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model, the two-level recursive scheme together with the Mori-Tanaka method, to evaluate
the ME effect of the composites. The magnitudes and trends of the solutions are in good
agreement with the calculations by the finite element analysis. Based on this model, we
find the optimal volume fractions of the inclusion, the ratio of the radii between the core
and shell for maximum ME coupling. Further, we correlate the ME effect with the material
Coated fibrous composites parameters of the constituent phases and propose useful engineering guide to the develop-
Piezoelectric ment of new ME coated fibrous composites.
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1. Introduction

Magnetoelectric (ME) materials, which coexist magnetic and electric orderings, have stimulated considerable scientific
and technological interest in recent years for potential applications, such as ME data storage and switching, magnetic field
detectors, and electric control of magnetism (Eerenstein, Mathur, & Scott, 2006; Fiebig, 2005; Spaldin & Fiebig, 2005). How-
ever, the ME effect in natural materials is rather weak and is often observed at low temperature (Astrov, 1960; Rado & Folen,
1961). Therefore, various researchers have turned to composites made of piezoelectric (PE) and piezomagnetic (PM) media to
enhance the magnetoelectricity, as explained in recent reviews by Nan, Bichurin, Dong, Viehland, and Srinivasan (2008) and
Srinivasan (2010). This much stronger ME effect could be realized using product property (Nan, 1994):

electric mechanical

ME effect = —— X —.
mechanical = magnetic

It means that an applied magnetic field causes an elastic strain in the piezomagnetic material, and this strain is translated
into the electric polarization, hence electric fields, in the piezoelectric material, or vice versa.

The promise of applications have also made ME composites the topic of a number of theoretical studies (Nan et al., 2008;
Zheng et al., 2004). For example, the classical Eshelby’s equivalent inclusion approach and the Mori-Tanaka mean-field mod-
el have been generalized to multiferroic composites by Li and Dunn (1998a, 1998b), Wu and Huang (2000), Huang and Zhou
(2004), Srinivas et al. (2006) and Liu and Kuo (2012). The analysis for local fields is available for simple microstructures such
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as a single inclusion (Huang & Kuo, 1997), laminates (Bichurin et al., 2003; Kuo et al., 2010; Liverts et al., 2010; Srinivas
et al., 2001), and periodic array of circular/elliptic fibrous ME composites (Dinzart and Sabar, 2011; Kuo, 2011; Kuo and
Pan, 2011). Homogenization methods were also proposed for periodic ME fibrous composites (Aboudi, 2001; Camacho-Mon-
tes et al., 2009), while numerical methods based on the finite element analysis have been developed to address ME compos-
ites with more general microstructures (Lee et al., 2005; Liu et al., 2004).

Recently, some three-phase multiferroic composites were made experimentally to enhance the ME coupling. Among
them, Nan et al. (2002) and Nan et al., 2003 made a Terfenol-D/PZT/PVDF mixture and enhanced the ME coefficient to
45 mV/cm. Dong et al. (2006) prepared a MnZnFe,0,4/Terfenol-D/PZT laminate, and found the enhanced ME field coefficients
of up to 8-28 times of those of Terfenol-D/PZT counterpart. Gupta and Chatterjee (2009) prepared a three-phase
BaTiOs/CoFe,04/PVDF particulate composite, and showed a maximum ME voltage around 26 mV/cmOe. Jadhav et al.
(2009) prepared a Nig5Cug>Zng 3Fe;04/BaTiO3/PZT combination and measured a maximum ME coefficient of 975 pnV/cmOe.
For theoretical investigations on this part, Kuo (2011) and Kuo and Pan (2011) estimate the overall behavior of multiferroic
composites with coated circular/elliptic fibrous under generalized anti-plane deformation. Dinzart and Sabar (2011)
employed Green’s functions techniques, interfacial operators, and Mori-Tanaka’s model for solving the magneto-
electro-elastic coated inclusion problem. Later, Kuo and Wu (2012) proposed a micromechanical model, the two-level
recursive scheme in conjunction with the Mori-Tanaka method, to a core-shell-matrix particulate multiferroic composite.
They showed that the solutions are in good agreement with the prediction by the finite element analysis. In the present
study, we follow this similar idea to investigate the effective property of a coated fibrous composites made of piezoelectric
and piezomagnetic phases.

The plan of this article is organized as follows: in Section 2, we formulate the basic equations for a piezoelectric-piezo-
magnetic composite and define the effective properties of the heterogeneous media. In Section 3 we present a micromechan-
ical approach to estimate the overall behavior of core-shell-matrix, three-phase multiferroic fibrous composites. We
introduce the finite element analysis in Section 4. Both methodologies are illustrated in Section 5. We study how the ME
voltage coefficient depends on the radius ratio of the core and shell, volume fractions of the fiber phase, and material prop-
erties of constituent phases. Furthermore, we improve the ME coupling by tuning the material parameters, and summarize a
few useful design principles.

2. Problem statement
2.1. Basic equations

Let us consider a coated fibrous composite made of piezoelectric and piezomagnetic materials as shown in Fig. 1. The
cylinders are infinitely long with fibers aligned in xs-direction. The composite is consisting of a continuous matrix phase,
m, in which there are embedded inhomogeneities of a circular core phase, ¢, and a shell phase, s, which represents a layer

of coating that encloses the core phase. The radii of the core and coating are a and b, respectively, and the ratio between them
is defined as y = a/b. The general constitutive laws for the rth phase are given by (see Alshits et al., 1992, for example)

a
Ratio of radius 7y = b

Matrix

Fig. 1. The cross-section of a circular coated fibrous composite.
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(1) _ () o(n)
oy’ = Cukl'gkl ezu - qlu
D} = erklgkl +Kzz E +}h H ; (2.1)
(n _
Bz qul 8kl + /“11 + luxl 7
where oy, Dy, B;, &, E; and H; are the stress, electric displacement, magnetic flux, strain, electric field and the magnetic field,
respectively. Gy is the elastic moduli; ey, and g are the piezoelectric and piezomagnetic constants; i, 1y and 7; are the
dielectric permittivity, magnetic permeability and magnetoelectric coefficient. The symmetry conditions satisfied by the
moduli are given by Nye (1985).
The strain, g, electric field, E;, and magnetic field, H; are respectively defined by the displacement u;, electric potential ¢,
and magnetic potential ¥ via

1
&j =5 Uiy + W), Ei=-@; Hi=-y,; (2.2)

On the other hand, the balance of linear momentum, Gauss’s law, and the condition of no magnetic poles give that the stress,
electric displacement, and magnetic flux satisfy the following equilibrium equations

gij =0, Di;=0, B;;=0. (2.3)
These differential equations can be solved, subject to suitable interface and boundary conditions. We assume that the inter-
faces are perfectly bonded, and therefore the field quantities satisfy

[ojn] =0, [Din]=0, [Bm]=0

(2.4)
[ui] =0, [e]=0, [v]=
where [-] denotes the jump in some quantity across the interface, and n; is the unit outward normal to the interface.
For convenience, we rewrite the constitutive laws (2.1) in the matrix notation as (Alshits et al., 1992)
X=1Z, (2.5)
with
o 3 C e ¢
r=|D|, Z=|-E|, L=|e -k -i|. (2.6)
B -H q —i —u

Here the superscript t denotes the transpose of the matrix.
2.2. Effective moduli

In this study, we are interested in determining the overall properties of multiferroic composites. The macroscopic prop-
erties are defined in terms of average fields,

() =L(Z), (2.7)
where L* denotes the macroscopic magnetoelectroelastic coefficients of the heterogeneous material, and the angular
brackets denote the average over the representative volume element (RVE). Note that, although in each component, the
magnetoelectric coefficient is zero, i.e., 4 =0, the coupling effect A* may be non-zero.

Due to the linearity, the generalized strain in the rth phase for a matrix-based multiphase multiferroic composite is given
by (Srinivas et al., 2006)

Z, = A/(2), (28)

where A, is the generalized strain concentration tensor of the rth phase, satisfying ZLA, =1, where I is the fourth-order
identity tensor. As a result, from the average generalized stress and strain theorems, the effective moduli can be determined
for a (N + 1)-phase composite as

L,,,+Zf r —Ln)A-. (2.9)

Here f; is the volume fraction of the rth phase. The concentration tensor can be determined by various micromechanical
models, which will be discussed in the following section.

3. Micromechanical approach

To estimate the effective moduli, L*, of multiferroic composites, we first turn to the direct Mori-Tanaka method, which
approximates the coated particle problem using a composite with distinct particles representing the core and shell phases
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(Fisher and Brinson, 2001). This gives the effective properties of the core-shell-matrix mutliferroic as Eq. (2.9), with the
concentration tensor for the core (j=1) and shell (j=2)

. . o\ —1
Aj:A;‘"<fm1+ﬁA‘f”+fsA§”) . j=1,2. (3.1)

Here

A" = [1+SL, (Lj—Lm)}fl, (32)

S; is the magnetoelectroelastic Eshelby tensor, which is a function of the magnetoelectroelastic moduli of matrix, the shape
and orientation of the jth inclusion, and is described by (Li and Dunn, 1998b)

f f [ijm Z] + anlm(zj)]d0d§3> M=1,2,3,
Smnab = ﬁLUAb f f Gyjin(z;)d0d ¢, M =4, (3.3)
2 [1 [ Gajin(zj)dOdEs, M =5.

In the above equation, z; = ¢;/a; (no summation on i), g; is the semi-axis of size, and &; and &, can be expressed in terms of &3

and 0 by & = /1 —&cos0and & = (/1 — & sin0. In addition Gy = 2iz,Kyy) (2)), where K; is the inverse of Kjg = zizyLign. Li
and Dunn (1998a) have obtained the closed-form expressions of magnetoelectroelastic Eshelby’s tensors for the aligned
elliptic cylinder inclusion in a transversely isotropic medium. For the coated fibrous composites with arbitrary crystal sym-
metry as we discussed in this work, we resort to Gauss quadrature numerical method to calculate Syy4p. The integral (3.3)
then is approximated by the weighted sum of function values at certain integration points (Li, 2000).

However, we will show later that this prediction deviates largely from that determined by the finite element analysis.
Therefore, the direct Mori-Tanaka method is not good in estimating the coupling constants. We now turn to another ap-
proach, the two-level recursive scheme with the Mori-Tanaka technique. The basic concept of the two-level recursive
scheme is that the matrix sees coated particles that are themselves composites. This procedure was first used to predict
the behavior of viscoelastic composites containing multiphases of coated inclusions (Friebel et al., 2006). At the deepest
level, each coated particulate inclusion is seen as a two-phase composite, which, once homogenized, plays the role of a
homogeneous inclusion for the matrix material (highest level).

Further, at each level, we employ the Mori-Tanaka approach in prediction the effective moduli of the corresponding two-
phase composite. Based on this model, at the deepest level, the coated inclusions are seen as a two-phase composite with
effective moduli

e
fi

Here, the subscripts ¢, s, and i represent core, shell and inclusion (core plus shell), respectively. The concentration tensor A,
can be determined as

L, =L+ (L — LyA.. (3.4)

Ac=FA (14 LAY (35)

with the dilute concentration tensor A*" given by
1
Al = [1 +SL (L — Ls)] . (3.6)

Here S, is the generalized Eshelby tensor for the core phase, which is a function of the property of the shell, and the shape
and orientation of the core phase.

At the highest level, the effective coated fibers play the role of reinforcements and, similarly, we have the effective
behavior

L' =Ly + fi(Lec — Lin)Acc. (3.7)
Again the concentration tensor can be determined as
|
A = AL (ful + AT (338)
with the dilute concentration tensor
-1

AL = 148l (L~ L) (3.9)

Here S is the generalized Eshelby tensor for effective coated fibers, which is a function of the moduli of the matrix, and the
shape and orientation of the coated fibers (core plus shell).
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4. Finite element method

In this section, we introduce the finite element method which is used for comparison with the above micromechanical
solutions. We first choose an appropriate representative volume element (RVE), a periodic unit cell, which captures the
major features of the underlying microstructure. There are five possible ways of packing cylinders in regular arrays in
two dimensions (see Kittel, 2005, for instance). Here we concentrate on the two lattices, square and hexagonal arrangements
(Fig. 2).

Further, due to the periodicity in the composite structure, the displacement, u;, electric potential, ¢, and the magnetic
potential, ¥, in any point of the unit cell can be expressed in terms of those at an equivalent point in another RVE such that
the periodic boundary conditions

q)(d,Xz,X3) = (D(—d,XQ,X3) + <(I)1>2d,
D(xq1,d,x3) = O(x1,—d,x3) + (D5)2d, (4.1)
@(X],Xz,d) = (I)(X1,X27 —d) —+ <(D3>2d
are satisfied for a square lattice. Here @ is the component of u;, ¢, or 1/, and 2d is the length of the unit cell. The comma in the
subscript denotes the partial derivative. Similarly, the periodic boundary conditions for a hexagonal lattice are
(I)(d,Xz,X3) = (I)(—d7 X2,X3) + <(D1>2d,
<1>(x1, \/§d,x3) - <I>(x1, —V3d, xg) +(D,)2V/3d, (4.2)
@(X]J(z,d) = (I)(Xl,X27 —d) + <(D3>2d

In order to evaluate the effective coefficients of the above periodic multiferroic composite, the strain, g, electric field, E;
and magnetic field states, H; are applied individually to the unit cell. The periodic boundary conditions have to be applied to
the unit cell in such a way that, apart from one component of the strain, electric field, or magnetic field (®;) in Egs. ( 4.1) or

(4.2), all other components are made equal to zero. Then each effective constant can be determined by (2.7). We perform the
three-dimensional finite element analysis using the software COMSOL Multiphysics.

5. Results and discussion

As a numerical example, we take a composite made of PE cores coated PM shell in a PM matrix. For the piezoelectric
material, we first choose the widely used BaTiO3 (BTO) ceramic as the core phase. For the piezomagnetic material we choose
CoFe,04 (CFO) as the shell phase while Terfenol-D (TD) as the matrix phase. They are all transversely isotropic, i.e. with 6 mm

24—
(@)

g 8 §q !
2J§d

Y - -~ 2d~
(b)

Fig. 2. A schematic representation of a unit cell. (a) A square array. (b) A hexagonal array.
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symmetry. For convenience, we denote the composite as BTO/CFO/TD. The independent material constants of these constit-
uents are given in Table 1 in Voigt notation, where the x;x, plane is isotropic and the poling direction/magnetic axis is along
the x3-direction.

In this study, a material property of particular interest is the ME voltage coefficient o ; = 4;/x;; (no summation), where
4;( K ) 1s the effective ME coupling coefficient (dielectric permittivity) of the composite. The effective ME voltage coefficient
oy ;;» which relates the overall electric field generated in the composite with the applied magnetic field, is the figure of merit
for magnetic field sensors.

Fig. 3 shows how the ME voltage coefficient depends on the inclusion volume fraction, f;, and the ratio of radii, y, for the
BTO/CFO/TD three-phase multiferroic composite. The ME voltage coefficient is non-zero for every non-zero volume fraction
of the inclusion even though this coefficient is zero for each constituent phase. This reflects the ME coupling is mediated by
the elastic interaction. In the micromechanical approach, there is no upper limit on the volume fractions, since Mori-Tana-
ka’s model is a mean-field theory. On the other hand, the finite element analysis is estimated for discrete volume fractions
and stops around f; = /4 and f; = /2+/3 for the square and hexagonal arrays, respectively, when the inclusions begin to
touch each other. The prediction of the two-level recursive scheme together with the Mori-Tanaka’s approach is in good
agreement with the results of the finite element analysis. The maximum ME voltage coefficient o, is —7.8359 V/cmOe
at volume fraction f;=0.86 with y=0.7 (Fig. 3(a)). On the other hand, the maximum o ;; is 1.3425 V/cmOe at volume
fraction f; =1 with y = 0.3, which corresponds to the two-phase composite BTO/CFO (Fig. 3(b)). Note that the results of the
hexagonal array are closer to the Mori-Tanaka’s estimation than those of the square array. This is because a hexagonal array
is a closed packing structure, and the Mori-Tanaka model allows the inclusion to fulfill the matrix.

Fig. 3(a) and (b) also compare with the effective ME voltage coefficients predicted by Kuo and Pan (2011) who used mul-
tipole expansion technique. Still, the overall magnitudes and trends agree well among predictions based on the microme-
chanical model, finite element analysis, and Kuo and Pan’s model. Further, Fig. 3 compares the overall moduli with those
calculated by the direct Mori-Tanaka method for the case y = 0.8. It is observed that the prediction deviates largely from
those determined by the finite element analysis. Therefore, the direct Mori-Tanaka method is not good in estimating the
coupling constants, although calculations show that they evaluate elastic stiffness well.

Finally, for comparison, Fig. 3 also shows the effective moduli of the composite made by the corresponding two-phase
medium (BTO/TD). It shows that the ME voltage coefficients in the coated fibrous composite can be indeed increased com-
pared to this two-phase counterpart.

Next, we study how the effective ME voltage coefficient depends on the elastic moduli, Cpr and Cpy, dielectric permittivity,
kpe and kpy, and magnetic permeability, gpr and upy, of the PE and PM materials, piezoelectric constant, epg, of the PE mate-
rial, and piezomagnetic coefficient, qpy;, of the PM material. For ease of comparison, we choose the material properties of BTO
and CFO as the reference and define the normalized materials properties of the PE and PM phases as

Crcorel = CPE(CBTO)J, Crshenl = CPM(CCFO)qy Crmaerix] = CPM(CCFOY1

and, likeWise. are €.cores qr.shells grMatrix» Kr,cores Kr,shelly KrMatrix» Hr,Cores HUr,Shelly UrMatrix- Note that all the components of the mate-
rial constant are magnified simultaneously for simplicity. Below we numerically compute the ME voltage coefficients o} ;,

Table 1
Material parameters of BaTiO3 (eFunda), CoFe;04 (Li and Dunn, 1998b), Terfenol-D (Engdahl, 2000; Nan et al., 2001), LiNbO3 (eFunda), and PZT-5] (eFunda: Nan
et al,, 2001).

Property BaTiO3 CoFe,04 Terfenol-D LiNbO3 PZT-5]
Cy1 (GPa) 150.37 286 8.541 203 82.3
Cy5 (GPa) 65.63 173 0.654 52.9 34.1
Cy5 (GPa) 65.94 170.3 3.91 74.9 30.2
Cs3 (GPa) 145.52 269.5 283 243 59.8
Cys (GPa) 43.86 453 5.55 59.9 21.3
Cos (GPa) 4337 56.5 18.52 74.9 24.1
Cy4 (GPa) 0 0 0 8.99 0

Csg (GPa) 0 0 0 8.985 0

K11 (NC?/Nm?) 9.87 0.08 0.05 0.39 14.53
K33 (nC2/Nm?) 11.08 0.093 0.05 0.26 10.12
11 (UNs?/C?) 5 590 8.644 5 1.26
sz (UNs?/C?) 10 157 2.268 10 1.26
e5 (C/m?) 114 0 0 3.7 14.26
e16 (C/m?) 0 0 0 —2.534 0

51 (C/m?) 0 0 0 —-2.538 0

es1 (C/m?) 432 0 0 0.19 —~10.45
33 (C/m?) 17.36 0 0 1.31 16.58
Q15 (N/Am) 0 550 155.56 0 0

gs1 (N/Am) 0 580.3 —5.7471 0 0

Q33 (N/Am) 0 699.7 270.1 0 0
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Fig. 3. The predicted ME voltage coefficient vs the volume fraction of inclusion, f;, and radius ratio, y, of a BTO/CFO/TD coated fibrous composite: (a) ME
voltage coefficient o}, and (b) ME voltage coefficient o ;. In both (a) and (b), solid lines are based on the two-level recursive scheme with the Mori-
Tanaka model, while discrete point symbols are based on the finite element analysis.

and «; 5; and their dependence on the normalized material properties of core (PE), shell (PM), and matrix (PM) phases. These
results give important guidelines for practical designs of ME coated fibrous composites.

Figs. 4 and 5 show the contours of the normalized effective ME voltage coefficients o, /0@, and o 33/ 55 of a PE[PM/
PM composite at the inclusion volume fraction f; = 0.5 and the ratio of the radii y = 0.8, where the ME voltage coefficients
02, = —0.0336 V/cmOe and o ,; = 0.925 V/cmOe of BTO/CFO/CFO composite are chosen as the unit for ease of comparison.
In Figs. 4(a) and 5(a), the vertical and horizontal axes represent the normalized elastic constants of core and shell phases,
respectively, while the variation of matrix’s elastic constant is shown by different subplots (a-1,a-2,a-3). The other material



H.-Y. Kuo, C.-Y. Peng/International Journal of Engineering Science 62 (2013) 70-83 77

By watese =1 “g “21
5 (b) . T, Matrix . A1 Al

Cr,Cure
er,Cure

01 02 03 04 05 06 07 0B 08

(a_l) C:r.SheIl

rMatrix

lCr,(:ure
er,cure

04 05 06 07 08 09

(3_2) Cr,BheII

_ =
C et = ! Se 11/% 44 9 watrix = g g4 E11
1 . a

Cr,Cure
er,Cure

i 2

(a_3) Crshen (b_3) Grgnen

01 02 03 04 05 06 07 08 08 1

Fig. 4. The predicted in-plane ME voltage coefficient vs different material parameters. The composite is made of PE core phase, PM shell and matrix phases.
The volume fraction of inclusion f;= 0.5, and the radius ratio y = 0.8. The normalized ME voltage coefficient o;,, /o ;; vs (a) normalized elastic constants
Cr.cores Crshent and Cr matrix; (b) normalized piezoelectric coefficient of PE core e, core and piezomagnetic coefficient of PM shell g, spen and matrix gy maerix; (€)
normalized dielectric permittivity x;core, Kr.sheit and Krmatrix; (d) normalized magnetic permeability ficore, Hr.shent and e Matrix-

constants are fixed as those of BTO for PE phase or CFO for PM phase. It is observed that the ME voltage coefficient increases
when any one of the core, shell or matrix’s elastic constant decreases. Therefore, softer PE and PM materials are preferred for
improving the ME voltage coefficients of PE/PM/PM three-phase fibrous composites. Figs. 4(b) and 5(b) show the contours of
the relative effective ME voltage coefficient versus the piezoelectric and piezomagnetic constants in linear scale. For a fixed
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Fig. 4. (continued)

normalized piezoelectric coefficient, e, core, the absolute ME voltage coefficient o ;; decreases first and increases after certain
minimum as the shell or matrix’s piezomagnetic coefficient increases. However, for fixed normalized piezomagnetic coeffi-
cients of the shell and matrix phases and as the piezoelectric coefficient increases, the coupling increases first and decreases
after certain optimal. Therefore, nontrivial optimal piezoelectric coefficient and lower or higher piezomagnetic constants are
preferred for improving the ME effect o ;. On the other hand, for the ME voltage coefficient o 3, the behavior is quite
different (Fig. 5(b)). It is observed that the ME voltage coefficient increases when any of the core’s piezoelectric constant,
shell or matrix’s piezomagnetic constant increases. Therefore, higher piezoelectric coefficient or piezomagnetic coefficient
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Fig. 5. The predicted out-of-plane ME voltage coefficient vs different material parameters. The composite is made of PE core phase, PM shell phase and PM
matrix phase. The volume fraction of inclusion f; = 0.5, and the radius ratio y = 0.8. The normalized ME voltage coefficient o; 55 /055 vs (a) normalized elastic
constants Cpcores Cr.shen and Crmarrix; (D) normalized piezoelectric coefficient of PE core e core and piezomagnetic coefficient of PM shell gy shen and matrix
GrMatrix; (€) normalized dielectric permittivity Krcore, Kr.sheil ad Krmatrix; (d) normalized magnetic permeability fircore, Ursheit AN L Matrix-

are preferred for improving the ME voltage coefficient in the axial direction. Figs. 4(c) and 5(c) show the contours of the
relative ME coupling versus the normalized electric permittivity of PE and PM phases. We observe that the smaller the core’s
permittivity, the larger the ME voltage coefficients. For the PM shell or matrix’s permittivity, however, they only slightly
influence the ME effect. Figs. 4(d) and 5(d) show the contours of the relative ME voltage constants versus the normalized
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Fig. 5. (continued)

magnetic permeability in logarithmic scale. For the in-plane ME voltage coefficient o ;;, we observe that increasing the PE
core’s or PM shell’s magnetic permeabilities largely enhances the coupling constant, and on the contrary, increasing the PM
matrix’s magnetic permeability lowers the ME voltage coefficient. Therefore, a large magnetic permeability of the PE core
and PM shell and a small magnetic permeability of the PM matrix phase are preferred for improving the in-plane ME voltage
coefficient o ,,. However, the out-of-plane coupling constant o3, is almost independent of magnetic permeability

(Fig. 5(d)). For clearness, the contours are shown as the change rate of the ME coefficient, (ocg33 - otg33) /0 33
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Fig. 6. The predicted ME voltage coefficient vs the volume fraction of the inclusion, f;, and radius ratio, y, of a (a) LNO/CFO/TD coated fibrous composite; (b)
PZT/TD/CFO coated fibrous composite. In both (a) and (b), lines are based on the two-level recursive scheme with the Mori-Tanaka model, while discrete
point symbols are based on the finite element analysis.

Motivated by the above study, we study a ME composite of LiNbO3 (LNO, 3 m symmetry), CoFe;04, and Terfenol-D as the
core, shell, and matrix phases (Fig. 6(a)), since LNO has lower dielectric permittivity and the matrix TD has lower elastic
stiffness and magnetic permeability. The material constants of LNO are listed in Table 1. For this ME composite, the
maximum is attained at the volume fraction f;=0.86 and ratio of the radius y=0.8 where ME voltage coefficient
;11 = —44.9393 V/cmOe. For the out-of-plane ME voltage coefficient o ,;, we choose a composite made of PZT/TD/CFO.
This is because PZT (6 mm symmetry) has lower elastic constant and higher piezoelectric coefficient, while the shell TD is
softer. The maximum occurs at the volume fraction f;=0.06 and ratio of the radius y=1.0 with coupling constant
o33 = 4.6134 V/cmOe.
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6. Concluding remarks

In this work, a micromechanical approach, the two-level recursive scheme in conjunction with the Mori-Tanaka model, is
adopted to estimate the effective moduli of a coated fibrous composites made of PE and PM phases. We have used it to study
the dependence of a particular material property of interest, the ME voltage coefficient, on the volume fraction of the inclu-
sion, the ratio of the radii between the core and shell, and the material parameters of the PE and PM phases. The results are
compared with the finite element analysis and the semi-analytical method proposed by Kuo and Pan (2011). The magnitudes
and trends among them are in good agreement. In addition, for a PE/PM/PM coated fibrous composite with fixed volume
fraction and radius ratio, we show that softer materials are desirable for improving the ME coupling. Further, for the in-plane
ME voltage coefficient o ,,, it is desirable to have larger (smaller) magnetic permeability in the PM shell (PM matrix), and
smaller dielectric permittivity, but larger magnetic permeability in the PE core. Besides, there exists optimal values of the
piezoelectric constant. On the other hand, for the out-of-plane ME voltage coefficient o; 3, it is desirable to have smaller
dielectric permittivity of PE phase, and higher piezoelectric (piezomagnetic) coefficient of the PE (PM) phase. The magnetic
permeability has no effect on the ME coupling o 55.

In the past decades, some three-phase composites consisting of piezoelectric and magnetostrictive/piezomagnetic phases
have been investigated in experiments. However, those composites are either in the form of laminates (Dong et al., 2006) or
particulate composites (Gupta and Chatterjee, 2009; Jadhav et al., 2009; Nan et al., 2002, 2003). To the best of authors’
knowledge, there is no known experimental result for core-shell-matrix ME fibrous composites. Therefore, we believe that
this framework and principles will stimulate new experimental works and shed new light on magnetoelectric coated fibrous
composites.
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