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Nonequilibrium noise correlations in a point contact of helical edge states
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We investigate theoretically the nonequilibrium finite-frequency current noise in a four-terminal quantum
point contact of interacting helical edge states at a finite bias voltage. Special focus is put on the effects of the
single-particle and two-particle scattering between the two helical edge states on the fractional charge quasiparticle
excitations shown in the nonequilibrium current noise spectra. Via the Keldysh perturbative approach, we find that
the effects of the single-particle and the two-particle scattering processes on the current noise depend sensitively
on the Luttinger liquid parameter. Moreover, the Fano factors for the auto- and cross correlations of the currents in
the terminals are distinct from the ones for tunneling between the chiral edge states in the quantum Hall liquid. The
current noise spectra in the single-particle-scattering-dominated and the two-particle-scattering-dominated regime
are shown. Experimental implications of our results on the transport through the helical edges in two-dimensional
topological insulators are discussed.
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I. INTRODUCTION

Ever since the discovery of the quantum Hall effect, there
has been a growing interest in topological properties in certain
quantum condensed-matter systems, especially when a model
of the topological states in the absence of applied magnetic
fields was constructed.1 Recently, a new topological state of
matter in two dimensions, the quantum spin Hall insulator
(QSHI), was theoretically proposed in various systems with
time-reversal symmetry and spin-orbit interactions.2,3 The
hallmark of the topological nature in QSHIs is the presence of
a bulk gap together with gapless edge states.4 These edge states
propagate in opposite directions for opposite spins, and thus
are usually dubbed as the helical liquids.5 The stability of the
helical liquid against the elastic backscattering is protected by
the time-reversal invariance;2 hence, the helical liquid forms
a distinctive feature of this new topological state of matter.
This state occurs in HgTe/CdTe quantum well structures,6

and there has already been experimental evidence in trans-
port properties of helical liquids, which may be considered
as the confirmation of these unique one-dimensional (1D)
systems.7,8

In the presence of electron-electron interactions, these heli-
cal edge states form a special type of Luttinger liquid (LL), the
helical LL, in which the spins are associated with the directions
of the momenta.5 Therefore, it is interesting, both theoretically
and experimentally, to look for the unique signatures of helical
LLs and, in particular, to distinguish them from the the usual
LLs. Recently, it was proposed in Refs. 9 and 10 that a
four-terminal quantum point contact (QPC) in the QSHI can be
used as a probe of the helical LL. In particular, in Ref. 9, it was
noted that the problem of the QPC in a QSHI can be mapped
onto the model of a spinful LL with a weak tunneling link. The
corresponding LL parameter of the charge mode Kc = K is the
inverse of that of the spin mode Ks = 1/Kc = 1/K . Therefore,
the edge states of the QSHI with a tunnel junction can realize
phases which cannot exist for the spin-SU(2) invariant LL with
a single impurity where Ks = 1 there.11 It was further shown

in Ref. 9 that there exists a quantum critical point which can be
tuned by adjusting the value of the gate voltage.10 As a result,
the low temperature zero-bias conductance can be described
by a universal scaling function of the temperature and the
gate voltage. Later, a duality relation between the charge and
spin sectors in such a four-terminal setup was found in the
nonequilibrium situation.12

It is important to notice that in determining the phase
diagram of the QPC in a QSHI, the two-particle scattering
processes, which are naively regarded as less relevant than
the single-particle one, play an important role. It is therefore
interesting and important to realize a direct experimental probe
of these two-particle scattering processes. One way to achieve
this goal is to analyze the current noise of the tunnel junction.
A pioneering work along this direction has been done recently
in Ref. 13. There, via the cumulant generating function, the
nonequilibrium spin-resolved tunnel current and its corre-
lations at zero frequency are obtained by the perturbation
theory in the tunneling strength. Particularly, the competition
between the single-particle and the two-particle scattering
processes has already been seen in the zero-frequency tunnel
current noise. Further, fermionic Hanbury-Brown and Twiss
(HBT) correlations between spin-up and spin-down tunnel
currents are also examined in the same work, and it is shown
that only the two-particle tunnelings contribute to the HBT
correlations.

On the other hand, it was argued in the study of the noise
measurement in the edge states of the fractional quantum Hall
(FQH) liquid that more information can be extracted from the
noise correlations of the currents in the terminals than from the
noise in the tunnel current flowing through the junction.14,15

In particular, fractional charge quasiparticle excitations have
been suggested14–18 and measured19,20 in transport through
FQH liquids (or chiral LLs) as well as in the nonchiral
LLs.21 Recently, it has been proposed that fractional charge
quasiparticle excitations induced by electron interactions exist
and may be probed in the helical edge states of the QSHI.22
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FIG. 1. A QPC in a QSHI. The value of the gate voltage is greater
than its critical value so that the point contact is open.

It is therefore of great interest and fundamental importance to
investigate further this issue which is relatively less studied.
Furthermore, in addition to the zero-frequency shot noise,
it has been suggested that even more information is stored
in the finite-frequency current noise, such as the quantum
statistics of the quasiparticle excitations,16–18 the dynamics
of correlations,14 and the role of electron interactions.

Motivated by these observations, in the present work, we
investigate the current noise of two weakly coupled helical LLs
in a generic four-terminal setup in the presence of a finite bias
V between the top and bottom edges of the point contact when
it is open, as shown in Fig. 1. In particular, we extend the earlier
studies on the zero-frequency tunnel current noise in Ref. 13
in two directions. First, instead of studying the correlations of
the tunnel current directly, we investigate currents in the four
terminals and the associated noise spectra. Second, instead of
just calculating the noise spectrum at zero frequency, we also
obtain the noise spectra at finite frequency. As we mentioned
above, there is certain important physical information about
this system, which is not probed directly by the tunnel current
noise at zero frequency, that can be revealed through this
approach. In particular, we show that the Fano factor obtained
through the correlations of the currents in the terminals will
depend on the LL parameter in a way exhibiting the fractional
charge carried by the elementary excitations in the helical
LL. Therefore, in addition to reproducing some results of
Ref. 13, our work may provide a complementary point of
view on the physics of the helical LL in such a four-terminal
setup.

Throughout this work, we assume that our system is far
away from the quantum critical point so that the perturbative
calculation becomes reliable. Further, when the point contact
is pinched off, the corresponding noise spectra can be obtained
by an appropriate duality transformation.10 Our main results
obtained via the Keldysh perturbation theory23 are shown in
Figs. 2–8. Naively, the two-particle scattering processes seem
to be more irrelevant than the single-particle one. However, we
find that the current and noise spectrum may be dominated by
them, depending on the value of the LL parameter,24 as shown
in Figs. 2–6. To reveal the competition between the single-
particle and the two-particle scattering processes clearly, we
calculate the Fano factors for the auto- and cross correlations

of currents in the terminals. We find that they depend on the LL
parameter and the relative strength of the tunneling processes,
which can also be viewed as an indirect probe on the possible
fractional charges in a helical liquid. What we find here is quite
different from the corresponding one for tunneling between
chiral edge states in the quantum Hall liquid.14,25 Moreover,
the Fano factors for the auto- and cross correlations approach
different values in the zero-bias limit, depending on the LL
parameter. As we discuss below, this result follows from the
entanglement of the right and left movers in the final states for
different scattering processes.

The rest of the paper is organized as follows. In Sec. II, we
set up the model to fix our notation. The calculations on the
currents and noise spectra are summarized in Sec. III. These
results and comparison with the previous work are discussed
in Sec. IV. The last section is devoted to conclusions.

II. MODEL

At low energies, the system in Fig. 1 can be described by
the Hamiltonian H = H0 + δH , where

H0 =
4∑

i=1

∫ +∞

0
dxH(i)

0 , (1)

with

H(i)
0 = ivF (ψ†

i,in∂xψi,in − ψ
†
i,out∂xψi,out) + u2Ji,inJi,out

+u4

2
(Ji,inJi,in + Ji,outJi,out), (2)

and δH being defined below. Here ψi,in, ψi,out are a time-
reversed pair of fermion fields with opposite spin, which
propagate toward and away from the junction, vF is the bare
Fermi velocity, and the u2, u4 terms are forward scattering. As
pointed out in Ref. 9, H0 can be mapped onto the Hamiltonian
of spin- 1

2 fermions. To proceed, we define the spin- 1
2 fermion

fields as

ψR↑(x) =
{

ψ2,out(x) x > 0,

ψ1,in(−x) x < 0,

ψR↓(x) =
{

ψ3,out(x) x > 0,

ψ4,in(−x) x < 0,
(3)

ψL↑(x) =
{

ψ3,in(x) x > 0,

ψ4,out(−x) x < 0,

ψL↓(x) =
{

ψ2,in(x) x > 0,

ψ1,out(−x) x < 0.

In terms of ψLσ and ψRσ , where σ =↑, ↓= +,−, H0 can be
written as

H0 =
∫ +∞

−∞
dxH0, (4)

where

H0 =
∑

σ

[iv0(ψ†
Lσ ∂xψLσ − ψ

†
Rσ ∂xψRσ ) + u2JLσJR−σ ]

+ u4

2

∑
σ

(JLσJLσ + JRσ JRσ ). (5)

It is now clear that Eq. (4) is nothing but the Hamiltonian of
the spin- 1

2 fermions.
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Using the bosonization formulas,26

ψLσ = 1√
2πa0

ησ e−i
√

4πφLσ ,

ψRσ = 1√
2πa0

ησ ei
√

4πφRσ ,

and defining the bosonic fields

	σ = φLσ + φRσ , 
σ = φLσ − φRσ ,

where a0 is the short-distance cutoff, H0 becomes

H0 =
∑
α=c,s

vα

2

∫ +∞

−∞
dx:

[
Kα(∂x
α)2 + 1

Kα

(∂x	α)2

]
:, (6)

where Kc = K , Ks = 1/K , vc = v = vs ,

	c = 1√
2

(	+ + 	−),	s = 1√
2

(	+ − 	−),

and similar expressions for 
c,s . The Klein factors ησ are
usually chosen to satisfy η+η− = i. When spin is conserved
at the junction, there are four fixed points.11 These include the
perfectly transmitting (CC) limit, in which both charge and
spin conduct, the perfectly reflecting (II) limit, in which both
charge and spin are insulating, and the mixed fixed points,
denoted by CI (IC), in which charge (spin) is perfectly trans-
mitting and spin (charge) is perfectly reflecting. According
to the analysis in Refs. 9 and 10, the CC and II phases are
separated by a quantum phase transition line by varying the
gate voltage. This occurs when 1/2 < K < 2. This is the
region that we study.

With the help of 	c and 	s , δH in the CC limit is given by

δH = [vee
i
√

2π	c(0) + H.c.] cos [
√

2π	s(0)]

+ [vρe
i
√

8π	c(0) + H.c.] + vσ cos [
√

8π	s(0)]. (7)

In terms of the fermion fields, the various terms in δH can be
written as

ve : ψ
†
LσψRσ + H.c.,

vρ : ψ
†
L↑ψR↑ψ

†
L↓ψR↓ + H.c.,

vσ : ψ
†
L↑ψR↑ψ

†
R↓ψL↓ + H.c..

Thus, ve represents the backscattering of a single electron
across the point contact, vρ denotes the process involving the
tunneling of spin (not charge) between the top and bottom
edges, and vσ represents the process involving the tunneling
of charge 2e between the top and bottom edges. For the
weak potential strength, the three terms are irrelevant when
1/2 < K < 2. In general, higher-order terms could also be
included. However, those terms are less relevant. It suffices to
keep the terms in Eq. (7) to determine the phase diagram.
In the following, we compute the noise spectrum in the
CC limit to study the effects of the two-particle scattering
processes.

III. NONEQUILIBRIUM CURRENT AND NOISE

To analyze the transport properties of this system, we apply
a voltage bias V between the upper and lower edges of the

point contact. In such a case, H0 becomes

H0 =
4∑

i=1

∫ +∞

0
dxH(i)

0 −
∑
i=1,2

∫ +∞

0
dxμ+(Ji,in + Ji,out)

−
∑
i=3,4

∫ +∞

0
dxμ−(Ji,in + Ji,out)

=
∫ +∞

−∞
dx[H0 − μ+(JR↑ + JL↓) − μ−(JR↓ + JL↑)],

where μ+ − μ− = −eV . (Here we assume that the charge
carried by an electron is −e.) To proceed, it is convenient
to move the dependence on the chemical potentials to δH .
This is achieved by the time-dependent gauge transformation
(throughout the calculations, we set h̄ = 1),

ψR↑(ψL↓) → eiμ+tψR↑(ψL↓),

ψR↓(ψL↑) → eiμ−tψR↓(ψL↑),

leading to δH = ∑3
i=1 δHi , where

δH1 = [vee
i
√

2πKc	̃c(t,0) + H.c.] cos [
√

2πKs	̃s(t,0) − ω0t],

δH2 = vρe
i
√

8πKc	̃c(t,0) + H.c., (8)

δH3 = vσ cos [
√

8πKs	̃s(t,0) − 2ω0t].

Here 	̃α = 	α/
√

Kα and ω0 = eV . The ω0 dependence of
the various terms reflects the numbers of transferred charges
involved in the corresponding process.

Let Ĵi denote the particle current operator flowing into
terminal i. Then we have

Ĵ1(t,x1) = J1,in(t, − x1) − J1,out(t, − x1)

= JR↑(t,x1) − JL↓(t,x1),

Ĵ2(t,x2) = J2,in(t,x2) − J2,out(t,x2)

= JL↓(t,x2) − JR↑(t,x2),

Ĵ3(t,x3) = J3,in(t,x3) − J3,out(t,x3)

= JL↑(t,x3) − JR↓(t,x3),

Ĵ4(t,x4) = J4,in(t, − x4) − J4,out(t, − x4)

= JR↓(t,x4) − JL↑(t,x4),

where x1,x4 < 0 and x2,x3 > 0. In terms of the bosonic fields,
Ĵi can be written as

Ĵ1 =
√

Ks

2π
∂x	̃s − 1√

2πKc

∂x
̃c = −Ĵ2,

(9)

Ĵ3 =
√

Ks

2π
∂x	̃s + 1√

2πKc

∂x
̃c = −Ĵ4,

where 
̃α = √
Kα
α . The current flowing into terminal i is

given by Ii = −evF 〈Ĵi〉. According to our convention, Ii is
positive when the current flows out of the terminal.

The noise spectrum is defined by

Sij (ω; x,x ′) ≡ e2v2
F

∫ +∞

−∞
dteiωt 〈{�Ĵi(t,x),�Ĵj (0,x ′)}〉,

(10)

where �Ĵi = Ĵi − 〈Ĵi〉. We would like to calculate Ii and Sij in
terms of the perturbative expansion in the tunneling amplitude
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vl (l = e,ρ,σ ) within the Keldysh formalism.23 We shall see
later that 〈Ĵi〉 = O(|vl|2). Thus, to order of |vl|2, Sij can be
written as

Sij (ω; x,x ′) = e2v2
F

∫ +∞

−∞
dteiωt 〈{Ĵi(t,x),Ĵj (0,x ′)}〉.

The perturbative calculations of the current and noise
spectrum can be straightly performed using the Keldysh
functional integral formulation, as was done in Ref. 14 for
tunneling between the chiral LLs. To the order of |vl|2, the
currents at zero temperature are given by

I1(t) = − e

2
sgn(ω0)[|ve|2Re(A)|ω0|K+1/K−1 + |vσ |2Re(Bs)|2ω0|4/K−1] = I2(t) = −I3(t) = −I4(t), (11)

and the noise spectra at zero temperature are given by

Sii(ω) = e2

{
K

π
|ω| +

[
1 − K2

2
|ve|2Im(A)|ω0|K+1/K−1 + |vσ |2Im(Bs)|2ω0|4/K−1

]
sin

(
2|ωx|

v

)

+ |ve|2
8

(1 − K2)
(
Aei

2|ωx|
v + c.c.

)
[|ω + ω0|K+1/K−1 + |ω − ω0|K+1/K−1]

+ |vσ |2
4

(
Bse

i
2|ωx|

v + c.c.
)
[|ω + 2ω0|4/K−1 + |ω − 2ω0|4/K−1]

+ |ve|2Re(A)(|ω0| − |ω|)K+1/K−1

[
sin2

(
ωx

v

)
+ K2 cos2

(
ωx

v

)]
θ (|ω|)θ (|ω0| − |ω|)

+ 2|vσ |2Re(Bs)(|2ω0| − |ω|)4/K−1 sin2

(
ωx

v

)
θ (|ω|)θ (|2ω0| − |ω|) − 2K2|vρ |2

(
Bce

i
2|ωx|
vc + c.c.

)|ω|4K−1

}
, (12)

with i = 1,2,3,4, and

S12(ω) = −e2

{
K|ω|

π
cos

(
2ωx

v

)
−

[
1 + K2

2
|ve|2Im(A)|ω0|K+1/K−1 + |vσ |2Im(Bs)|2ω0|4/K−1

]
sin

(
2|ωx|

v

)

− |ve|2
8

(1 + K2)
(
Aei

2|ωx|
v + c.c.

)
[|ω + ω0|K+1/K−1 + |ω − ω0|K+1/K−1]

− |vσ |2
4

(
Bse

i
2|ωx|

v + c.c.
)
[|ω + 2ω0|4/K−1 + |ω − 2ω0|4/K−1]

+ |ve|2Re(A)(|ω0| − |ω|)K+1/K−1

[
i

2
sin

(
2ω|x|

v

)
+ K2 cos2

(
ωx

v

)]
θ (|ω|)θ (|ω0| − |ω|)

+ i|vσ |2Re(Bs)(|2ω0| − |ω|)4/K−1 sin

(
2ω|x|

v

)
θ (|ω|)θ (|2ω0| − |ω|) − 2K2|vρ |2

(
Bce

i
2|ωx|

v + c.c.
)|ω|4K−1

}
, (13)

where Sii(ω) = Sii(ω; x,x), Sij (ω) = Sij (ω; x, − x) for i �= j ,

Re(A) = πa
K+1/K

0

vK+1/K�(K + 1/K)
, Im(A) = −πa

K+1/K

0 tan [π (K + 1/K)/2]

vK+1/K�(K + 1/K)
,

Re(Bs) = πa
4/K

0

v4/K�(4/K)
, Im(Bs) = −πa

4/K

0 tan (2π/K)

v4/K�(4/K)
,

and

(
Aei

2|ωx|
v + c.c.

) = 2πa
K+1/K

0

vK+1/K�(K + 1/K)

{
cos

(
2|ωx|

v

)
+ tan

[
π

2
(K + 1/K)

]
sin

(
2|ωx|

v

)}
,

(
Bαei

2|ωx|
v + c.c.

) = 2πa
4Kα

0

v4Kα�(4Kα)

[
cos

(
2|ωx|

v

)
+ tan (2πKα) sin

(
2|ωx|

v

)]
.

On account of current conservation, the tunneling current It is given by It = −(I1 + I2) = I3 + I4. This has been verified by
directly calculating It = −e〈Ĵt 〉 through the tunnel current operator

Ĵt = −[vee
i
√

2π	c(0) + H.c.] sin [
√

2π	s(0)] − 2vσ sin [
√

8π	s(0)]. (14)
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FIG. 2. (Color online) Dependence of the current I = |Ii | on the
bias V . We use the parameters a0 = 10−7 m, v = 5.5 × 105 m/s, and
|ve| = h̄v/a0.

IV. RESULTS AND DISCUSSION

We now discuss our results. The result for the current
is shown in Fig. 2. Although what we are considering is
the nonequilibrium transport, it is interesting to see that the
dependence of each term in Eq. (11) on the bias follows from
the scaling dimension of each scattering process. [The scaling
dimensions of the ve, vρ , and vσ terms about the LL fixed
point are �e = (K + 1/K)/2, �ρ = 2K , and �σ = 2/K ,
respectively.] We notice that the vρ term completely disappears
in Eq. (11) because it does not involve net charge transport.
Although this term plays an important role in determining
the phase diagram, our perturbative calculations show that
its effects on the electrical transport can only be probed
through the current correlations at finite frequency, as shown
in Eqs. (12) and (13).

After examining the voltage dependence of the current,
we now turn to the voltage and frequency dependence of the
noise spectrum. Since the behavior of Re{S12(ω)} is similar
to that of S11(ω), we just plot the frequency dependence of
�S11 = S11 − S

(0)
11 in Figs. 3 and 4, where S

(0)
11 is the noise

spectrum in the absence of tunneling, that is, vl = 0. We
would like to emphasize a few features. First of all, the noise
spectrum at finite frequency is sensitive to the position of
the probe, with the overall oscillatory behavior determined
by the sine or cosine functions. Next, in addition to the
singularity at ω = 0, Sij (ω) also exhibits singularities at
ω = ω0 and ω = 2ω0, corresponding to the single-particle
and two-particle tunneling, respectively. We expect that
these singularities remain intact even by taking into ac-
count the nonperturbative effects.14 For 1/2 < K <

√
3 (the

regime dominated by the single-particle scattering ve term),
the singularity at ω = ω0 reveals itself in the guise of a cusp
in dS11/dω, as shown in the inset of Fig. 3. However, the
subleading singularity at ω = 2ω0 in this region can only
be seen in the higher-order derivatives of S11 due to its
higher powers. For example, near 2ω0, S11 ∼ |ω − 2ω0|3.71
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−6

FIG. 3. (Color online) Dependence of �S11 = S11 − S
(0)
11 on the

frequency ω at K = 0.85, where S
(0)
11 is the noise spectrum in the

absence of tunneling, that is, vl = 0. As explained in the text,
the singularity at ω = ω0 is much stronger than that at ω = 2ω0 in the
region where the single-particle scattering is dominated (1/2 < K <√

3), and thus a clear structure can be seen in the figure near ω = ω0.
To reveal the singularity at ω = ω0, a plot of d�S11/dω around
ω = ω0 is shown in the inset. We use the parameters a0 = 10−7m,
v = 5.5 × 105 m/s, |ve| = h̄v/a0 = |vσ | = |vρ |, and ξ = x/(h̄v/ω0).

at K = 0.85; hence, one can see the singular behavior at
ω = 2ω0 at least in the fourth-order derivative d4S11/dω4.
On the other hand, for

√
3 < K < 2 (the regime dominated

by the two-particle scattering vσ term), the singular behaviors
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−0.5

0
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1
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−5
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e 
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FIG. 4. (Color online) Dependence of �S11 = S11 − S
(0)
11 on the

frequency ω at K = 1.85, where S
(0)
11 is the noise spectrum in the

absence of tunneling, that is, vl = 0. As explained in the text,
the singularity at ω = 2ω0 is relatively weaker than that at ω =
ω0 in the region where the two-particle scattering is dominated
(
√

3 < K < 2). To reveal the former, a plot of d2�S11/dω2 around
ω = 2ω0 is shown in the inset. We use the parameters a0 = 10−7 m,
v = 5.5 × 105 m/s, |ve| = h̄v/a0 = |vσ | = |vρ |, and ξ = x/(h̄v/ω0).
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FIG. 5. (Color online) Dependence of the autocorrelation at zero
frequency S11(0) on the bias V . We use the parameters a0 = 10−7 m,
v = 5.5 × 105 m/s, and |ve| = h̄v/a0.

of S11 around ω = ω0 and ω = 2ω0 are not clear as shown
in Fig. 4 due to its high powers in |ω − ω0| and |ω − 2ω0|
in this region. Nevertheless, the dominated singular behavior
at ω = 2ω0 can still be revealed through the second-order
derivative d2S11/dω2, as shown in the inset of Fig. 4. These
qualitative features shown in Sij (ω) can be used in future
experiments to probe the dynamical current correlations of
the helical LLs in the presence of both single-particle and
two-particle scattering.

In contrast to the tunneling between chiral LLs in a similar
four-terminal configuration where only the cross correlations
for the chiral currents depend on the position of the probe,14

both the auto- and the cross correlations in the present case
are sensitive to the position of the probe x. It turns out that
their zero-frequency limits are the most robust measurements
of fluctuations in the present situation because the resulting
expressions in this limit are independent of the position
of the probe. The dependence of S11(0) and S12(0) on the
bias V is shown in Figs. 5 and 6. We notice that the bias
dependence of each term in S11(0) and S12(0) also follows from
the scaling dimension of each scattering process. Therefore,
among the three scattering terms, only one scattering process
will dominate the behavior of Sij at low bias, depending on
the LL parameter K , though the introduction of two-particle
scattering will, in general, enhance the strength of the current
correlation. It follows from Eqs. (12) and (13) that Sij (0) at
low bias are dominated by the single-particle scattering term
(the ve term) at 1/2 < K <

√
3, while at

√
3 < K < 2 it is

the vσ term that is dominant. A direct consequence of this is
that, as shown in Figs. 5 and 6, the increase of the magnitude
of Sij (0) with K = 1.9 at low bias is much larger than the one
of Sij (0) with K = 0.8 for the same amount of the increment
of the ratio |vσ /ve|. A similar situation also occurs for the
current, as shown in Fig. 2.

It should be noted here that, at
√

3 < K < 2, the exponents
K + 1/K − 1 and 4/K − 1 are numerically quite close to one
another. This indicates that both the ve and the vσ terms will
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FIG. 6. (Color online) Dependence of the cross correlation at zero
frequency S12(0) on the bias V . We use the parameters a0 = 10−7 m,
v = 5.5 × 105 m/s, and |ve| = h̄v/a0.

contribute significantly to Sij (0), except for the case when
the bias is extremely low. For example, at K = 1.9, we need
to take V to be about 0.01 meV in order to see that the
contribution of the vσ term is 10 times larger than that of
the ve term, assuming that |vσ /ve| = O(1). Therefore, a better
way to reveal the competition between the single-particle and
the two-particle scattering processes is to investigate the Fano
factor, which is defined by

Fij (V ) = Sij (0)

2e|I | . (15)

Since the Fano factor is directly related to the charge
fluctuations in the terminals, as we shall demonstrate later, it
contains the information about the fractional charge excitations
in the helical LL. From the noises and currents calculated
above, we have

Fii(V ) = 1

2

[
1 + K2 + 2η|vσ /ve|2|ω0|3/K−K

1 + η|vσ /ve|2|ω0|3/K−K

]
,

(16)

F12(V ) = 1

2

[
1 − K2 + 2η|vσ /ve|2|ω0|3/K−K

1 + η|vσ /ve|2|ω0|3/K−K

]
,

where

η ≡ 24/K−1 Re(Bs)

Re(A)

= 24/K−1

(
a0

v

)3/K−K
�(K + 1/K)

�(4/K)

is a nonuniversal constant.
Since the vρ dependence completely disappears in the zero-

frequency limit, Fij is very sensitive to the single ratio |vσ /ve|.
In general, Fij (V ) consists of terms exhibiting a power law in
V with exponents related to the scaling dimension of each
scattering process. We plot F11 and F12 as functions of the
bias V in Figs. 7 and 8. The effects of the ve and the vσ terms
are disentangled at the zero-bias limit. By taking V → 0, we
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FIG. 7. (Color online) Dependence of F11 on the bias V . We use
the parameters a0 = 10−7 m and v = 5.5 × 105 m/s.

find that

Fii(0) =
{

1+K2

2 1/2 < K <
√

3,

1
√

3 < K < 2,
(17)

and

F12(0) =
{

1−K2

2 1/2 < K <
√

3,

1
√

3 < K < 2.
(18)

Note that in the region where the vσ term dominates, Fij (0)
takes the classical Schottky result, while it depends on the LL
parameter K in the region where the single-particle tunneling
is dominant. As a by-product, the behaviors of Fij (V ) may
provide us with a way to measure the value of K for the
helical liquid.

In Ref. 27 (see also Refs. 21, 22, and 28), it was
shown that when a charge is injected into a LL, it will
break up into two counterpropagating—left-moving and right-
moving—quasiparticles carrying fractional charges. We now
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FIG. 8. (Color online) Dependence of F12 on the bias V . We use
the parameters a0 = 10−7 m and v = 5.5 × 105 m/s.

apply this idea to interpret our results [Eqs. (17) and (18)].
Since the effects of the ve and the vσ terms are disentangled in
the limit V → 0, we consider this limit first. Without loss of
generality, we assume that V > 0. Then the ve term implies a
single-electron tunneling from the bottom edge to the top one,
whereas the vσ term implies the simultaneous tunneling of a
spin-up electron and a spin-down electron from the bottom
edge to the top one. The former (ve) process generates the
following state:∑

σ

�†
σ (x = 0)|OLL〉

=
∑

σ

ψ
†
Rσ (x = 0)|OLL〉 +

∑
σ

ψ
†
Lσ (x = 0)|OLL〉,

while the state produced by the latter (vσ ) is

ψ
†
R↑(x = 0)ψ†

L↓(x = 0)|OLL〉,
where |OLL〉 denotes the ground state of the LL. In the above,
the terms with higher scaling dimensions are neglected. To
proceed, we define the new chiral bosonic fields

φαl = 1
2 (	̃α + 
̃α), φαr = 1

2 (	̃α − 
̃α),

where α = c,s. φαl and φαr describe the elementary excitations
of the spin- 1

2 LL propagating with speed v along the left and
the right directions, respectively. In terms of φαl and φαr , we
may define the chiral fields carrying a unit of U(1) charge27,29:

ψ̃cl = exp

[
−i

√
2π

K
φcl

]
, ψ̃cr = exp

[
i

√
2π

K
φcr

]
. (19)

Then we have for the single-particle (ve) process∑
σ

�†
σ (x = 0)|OLL〉

= [ψ̃†
cl(x = 0)]Q−[ψ̃†

cr(x = 0)]Q+Os1(x = 0)|OLL〉
+ [ψ̃†

cl(x = 0)]Q+[ψ̃†
cr(x = 0)]Q−Os2(x = 0)|OLL〉,

(20)

and for the two-particle (vσ ) process we obtain

ψ
†
R↑(x = 0)ψ†

L↓(x = 0)|OLL〉
= ψ̃

†
cl(x = 0)ψ̃†

cr(x = 0)Os3(x = 0)|OLL〉, (21)

where

Q± = 1 ± K

2
,

and

Os1 = ei π
16K

(1−K2)
∑

σ

ησ√
2πa0

e−i
√

π
2 σ (	s−
s ),

Os2 = ei π
16K

(1−K2)
∑

σ

ησ√
2πa0

ei
√

π
2 σ (	s+
s ),

Os3 = η↑η↓
2πa0

ei
(1+K)π

4K e−i
√

π
2 (	s−
s )e−i

√
π
2 (	s+
s ).

Since the operators Os1, Os2, and Os3 are charge neutral, by
focusing only on the charge states we may reexpress Eqs. (20)
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and (21) as∑
σ

�†
σ (x = 0)|OLL〉 ∼ |Q+,Q−〉 + |Q−,Q+〉,

ψ
†
R↑(x = 0)ψ†

L↓(x = 0)|OLL〉 ∼ |1,1〉,
where |Ql,Qr〉 denotes the charge state in which the left and
the right movers carry charge Ql and Qr , respectively. Both
the above expressions can be understood as the consequence
of fractionalization of charge upon its injection into a LL as
discussed in Ref. 27.

In one spatial dimension, the current fluctuations amount to
the measurement of charge fluctuations. Accordingly, we get

Sii(0) ∝ Q2
+ + Q2

− = 1 + K2

2
,

S12(0) ∝ 2Q+Q− = 1 − K2

2
,

when the ve term dominates, while for the vσ term being
dominant, Sij (0) is proportional to a K-independent constant.
From the above analysis, we see that the dependence of Fij (0)
on the LL parameter K follows from the fact that the final
state of the single-particle scattering is an entangled state
of the left and the right mover −Q±e. On the other hand,
the classical Schottky result arises from the final state of
the two-particle scattering, which is a direct product state of
the left- and the right-mover both carrying charge −e. (This
state is not a direct product state of the single-electron states
because here the left- and the right-mover carry fractional
spins, ±1/K in units of h̄/2.) At finite bias, both the ve and
the vσ terms will contribute to the current and the current
noise so that the Fano factor depends on the ratio |vσ /ve|.

We may now compare our results with the main results in
Ref. 13. First of all, in terms of current conservation, that is,
It = −I1(0−) − I2(0+), we can obtain the tunnel current noise
at finite frequency:

St (ω) ≡ e2
∫ +∞

−∞
dteiωt 〈{�Ĵt (t),�Ĵt (0)}〉

= S11(ω; 0−,0−) + S22(ω; 0+,0+)

+S12(ω; 0−,0+) + S21(ω; 0+,0−), (22)

where �Ĵt = Ĵt − 〈Ĵt 〉 and Ĵt is given by Eq. (14). Inserting
Eqs. (12) and (13) into Eq. (22), we find that

St (ω) = e2
[|ve|2Re(A)

(|ω + ω0|K+ 1
K

−1 + |ω − ω0|K+ 1
K

−1
)

+ 2|vσ |2Re(Bs)(|ω + 2ω0|4/K−1 + |ω − 2ω0|4/K−1)
]

(23)

to O(|vl|2). Equation (23) can also be obtained by a direction
calculation using Ĵt defined in Eq. (14). The zero-frequency
limit, St (0), coincides with the result in Ref. 13 [see Eq. (21)
of Ref. 13]. It should be emphasized that although we may
obtain the total tunnel current noise in Ref. 13 from our Sij ,
the reverse is not true. This is simply because the currents in
the four terminals, I1, I2, I3, and I4, cannot be expressed by
the tunnel currents It↑ and It↓, where It↑ and It↓ are spin-up
and spin-down tunnel currents, respectively. The other way to
see the difference between the two approaches can be seen
from the Fano factor for the tunnel current, which is defined

as Ft (V ) = St (0)/(2e|It |). To O(|vl|2), we have

Ft (V ) = 1 + 2η|vσ /ve|2|ω0|3/K−K

1 + η|vσ /ve|2|ω0|3/K−K
, (24)

leading to

Ft (0) =
{

1 1/2 < K <
√

3,

2
√

3 < K < 2,

in the zero-bias limit. We see that the Fano factor in the
zero-bias limit Ft (0), corresponding to the effective quasi-
particle charge transporting in the tunneling process, exhibits
the classical Schottky result: For the single-particle-process-
dominated region (1/2 < K <

√
3), Ft (0) = 1 (correspond-

ing to charge e), whereas for the region dominated by the two-
particle process (

√
3 < K < 2), Ft (0) = 2 (corresponding to

charge 2e). This must be the case since only electrons can
tunnel between the two edges. By contrast, the currents in the
terminals consist of quasiparticles which may carry fractional
charge; the Fano factors for the currents in the terminals can
therefore be used to detect the fractionally charged elementary
excitations in the helical LL, as discussed. Hence, our work
contains unique information about the nature of the fractional
charge elementary excitations of the helical edge states, which
is not seen in the tunnel current noises as studied in Ref. 13.
On the other hand, as shown in Ref. 13, the cross correlation
between the spin-up and spin-down tunnel currents can be used
to study the fermionic HBT correlations. Since the currents Ii

studied here are not spin-resolved, our present results cannot
be used to address such an issue, and it is beyond the scope of
our present work.

It is interesting to notice that in the case of tunneling
between the chiral LLs, the Fano factor takes the classical
Schottky result.14 In the present case, however, the Fano factor
is a function of the LL parameter K even in the absence of the
two-particle tunneling. Similar results also occur for tunneling
into a nanotube.28 Hence, our work offers a way to distinguish
the spin- 1

2 LL from the chiral LL.
Finally, we would like to point out that, as noticed in Ref. 10,

there exists a duality relation between the CC and the II limits.
Therefore, the noise spectrum in the II limit in the presence of
a bias between the left and right edges can be obtained from
our results by interchanging the LL parameters of the charge
and spin modes, that is, K ↔ 1/K .

V. CONCLUSIONS

To summarize, we have studied the current and the noise
spectrum of a four-terminal QPC in the QSHI at finite bias.
Special emphasis is put on the fractional charge quasiparticle
excitations shown in the noise correlations of the currents
in the terminals (in contrast to the tunneling current noise
spectrum) and examining how the single-particle and the
two-particle scattering processes compete with each other. Via
the Keldysh perturbative approach, we obtained noise spectra
of the currents in the terminals, which are, in general, sensitive
to the ratios of the tunneling strength and consist of terms
exhibiting power law in bias voltage V with the exponents
determined from the scaling dimension of each scattering
process. We find that both auto- and cross correlations of
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the noise spectra Sij (ω) are sensitive to the positions of the
probe with an overall oscillatory behavior. Meanwhile, Sij (ω)
exhibits singularities at ω = ω0 and ω = 2ω0, corresponding
to the single-particle and the two-particle scattering processes,
respectively. It is a unique feature of the helical LL that the two-
particle scattering process dominates the electrical transport at
low bias in some parameter regime. The observation of the
corresponding singularity in the finite-frequency noise spectra
is a direct probe of this mechanism.

In addition to revealing the main characteristics of the
current correlations at finite frequency, we also point out
the difference between the noise spectra of the helical LL
and the chiral LL. The correlations between the currents in
the terminals studied in this paper furnish us with important
information about the fractionally charged elementary excita-
tions in the helical LL. In particular, we find from the Fano
factors of the currents in the terminals that the fractional charge
excitations show up in the single-particle scattering dominated
regime (1/2 < K <

√
3), whereas the classical Schottky result

is obtained in the two-particle scattering dominated regime
(
√

3 < K < 2). We provide further analytical understanding
of these results via the idea of charge fractionalization in
LLs with an electron injection as shown in Refs. 28, 21,
and 22. Note that this information cannot be extracted from
the previous study on the tunnel current noise.13 In fact, we

have calculated the Fano factor Ft (V = 0), corresponding to
the effective charge transporting through the junction, and
found that the result in the zero-bias limit is nothing but the
classical Schottky result for both the single-particle- and the
two-particle-tunneling-process-dominated regimes. This is in
sharp contrast to our results for the Fano factors of the currents
in the terminals. Therefore, our results offer a useful guide for
the experimental identification of the helical LL, and thus the
interaction effects in the QSHI.

Recently we became aware of the work by Souquet and
Simon,30 which has partial overlap with the present work. The
finite-frequency tunneling current noise was calculated, and
both singularities associated with the one-particle (ω = ω0)
and the two-particle (ω = 2ω0) processes were also found in
their results.
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