 ≤ j ≤ l + m + 1, we obtain, by Lemma 3.8(a), that

αj = αl+m−j =
l+m−j∏
k=1

1 − ak

1 + ak+1

=
j∏

k=1

1 − ak

1 + ak+1

for �(l + m)/2� + 1 ≤ j ≤ l + m − 1 and
∏l+m

k=1(1 − ak)/(1 + ak+1) = 1 as required.

Now consider the case of odd l + m. Since 1 < α1 ≤ α2 ≤ · · · ≤ α�(l+m)/2� by Lemma 3.8(b),

Lemma 3.9(a) yields a sequence {aj}�(l+m)/2�+1

j=1 with the properties in the preceding paragraph.

Next assume that l + m is even. If l ≤ m, then (8) yields that αj = ∑j
k=0

(
l

k

)
for 1 ≤ j ≤ l. Hence

Lemma 3.9(b) (with l = m) guarantees the existence of {aj}l+1
j=1 with a1 = −1, −1 < aj < 1 for

2 ≤ j ≤ l, and al+1 = 0 such that αj = ∏j
k=1(1 − ak)/(1 + ak+1) for 1 ≤ j ≤ l. If l ≤ m − 1, then,

letting aj = 0 for l + 2 ≤ j ≤ ((l + m)/2) + 1, we have, by Lemma 3.8(a) and (8),

αj = αl+m−j =
l+m−j∏
k=1

1 − ak

1 + ak+1

=
l∏

k=1

1 − ak

1 + ak+1

= αl

for l + 1 ≤ j ≤ (l + m)/2. This shows that the required properties for {αj}((l+m)/2)+1

j=1 in the first

paragraph are satisfied, and thus we are done.

Finally, consider l > m. In this case, we have

αj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

j∑
k=0

(
l

k

)
if 1 ≤ j ≤ m,

j∑
k=j−m

(
l

k

)
if m + 1 ≤ j ≤ (l + m)/2

by (8). Lemma 3.9(b) yields a sequence {aj}((l+m)/2)+1

j=1 , which satisfies the required properties in the

first paragraph. This completes the proof.

Now we are ready to prove Theorem 3.5.
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Proof of Theorem 3.5. For the given n and k, let

p(z) = (1 + z)n−k(1 + z + · · · + zk−1) ≡ 1 + α1z + · · · + αn−2z
n−2 + zn−1.

Let {aj}nj=1 be the sequence given in Lemma 3.8(c) with a1 = −1, −1 < aj < 1 for 2 ≤ j ≤ n − 1,

an = 1 such thatαj = ∏j
k=1(1−ak)/(1+ak+1) for 1 ≤ j ≤ n−2 and

∏n−1
k=1(1−ak)/(1+ak+1) = 1,

let wj =
√

(1 − aj)(1 + aj+1) for 1 ≤ j ≤ n − 1, and let

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 w1

0
. . .

. . . wn−1

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If y = [1, √
α1, . . . ,

√
αn−2, 1]T , then 〈Ay, y〉 = ‖y‖2w(A) by Lemma 3.7. Hence, according to

Lemma 3.6(d), k(A) equals the maximum number of θ1, . . . , θk in [0, 2π) for which ei(θj−θl) is a zero

of p(z) for all j and l, 1 ≤ j �= l ≤ k. Since the zeros of p(z) are −1, ωk, ω2
k , . . . , ω

k−1
k , one maximal

choice of the θj ’s is 2π j/k, 0 ≤ j ≤ k − 1, and thus k(A) = k as required.

Our final result is a characterization of the n-by-n weighted shift matrices A with exactly one zero

weight for which k(A) = n − 1.

Theorem 3.10. For n ≥ 3, let

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 w1

0
. . .

. . . wn−1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with wj �= 0 for all j and w(A) = 1. Then k(A) = n − 1 if and only if either

(a) n is even, |w1| = |wn−1| = √
2 and |w2| = · · · = |wn−2| = 1, or

(b) n is odd, and |w1| = 2/
√

1 + α, |w2j| = 2α/(1 + α), |w2j+1| = 2/(1 + α) for 1 ≤ j ≤
(n − 3)/2, and |wn−1| = 2

√
α/(1 + α) for some α > 0.

Proof. Wemay assume that wj > 0 for all j.

(a) If n is even and w1 = wn−1 = √
2 and w2 = · · · = wn−2 = 1, then x ≡ (1/

√
n − 1)[1/√2,

1, . . . , 1, 1/
√

2]T is the unique unit vector in C
n with positive components such that 〈Ax, x〉 = 1 =

w(A). Hence, by Lemma 3.6(d), k(A) equals the maximum number of θ1, . . . , θk in [0, 2π) for which

ei(θj−θl) is a zero of the polynomial p(z) = (1/(2(n− 1)))(1+ 2z + · · · + 2zn−2 + zn−1) for all j �= l.

Since the zeros of p(z) are −1 and ω
j
n−1, 1 ≤ j ≤ n − 2, we infer that a maximal choice of the θj ’s are

0 and 2π j/(n − 1), 1 ≤ j ≤ n − 2, and hence k(A) = n − 1.

Conversely, if n is even and k(A) = n − 1, then let x = [x1, . . . , xn]T be the unit vector in C
n

with xj > 0 for all j such that 〈Ax, x〉 = w(A) = 1, and let p(z) = x21 + x22z + · · · + x2nz
n−1. Since

x′ ≡ [x1, eiπ x2, . . . , e
(n−1)iπ xn]T is a unit vector satisfying 〈Ax′, x′〉 = −1 and is orthogonal to x

(because they are eigenvectors of Re A corresponding to the eigenvalues −1 and 1, respectively), by

Lemma 3.6(d), −1 is a zero of p(z). On the other hand, since k(A) = n − 1 and p(1) = 1 �= 0, there

are θ1, . . . , θn−1 with 0 ≤ θ1 < θ2 < · · · < θn−1 < 2π such that ei(θj−θl), 1 ≤ j �= l ≤ n − 1,
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are all zeros of p(z). Note that, except −1, the zeros of the real polynomial p(z) appear in conjugate

pairs. Thus for each fixed l, 1 ≤ l ≤ n − 1, the zeros of p(z) are exactly −1 together with ei(θj−θl),

1 ≤ j �= l ≤ n− 1. Since the latter are counterclockwise around the unit circle, we have, in particular,

that ei(θ2−θ1) = ei(θ3−θ2) and ei(θ3−θ1) = ei(θ4−θ2). Hence

(θ3 − θ1) − (θ2 − θ1) = (θ4 − θ2) − (θ3 − θ2) = θ4 − θ3 = (θ4 − θ1) − (θ3 − θ1).

In a similar fashion, we may show that (θj+1 − θ1) − (θj − θ1) = (θj+2 − θ1) − (θj+1 − θ1) for all j,

1 ≤ j ≤ n − 2 (θn ≡ 2π + θ1). Therefore, e
i(θj+1−θ1), 1 ≤ j ≤ n − 2, are equally distributed over the

unit circle, that is, ei(θj+1−θ1) = ω
j
n−1 for all j. It follows that

p(z) = 1

2(n − 1)
(1 + z)(1 + z + · · · + zn−2) = 1

2(n − 1)
(1 + 2z + · · · + 2zn−2 + zn−1),

that is, x1 = xn = 1/
√

2(n − 1) and x2 = · · · = xn−1 = 1/
√

n − 1. Let {aj}nj=1 be the sequence

given by Lemma 3.7 such that a1 = −1, −1 < aj < 1 for all j, 2 ≤ j ≤ n − 1, an = 1 and

wj =
√

(1 − aj)(1 + aj+1) for all j. Moreover, if y1 = 1 and yj = ∏j−1
k=1

√
(1 − ak)/(1 + ak+1) for

2 ≤ j ≤ n, then x is the normalized vector of y ≡ [y1, . . . , yn]T . Thus∏j−1
k=1(1 − ak)/(1 + ak+1) = 2

for all j, 2 ≤ j ≤ n − 1, from which we obtain aj = 0 for 2 ≤ j ≤ n − 1. Hence w1 = wn−1 = √
2

and w2 = · · · = wn−2 = 1 as asserted.

(b) Assume that n is odd. We may argue analogously as before except that this time −1 and

ω
(n−1)/2
n−1 coincide. So, for one direction, if the wj ’s are of the asserted form for some α > 0, then

x = (1/
√

(n − 1)(1 + α))[1, √
1 + α, . . . ,

√
1 + α,

√
α]T is the unique unit vector in C

n with

〈Ax, x〉 = 1 = w(A), and p(z) = (1/((n− 1)(1+ α)))(1+ (1+ α)z + · · · + (1+ α)zn−2 + αzn−1)

has zeros −1/α and ω
j
n−1, 1 ≤ j ≤ n − 2. From this, we infer as before that k(A) = n − 1.

Conversely, if k(A) = n−1, let x = [x1, . . . , xn]T , p(z) = x21+x22z+· · ·+x2nz
n−1, and θ1, . . . , θn−1

with 0 ≤ θ1 < θ2 < · · · < θn−1 < 2π be as in (a). Then for each fixed l, 1 ≤ l ≤ n − 1, the n − 2

distinct numbers ei(θj−θl), 1 ≤ j �= l ≤ n − 1, are zeros of p(z). Let the real β be the remaining zero

of p(z). As before, we have ei(θj+1−θ1) = ω
j
n−1 for 1 ≤ j ≤ n − 2 and hence

p(z) = 1

(n − 1)(1 − β)
(−β + z)(1 + z + · · · + zn−2)

= 1

(n − 1)(1 − β)
(−β + (1 − β)z + · · · + (1 − β)zn−2 + zn−1).

In particular, this implies that β < 0 and x1 = √−β/((n − 1)(1 − β)), xj = 1/
√

n − 1 for 2 ≤ j ≤
n− 1, and xn = 1/

√
(n − 1)(1 − β). Let α = −1/β and let {aj}nj=1 be as given in Lemma 3.7. We can

derive as before that the wj ’s are of the form as asserted. �

Acknowledgement

We thank Hsin-Yi Lee for his suggestions, which lead to the present improved Proposition 2.10.

References

[1] J. Eldred, L. Rodman, I.M. Spitkovsky,Numerical rangesof companionmatrices: flatportionson theboundary, LinearMultilinear

Algebra 60 (2012), in press.

[2] M.R. Embry, The numerical range of an operator, Pacific J. Math. 32 (1970) 647–650.
[3] J.S. Fang, C.-L. Jiang, P.Y. Wu, Direct sums of irreducible operators, Studia Math. 155 (2003) 37–49.

[4] H.-L. Gau, M.C. Tsai, H.-C. Wang, Weighted shift matrices: unitary equivalence, reducibility and numerical ranges, preprint,
arXiv: 1206.1975.



532 K.-Z. Wang, P.Y. Wu / Linear Algebra and its Applications 438 (2013) 514–532

[5] H.-L. Gau, P.Y. Wu, Numerical ranges and compressions of Sn-matrices, Oper. Matrices, in press.

[6] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, Cambridge, 1991.
[7] D.S. Keeler, L. Rodman, I.M. Spitkovsky, The numerical range of 3 × 3 matrices, Linear Algebra Appl. 252 (1997) 115–139.

[8] D.P. Kimsey, H.J. Woerdeman, Minimal normal and commuting completions, Int. J. Inf. Syst. Sci. 4 (2008) 50–59.
[9] C.-K. Li, B.-S. Tam, P.Y. Wu, The numerical range of a nonnegative matrix, Linear Algebra Appl. 350 (2002) 1–23.
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