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The Lande subtraction method has been widely used in Coulomb problems, but the momentum coordinate
p ∈ (0,∞) is assumed. In past applications, a very large range of p was used for accuracy. We derive
the supplementary formulation with p ∈ (0,pmax) at reasonably small pmax for practical calculations. With
the recipe, accuracy of the hydrogenic eigenspectrum is dramatically improved compared to the ordinary Lande
formula by the same momentum grids. We apply the present formulation to strong-field atomic above-threshold
ionization and high-order harmonic generations. We demonstrate that the proposed momentum space method
can be another practical theoretical tool for atomic strong-field problems in addition to the existing methods.
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I. INTRODUCTION

In solving problems with the Coulomb interaction in
momentum space (P-space) [1,2], a singularity in the Coulomb
kernel will cause numerical trouble. The difficulty happens
in Schrödinger, Dirac, Bethe-Salpeter, and Klein-Gordan
equations, and so on. Lande invented a subtraction method and
regularized the singularity [3]. The subtraction has been widely
adopted in related problems. For instance, Norbury et al. [4]
applied a specific form of basis function for the bound states,
and Tang et al. [5] used the Bystrom method for the Coulomb-
kernel-related integration and solved some bound states.
Recently, multiphoton ionization processes for intense laser on
hydrogen atom were extensively studied by using the Lande
subtraction in a time-dependent Schrödinger equation [6].

In the Lande subtraction formulation [3,7], the range of
momentum is p ∈ (0,∞). Thus, we can see why in previous
applications of Lande’s method, pmax up to several thousands
atomic units was used to mimic pmax ∼ ∞, otherwise the
eigenstates cannot be calculated accurately enough. But p2/2
is the order of particle kinetic energy. Such a large momentum
requires a large number of grids for fine energy resolution. The
P-space method is becoming useful, because with the progress
being made in measurement techniques, there are more
and more photoelectron experiments [8,9]. The photoionized
electron is described by a wave packet consisting of continuous
states. In coordinate space (R-space), these states extend to
large distances. However, they are always localized inP-space
and can be handled. So, the P-space method will be a good
tool for current research of laser pulses on atoms or molecules.

In this work, we derive the supplementary formulation when
a moderate pmax is used in the Lande subtraction method. Thus,
the application of the Lande method is then no longer limited
by the large pmax and becomes tractable numerically. With
this recipe, a few hundred grids with pmax around several tens
of a.u., satisfactory accurate eigenspectra can be generated.
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More grids and larger but still moderate pmax generate a highly
accurate eigenset. The result, with dramatic improvement
compared to the ordinary Lande formula, is shown. We apply
the new formulation to quantum dynamics of an atom under
intense laser pulse; both high-order generations (HHG) and
above-threshold ionization (ATI) spectra are obtained in one
calculation. Usually, the electron spectra can be calculated by
solving the time-dependent Schrödinger equation in R-space.
But this method is often limited by reflection of wave function
from the numerical boundary during the laser excitation. A
large spatial region must be used such that the electron wave
function is always away from the numerical boundary during
the laser pulse. The computer memory and CPU time will
then be demanding and even unfeasible for stronger intensity
or a longer pulse. Previously, we developed methods using
the momentum wave functions as a basis set to study atom
in laser fields, and we were able to bypass the trouble of
boundary reflection. We have shown that the low-order ATI
phenomenon is described rather well by the momentum space
method [10,11]. The current method is more accurate and
efficient than our previous methods using the finite momentum
grid formulation of the Lande subtraction method.

The rest of the paper is organized as follows. In Sec. II,
we derive the formulation of finite pmax using the Lande sub-
traction method. In Sec. III, the eigenstates of hydrogen atom
from the present formulation and ordinary Lande subtraction
method are compared. We also discuss this method applied
to helium atom. In Sec. IV, we describe the time-dependent
method with applications to HHG and ATI of intense laser
pulse on hydrogen atom. We present the separate contributions
to HHG for transitions from continuous-to-bound states,
continuous-to-continuous states, and bound-to-bound states.
Conclusions are drawn in Sec. V.

II. SUPPLEMENTARY FORMULATION OF FINITE
MOMENTUM TO ORDINARY LANDE

SUBTRACTION METHOD

Consider the eigenvalue equation of a spherical symmetric
potential V (r) in the R-space representation

− 1
2∇2�(�r) + V (r)�(�r) = E�(�r) (1)
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by making the Fourier transformation

�( �p) = 1/(2π )
3
2

∫
�(�r)e−i �p·�rd3r ,

(2)
W ( �p) = 1/(8π3)

∫
V (�r)e−i �p·�rd3r .

The corresponding P-space representation becomes [2,12,13][
p2

2
− E

]
�( �p) +

∫
W ( �p − �q)�(�q)d3q = 0. (3)

Specifically for the hydrogenic Coulomb potential V (�r) =
−Z/r , we have W ( �p) = −Z/(2π2p2). We designate the
spherical symmetric eigenstates as

�nlm( �p) = Fnl(p)Ylm(�p) , (4)

and the eigenvalue equation is then reduced to radial only,[
p2

2
− E

]
Fnl(p) +

∫
q2Kl(p,q)Fnl(q)dq = 0. (5)

The Coulomb kernel Kl in the above equation can be expressed
in terms of the second kind of Legendre function, Ql ,

Kl(p,q) = − Z

πpq
Ql

(
p2 + q2

2pq

)
, (6)

with

Ql(z) = 1

2

∫ 1

−1

1

z − x
Pl(x)dx, (7)

where Pl is the first kind of Legendre function. Some analytic
solutions of the hydrogen eigenstates in P space were given
in Refs. [12,13]. Direct numerical solution of the equation is
not straightforward due to the singularity in Ql(z) when z =
(p2 + q2)/(2pq) = 1 or, equivalently, when p = q. Lande
proposed a regularization method to manipulate the kernel
term as follows [3]:∫

q2Kl(p,q)Fnl(q)dq

=
∫

Kl(p,q)[q2Fnl(q) − p2Fnl(p)/Pl(z)]dq

+p2Fnl(p)
∫

Kl(p,q)

Pl(z)
dq. (8)

The first term on the right-hand side is now vanishing at z = 1
(that is, p = q), and the last term is finite and can be calculated
iteratively from l = 0, if the range of momentum p is zero to
infinity [3,7]. This is the ordinary adopted Lande subtraction
formulation, with p ∈ (0,∞) understood.

In a practical calculation, p ∈ (0,pmax) with a moderate
value of pmax is anticipated. We cast the last term in the above
equation into

p2
∫ pmax

0

Kl(p,q)

Pl(z)
dq = −pZ

π

∫ pmax

0

Ql(z)

qPl(z)
dq ≡ −pZJl(p),

with

Ql(z) = 1

2
Pl(z)ln

z + 1

z − 1
− Wl−1(z), z = p2 + q2

2pq
,

and

Wl−1(z) =
l∑

k=1

1

k
Pk−1(z)Pl−k(z).

So we have

Jl(p) = 1

2π

∫ pmax

0
ln

z + 1

z − 1

dq

q
− 1

π

∫ pmax

0

Wl−1(z)

Pl(z)

dq

q
. (9)

The first term in Jl(p) is found to be

1

2π

∫ pmax

0
ln

z + 1

z − 1

dq

q

= 1

2π

∫ p

0
+ 1

2π

∫ pmax

p

,

= 1

π

∫ p

0
ln

p + q

p − q

dq

q
+ 1

π

∫ pmax

p

ln
p + q

q − p

dq

q
,

= 1

π

∫ 1

0
ln

1 + x

1 − x

dx

x
+ 1

π

∫ 1

s

ln
1 + x

1 − x

dx

x
,

= 2

π

∫ 1

0

dx

x
tanh−1(x) + 2

π

∫ 1

s

dx

x
tanh−1(x),

= π

2
− 2

π

[
s + s3

32
+ s5

52
+ s7

72
+ · · ·

]
, (10)

where s = p/pmax [14]. We sum the series until the highest-
order term is less than a small number ε. Since the interior grids
of p are used, s is always less than 1 and the criterion works.
The number of terms n summed can be found by solving
s2n+1/(2n + 1)2 = ε. In the simulation, we used pmax =
100 a.u. and ε = 10−9. For s = 0.1, a sum of 5
terms was needed, s = 0.5 needed 12 terms, s =
0.9 needed 59 terms, and s = 0.99 required 385
terms. The second term in Jl(p) is regular and
can be calculated by numerical quadrature. Note that
(i) instead of simply equal to π/2 with pmax = ∞ in the first
term, there is an important correction term, − 2

π
[s + s3

32 + s5

52 +
s7

72 + · · · ], to the ordinary Lande formula with pmax = finite.
The correction is a function of p. (ii) The second term in
Jl(p) is now integrated from (0,pmax), not (0,∞). Together
with the integration of the first term in the right-hand side
of Eq. (8) with p ∈ (0,pmax), we arrive at the supplementary
formulation of the Lande subtraction method with a finite range
of momentum.

To elucidate the improvement of eigenstates by this
supplementary formulation to the ordinary Lande subtraction
formula, we present in Table I the results of hydrogen atom.
We employ the term Present to denote that p ∈ (0,pmax) is
used, as in Eq. (8), and Ordinary to denote that the analytical
form p ∈ (0,∞) is used, such as derived in Refs. [3,7].

In the latter case, the range of momentum can be as large
as possible but never ∞ numerically. In the table, we list
(a) the deviation of some energy levels and (b) the correspond-
ing root-mean-square deviation of the wave functions ��,

066702-2



LANDE SUBTRACTION METHOD WITH FINITE . . . PHYSICAL REVIEW E 86, 066702 (2012)

TABLE I. Comparisons of results from Present method and the Ordinary Lande formula. [E(nl) − exact] is the deviation of energy
levels for the first few low-lying states. �� is the root-mean-square deviation of the wave function. The corresponding exact P-space wave
functions are from Ref. [13]. Case I denotes that 2048 grids and pmax = 100 a.u. are used, and case II that 2048 grids and pmax = 2000 a.u.,
1.76(−6) ≡ 1.76 × 10−6.

State (I) E(nl) − exact (I) �� (II) E(nl) − exact (II) ��

(nl) Present Ordinary Present Ordinary Present Ordinary Present Ordinary

1s 1.76(−6) −6.45(−3) 6.90(−8) 2.45(−4) 7.77(−8) −3.18(−4) 5.99(−10) 1.22(−5)
2s 2.75(−7) −1.61(−3) 6.88(−8) 4.25(−4) 6.55(−8) −7.96(−5) 1.01(−9) 2.11(−5)
3s 1.24(−7) −7.16(−4) 6.88(−8) 6.17(−4) 6.25(−8) −3.53(−5) 1.41(−9) 3.07(−5)
2p −1.56(−10) −4.14(−8) 1.01(−10) 1.34(−8) −1.78(−10) −4.95(−10) 4.39(−9) 1.90(−10)
3p −8.75(−10) −1.83(−8) 6.46(−10) 1.84(−8) −9.45(−10) −1.06(−9) 6.85(−8) 7.69(−10)
3d 2.38(−10) 2.38(−10) 4.21(−10) 4.22(−10) 3.86(−10) 2.70(−10) 7.66(−8) 5.58(−10)

defined as

�� =
√

1

N

∫
|�( �p) − �exact( �p)|2d3p, (11)

where N is the number of p grids, �( �p) is calculated, and
�exact( �p) is the exact momentum-space wave function. The
analytic forms of the first few low-lying states are listed in
Ref. [13]. Among the eigenstates, the ground state is equal to

F1s = 25/2

√
π

1

(p2 + 1)2
, (12)

which is the most diffusive state and needs a larger pmax

to attain higher accuracy. The best accuracy can be reached
is ∼ 1/[pmax]4 theoretically. To check the effects of pmax,
we present two cases, with (i) N = 2048 and pmax =
100 a.u. and (ii) N = 2048 and pmax = 2000 a.u. In both
cases, the errors of the 1s and 2s eigenvalues and wave
function deviations by use of the Present formulation are about
3 orders of magnitude smaller than the Ordinary ones (also
because the accuracy limit of F1s(p) is ∼ p−4

max). We can see
that the highest possible accuracy is reached by use of the
Present method. Even with a quite large value, pmax = 2000,
the Ordinary results are still far worse than those of the
supplementary formulation presented here. For other higher
states, the wave functions Fnl(p) are rather localized in smaller
p, and, hence, the improvement is not as dramatic as with the 1s

and 2s states. However, the Present results are highly accurate
even with pmax = 100 a.u. For example, with 512 grids and
pmax = 100 a.u., the Present method generates comparable
accuracy compared to the Ordinary method with 2048 grids
and pmax = 2000 a.u. in Table. I. But the Hamiltonian matrix is
512 × 512 compared to 2048 × 2048. So the Present method
is more efficient than the Ordinary method, especially for
the time-dependent problems. With even smaller value of
pmax, the spectrum is also reliable with a bit of a sacrifice
of accuracy for 1s and 2s, but the Ordinary results cannot
be trusted. The Present scheme with small pmax ensures that
the strong field dynamics can be investigated in momentum
space. So, the numerical improvement introduced here through
the supplementary formulation of the Lande subtraction
method is important.

We use hydrogen atom as a calibration mainly due to the
exact energy levels and the fact that some momentum wave
functions are analytically known. The method is applicable

to general single-active electron (SAE) atoms, too. As an
example, we study the helium atom by SAE1 [15] and SAE2
[16] model potentials. The SAE1 model potential uses a
Slater-type basis and is optimized to the accurate ground state.
It is parameterized as

V (r) = −1

r
−

∑2
p=0

∑2
k=1 ck,p rp e−βk,p r

r
, (13)

with c1,0 = 0.3374, c2,0 = 0.6626, β1,0 = 6.2838, β2,0 =
0.2382, c1,1 = 1.6724, c2,1 = −1.1558, β1,1 = 3.6076, β2,1 =
1.3969, c1,2 = −1.1088, c2,2 = −0.3320, β1,2 = 3.6418, and
β2,2 = 0.8108.

The SAE2 model potential fits the first few low-lying states
to experimental data. The potential is written as

V (r) = −1

r
− a1e

−a2r + a3re
−a4r + a5e

−a6r

r
, (14)

with parameters for helium atom, a1 = 1.231, a2 = 0.662,
a3 = −1.325, a4 = 1.236, a5 = −0.231, and a6 = 0.480.
Both model potentials keep correct behaviors at r → 0 and
r → ∞. They have identical long-ranged parts but differ in
the inner region. In Fig. 1 we plot r times the short-ranged
potential and their difference. We apply the Present method to
both potentials. The Fourier transform of the SAE1 potential
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FIG. 1. (Color online) The r × Vshort−ranged(r) of SAE1 (red solid
line) and SAE2 (dashed blue line) and their difference (dotted black
line, labeled in the right vertical axis).
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TABLE II. Differences of helium atom energy levels from the Present P-space method and the R-space method for SAE1 and SAE2.
The R-space energy levels are accurate up to machine precision. Case I denotes 1024 grids with pmax = 50 a.u., case II for 1024 grids with
pmax = 100 a.u., case III for 2048 grids with pmax = 50 a.u., and case IV for 2048 grids with pmax = 100 a.u. 2.44(−3) ≡ 2.44 × 10−3. Atomic
units are used.

State and Case I Case II Case III Case IV

model SAE1 SAE2 SAE1 SAE2 SAE1 SAE2 SAE1 SAE2

1s 2.44(−3) 2.14(−3) 2.24(−3) 1.94(−3) 1.38(−3) 1.21(−3) 1.15(−3) 9.90(−4)
2s 2.23(−4) 2.63(−4) 3.13(−4) 2.52(−4) 1.71(−4) 1.41(−4) 1.58(−4) 1.27(−4)
3s 1.51(−4) 9.27(−5) 1.48(−4) 9.01(−5) 7.80(−5) 4.88(−5) 7.44(−5) 4.53(−5)
2p 1.09(−4) 2.58(−5) 1.10(−4) 2.62(−5) 5.33(−5) 1.29(−5) 5.40(−5) 1.31(−5)
3p 5.65(−5) 9.81(−6) 5.72(−5) 9.95(−6) 2.78(−5) 4.91(−6) 2.81(−5) 4.98(−6)
3d 6.06(−5) 1.91(−6) 6.14(−5) 1.94(−6) 3.05(−5) 9.58(−7) 3.08(−5) 9.70(−7)

is

W ( �p) = − 1

2π2p2
− 1

2π2

{
c1,0

β2
1,0 + p2

+ c2,0

β2
2,0 + p2

+ 2c1,1β1,1(
β2

1,1 + p2
)2 + 2c2,1β2,1(

β2
2,1 + p2

)2 + 2
(
3c2

1,2 − p2
)

(
β2

1,2 + p2
)2

+ 2
(
3c2

2,2 − p2
)

(
β2

2,2 + p2
)2

}
, (15)

and the Fourier transform of the SAE2 potential is

W ( �p) = − 1

2π2p2

− 1

2π2

{
a1

a2
2 + p2

+ 2a3a4(
a2

4 + p2
)2 + a5

a2
6 + p2

}
. (16)

Since the analytical results are unknown, we calculate the R-
space eigenvalue equation accurately by use of the generalized
pseudospectral (GPS) method [17] for calibration. In Table II,
we list the energy level differences of the present P-space
method and the R-space GPS results for each model potential
for the first few low-lying states with four calculations as
follows: (case I) 1024 grid points in p with pmax = 50 a.u.,
(case II) 1024 grids with pmax = 100 a.u., (case III) 2048 grids
with pmax = 50 a.u., and (case IV) 2048 grids with pmax =
100 a.u. We can see that the improvement of 1s energy is not
as dramatic as hydrogen atom. But the P-space eigenstates
are generally acceptable to give a good representation for each
individual SAE potential.

III. TIME-DEPENDENT METHOD IN MOMENTUM SPACE

A. Split-operator algorithm for time propagation

The momentum space time-dependent Schrödinger equa-
tion (P-TDSE) of an SAE atom in a laser pulse under the
dipole approximation can be written as

i
∂�total

∂t
=

[
H0 + �p · �A(t) + 1

2
A2(t)

]
�total( �p,t), (17)

with the electric field �E(t) = −∂ �A(t)/∂t . For a linearly
polarized field, the magnetic quantum number m is a good
quantum number during the laser pulse and, hence, is omitted

for convenience. By making the transform

�total( �p,t) = exp

{−i

2

∫ t

−∞
A2(t ′)dt ′

}
�( �p,t), (18)

�( �p,t) then satisfies the following P-TDSE:

i
∂�

∂t
= [H0 + �p · �A(t)]�( �p,t). (19)

H0 is the Hamiltonian operator of the SAE atom, and

H0�( �p,t) = p2

2
�( �p,t) +

∫
W ( �p − �q)�(�q,t)d3q. (20)

The split-operator algorithm [18] is used for the time
propagation,

�( �p,t + �) = e−iH0
�
2 e−i �p·∫ t+�

t
�A(t ′)dt ′e−iH0

�
2 �( �p,t) +O(�3).

(21)

In each time step, define, first,

�(1)( �p,t) = e−iH0
�
2 �( �p,t) (22)

and use the eigenstates solved by the method in previous
section as energy representation of the operator e−iH0

�
2 ,

�(1)( �p,t) =
∑
n,l

�n,l( �p)e−iEn,l
�
2

∫
�∗

n,l(�q)�(�q,t)d3q, (23)

where

H0�n,l( �p) = En,l�n,l( �p), and
∫

|�n,l( �p)|2d3p = 1.

(24)

Expand �(�q,t) = ∑
k fk(q)Yk,m(q̂) and define �(1)( �p,t) =∑

l �
(1)
l (p)Yl,m(p̂); we then have

�
(1)
l (p) =

∫
S(l)(p,q)fl(q)q2dq,

where

S(l)(p,q) =
∑

n

�n,l(p)e−iEn,l
�
2 �n,l(q). (25)

In grid representation, the matrix S(l)(pi,pj ) is time indepen-
dent and we need to calculate only one time for each angular
momentum l.
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Next we designate

�(2)( �p,t) = e−i �p·∫ t+�

t
�A(t ′)dt ′�(1)( �p,t),

= e−i �p·�α(t,�)�(1)( �p,t),

with

�α(t,�) =
∫ t+�

t

�A(t ′)dt ′. (26)

The propagation is in angular momentum subspace for each
grid pi [6]. Let �p · �α ≡ pα cos θ . We, first, diagonalize K̂ =
cos θ in the {Yl,0(θ )} basis, namely

K̂χk(l) = λkχk(l), k,l = 0,1,2, . . . ,L. (27)

Then, with �(2)( �p,t) ≡ ∑
l gl(p,t)Yl,0(p̂),

gl(pi,t) =
∑

l′
�l′=L

l,l′=0(pi,t) fl′ (pi,t),

where

�l,l′ (pi,t) =
L∑

k=0

χk(l)e−ipiα(t,�)λkχ∗
k (l′). (28)

Again, the set {λk,χk} is independent of time. Propagation of
this step is in l subspace for each grid pi .

In the data presented later, for a hydrogen atom under the
Gaussian pulse with full width at half maximum (FWHM) of
5 fs, wavelength 800 nm, and peak intensities 100, 200, 300,
and 400 TW/cm2, L are 8, 17, 23, and 28, respectively, such
that the contribution to norm from the corresponding highest
angular momentum L is less than 0.1%. So, usually a limited
number of angular momenta are enough for time evolution.
The matrix size of � is, hence, small and the propagation
is quite efficient. The time propagation scheme described
above uses the eigenstates �nl( �p) of H0, which need only
be calculated one time. Besides the importance of accuracy,
smaller size of eigenstates will save much computing time.
As an example, for simulations for a 5-fs Gaussian pulse of
peak intensity 100 TW/cm2 with 16 angular momenta, the
computing time for 512 grids is 3 min and 2 s and for 2048 grids
is 74 min and 12 s, respectively. The results in this paper were
generated with a desktop personal computer with an Intel i7
CPU with eight threads.

B. High-order harmonic generations

We decompose the wave function into the continuous and
the bound parts at each time step by projection as

�( �p,t) =
∑

l

fl(p,t)Yl,m( �p),

(29)
fl(p,t) = ψconti

l (p,t) + ψbound
l (p,t),

where

ψbound
l (p,t) =

∑
bound (nl)

Fnl(p)
∫

F ∗
nl(q)fl(q,t)q2dq,

(30)
ψconti

l (p,t) = fl(p,t) − ψbound
l (p,t)

and

�( �p,t) = �conti( �p,t) + �bound( �p,t),

with

�bound( �p,t) =
∑

l

ψbound
l (p,t)Yl,m( �p),

(31)
�conti( �p,t) =

∑
l

ψconti
l (p,t)Yl,m( �p),

because the system is time varying and the states are field
dressed. It is intractable to calculate the dressed states at
every time due to the larger number of time steps. So we
can make decomposition only approximately. We model states
with energy larger than the ponderomotive energy (Up) as
continuous and with energy less than Up as bound. We will
see later that this classification of continuous and bound parts
is meaningful.

Classically, accelerating charge will emit electromagnetic
radiation. Under the linearly polarized light, the acceleration
form dipole function is found through

dA(t) ≡ 〈�(t)|d
2z

dt2
|�(t)〉. (32)

By using the velocity dz/dt = pz + A(t), we can derive the
relationship between the velocities from the dipole functions
dv(t) and dA(t) as follows:

dv(t) ≡ 〈�(t)|dz

dt
|�(t)〉= 〈�(t)|pz|�(t)〉+A(t),

(33)
d

dt
[dv(t) −A(t)] = d

dt
〈�(t)|pz|�(t)〉 = dA(t).

We then take the Fourier transform for the power spectrum,∫ ∞

−∞
dA(t)e−iωtdt =

∫ ∞

−∞

d

dt
〈pz〉e−iωtdt,

= 〈pz(t)〉e−iωt |+∞
−∞ +iω

∫ ∞

−∞
〈pz〉e−iωtdt.

(34)

Thus, from the function 〈pz(t)〉, the acceleration form HHG
power spectrum can be obtained. By the decomposition of total
wave function, we have

〈pz(t)〉 = 〈�bound( �p,t)|pz|�bound( �p,t)〉
+ 〈�conti( �p,t)|pz|�conti( �p,t)〉
+ {〈�bound( �p,t)|pz|�conti( �p,t)〉
+ 〈complex conjugate〉}. (35)

In this way, we can study the contributions to the HHG
spectrum from bound-bound, continuous-continuous, and
continuous-bound transitions separately. While in R-TDSE,
usually we filter out the wave function at a larger distance from
the nucleus, otherwise the calculation will not be feasible [19].
Hence, in the R-TDSE calculation, the effect of the filtered
wave-function contribution to HHG is not considered. In the
semiclassical three-step model [20–22], only transitions from
continuous states to the ground state are included and the
Volkov or Coulomb-Volkov [23,24] approximation is used for
the continuous state atomic electron under laser pulse. On the
other hand, the P-TDSE method can provide the complete
information of HHG spectra.
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FIG. 2. (Color online) Electric field (dotted blue line) and vector
potential (red line) profiles of a Gaussian pulse at peak intensity
200 TW/cm2, FWHM 10 fs, and wavelength 800 nm.

C. Above threshold ionization spectra

At the end of a laser pulse, we can subtract the bound states
from the total final wave function and obtain the continuous
part, namely

�conti( �p,t = ∞) = �( �p,t = ∞) −
∑
nb,lb

�nb,lb ( �p)

×
∫

�∗
nb,lb

(�q)�(�q,t = ∞)d3q, (36)

where �nb,lb ( �p) are bound states of the SAE Hamiltonian, H0.
The photoelectron angular distribution (PAD) is conveniently
expressed in a two-dimensional momentum plot. Let p‖
and p⊥ be the component of momentum �p in parallel and
perpendicular to the polarization axis and θ the angle between
�p and the polarization axis, and then p‖ = p cos θ , and

p⊥ =
√

p2
x + p2

y = p sin θ . The ionization probability P will
be expressed as

P ≡
∫

∂2P
∂p‖∂p⊥

dp‖dp⊥,

where

∂2P
∂p‖∂p⊥

=
∫

p⊥|�conti( �p,t = ∞)|2dφ. (37)

We can also denote the photoelectron spectrum as follows:

P ≡
∫ ∞

ε=0

∂P
∂ε

dε =
∫

|�conti( �p,t = ∞)|2d3p,

where

∂P
∂ε

=
∫∫

p|�conti( �p,t = ∞)|2 sin θdθdφ. (38)

Note that for convergent simulations, the total ionization
probability is unique for an applied laser pulse, but the
value of probability density ∂P/∂ε may depend on the grids
used. Another interested quantity is the ionization probability
density along the polarization direction,

P =
∫

∂P
∂p‖

dp‖,
∂P
∂p‖

=
∫

∂2P
∂p‖∂p⊥

dp⊥. (39)

In the tunneling ionization regime, the probability density
∂P/∂p‖ is regarded as dominant in small p‖ [25–27].

IV. APPLICATION TO INTENSE SHORT LASER PULSE
ON HYDROGEN ATOM

We study the laser pulse on hydrogen atom instead of other
SAE atoms, mainly because there are no electron-electron
effects as for other SAE atoms and, hence, the properties
of P-TDSE can be clearly explored. We present results of
a Gaussian pulse on hydrogen atom with FWHM = σ and
carrier frequency ω. So the forms of the electric field and
vector potential pulses are

�E(t) = ẑ Emaxe
−2(ln 2)(t/σ )2

sin(ωt), �A(t) = −
∫ t

− T
2

�E(t ′)dt ′.

(40)

To simulate the vanishing of pulse tails at t = ∓∞, we take
the ratio E(t = ∓T/2)/Emax to be 10−6. Thus, the pulse
duration T = σ

√
6
√

2 ln 10/ ln 2 ∼ 6.314 σ . Figure 2 shows
an example for the profiles of the field and vector potential
at peak intensity I0 = 200 TW/cm2, FWHM of 10 fs, and
wavelength of 800 nm. We will focus on the two prominent
phenomena of an atom under an intense laser pulse, namely
the ATI and the HHG. Applications of present method to other
strong field processes are left for future study.

A. Above-threshold ionization

In Table III we list the parameters of hydrogen atom under
the interaction of a Gaussian laser pulse with FWHM 5 fs
and 10 fs and peak intensity from 75 to 400 TW/cm2 at
800 nm. Up =

√
I0/4ω2 denotes the ponderomotive energy.

The HHG cut-off order Nc = (Ip + 3.17Up)/ω from the
tunneling mechanism is also displayed. γ = √

Ip/2Up is
known as the Keldysh parameter. The parameter γ > 1 case

TABLE III. Parameters of hydrogen atom under a Gaussian laser pulse of peak intensity 75 to 400 TW/cm2. The carrier wavelength
is 800 nm, and FWHM are 5 fs and 10 fs, respectively.

Peak intensity Keldysh γ Up (eV) Ionization (5 fs) Ionization (10 fs) HHG cut-off order Nc

75 TW/cm2 1.232 4.48 0.47% 0.93% 18
100 TW/cm2 1.067 5.97 1.2% 2.35% 21
200 TW/cm2 0.754 11.95 12.7% 26.4% 33
300 TW/cm2 0.616 17.92 34.5% 58.3% 45
400 TW/cm2 0.533 23.9 59.7% 81.7% 57
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FIG. 3. (Color online) ATI spectra for hydrogen atom under a
Gaussian pulse of FWHM 10 fs, 800 nm. The peak intensities are
100, 200, 300, and 400 TW/cm2, respectively.

was regarded as the multiphoton ionization regime and γ < 1
as the tunneling ionization regime. From the data in Table III,
for γ � 1, the ionization probability is rather small and, hence,
unlike the inert gas atoms [25–27]; the hydrogen target is not
useful to study the change of ionization probability density
near p‖ ∼ 0 on entering the tunneling regime of γ � 1 in
Eq. (37). We plot in Fig. 3 the ATI spectra for peak intensity
from 100 to 400 TW/cm2 with FWHM of 10 fs and wavelength
of 800 nm, where the ionization probability runs from 2.4%
to 82%. And we plot the corresponding two-dimensional
momentum space photoelectron angular distributions (PAD) in
Fig. 4. In the ATI spectra, the ionization density in vertical axis
is in logarithmic scale, and the photoelectron kinetic energy in

horizontal axis is in electron volt. We observe the ATI peaks
stepped at photon energy (1.55 eV) and ATI peaks switching
to high energy from low intensity to high intensity. The kinetic
energy up to ∼12Up for 100 TW/cm2 and to ∼3Up for the
400 TW/cm2 case are shown. The ionization density runs over
7 decades. This kind of strong intensity and high ionization
probability case is hard to calculate by use of the R-space
method.

Because we expand the wave function in Legendre poly-
nomials, and by the PAD expression Eq. (37), the number of
strips in the first ring of PAD shows the angular momentum
of the first ATI peak. In Fig. 4 we can see the lowest energy
ATI peaks have angular momenta of 5,6,4 and 5 for 100, 200,
300, and 400 TW/cm2, respectively. The color levels are in
logarithmic scales, P-TDSE method is capable for the PAD of
photoelectron under various laser intensities. The dumbbell
shaped PAD in high intensity such as Figs. 4(c) and 4(d)
were discussed in Ref. [6]. Here the laser parameters used
for calculation are realistic. The pulse shape, wavelength, and
pulse duration are modeled to laboratory parameters.

B. High-order harmonic generations

The HHG occur when electron absorbs energy, driven by
laser field and releases photons on recolliding with nucleus.
In R-TDSE calculation, HHG is obtained from the dipole
function of electron near the nucleus. Due to the large extent
of continuous wave function, usually we can put a filter
at reasonable distance away from the nucleus so that the
computation is feasible [19]. However, the effect of filtered
wave function is not considered. In the P-TDSE calculation,
we have the complete wave function throughout the time evo-
lution. So we can decompose the dipole function into groups
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of transitions from continuous-continuous, continuous-bound,
and bound-bound, respectively as Eq. (35). The problem is
that the eigenstates of an atom under laser field, or so called
the dressed states, are untractable. We model that during the
laser pulse, unperturbed eigenstates with energy larger than the
ponderomotive energy (Up) are continuous, and smaller than
Up are bound. Because the major contribution to HHG comes
from the time duration inside FWHM, and quiver energy of
electron there is in the order of Up. The dipole matrix elements
are then classified into the three groups.

Figure 5 shows the HHG spectrum for hydrogen under peak
intensity 100 TW/cm2, FWHM 10-fs, 800-nm pulse. Since the
Keldysh parameter is 1.07 which is nearly in the tunneling
regime, we can use the formula Nc = Ip + 3.17Up from
tunneling concept to estimate the cut-off order, which is 21. We
can see that the continuous-bound HHG spectrum simulates
the general HHG theory quite well: There is exponential decay
for low orders followed by a plateau and then cut-off. The
magnitude of bound-bound spectrum is much smaller than con-
tributions from other groups and is negligible. Interestingly, the
cut-off behavior is not clearly shown by the spectrum which
contains all transitions, and the nondecaying high-frequency
spectra of all transitions and the continuous-continuous are
coincident. It means that the higher-frequency regime spec-
trum originates from continuous-continuous transitions, and
the transitions energies in continuum are no longer stepped
by photon energy. The process is not possible to calculate by
use of the R-TDSE calculation. With the results, we regard
the modeling of HHG here as meaningful. To further examine
the use of Up to decompose the wave function into continuous
and bound parts, we show in Fig. 6 the HHG spectra from
continuous-bound transitions for the same laser pulse as in
Fig. 5. In addition, a simulation uses the instantaneous kinetic
energy A(t)2/2 instead of Up to decompose the continuous
and bound states at every time step. We can see both simulate
HHG quite well. The main difference happens at harmonics
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FIG. 6. (Color online) Hydrogen HHG spectra from continuous-
bound dipole functions, by use of Up (dotted blue line) and by
instantaneous quiver energy Up(t) = A2(t)/2 (red line), to classify
the continuous and bound states. The laser pulse is Gaussian with
peak intensity 100 TW/cm2, FWHM 10 fs, 800 nm.

with a frequency higher than the 27th order. The spectrum
obtained by using Up decays much faster than those by using
A(t)2/2. But both spectra of this frequency regime are much
smaller than the cut-off order 21. Also, a comparison of this
Up-decomposed continuous-bound HHG to the R-TDSE [19]
for this case was performed. There was not much difference
found for the main features and, hence, it was omitted. So, we
regard the modeling using Up as acceptable.

In Fig. 7 we plot the HHG spectra from continuous-bound
dipole functions for four intensities from low to very intense.
We can see that the HHG spectra show typical characteristics:
exponentially decaying low orders and a plateau regime
followed by a cut-off regime [20] and the extension of the
plateau to higher orders as intensity increased. The cut-off
orders Nc from tunneling mechanism are exhibited correctly
in the simulations. From the ATI and HHG results shown
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FIG. 7. (Color online) HHG spectra of hydrogen under Gaussian
pulses of several peak intensities, FWHM 10 fs, 800 nm. The red
line is for 100 TW/cm2, the dashed blue line is for 200 TW/cm2, the
dashed-dotted magenta line is for 300 TW/cm2, and the dotted black
line is for 100 TW/cm2.

066702-8



LANDE SUBTRACTION METHOD WITH FINITE . . . PHYSICAL REVIEW E 86, 066702 (2012)

in the paper, we can say that the two important atomic
strong-field processes can be calculated well through the
present supplementary formulation of the Lande subtraction
P-TDSE.

V. CONCLUSIONS

We derived the supplementary formulation for calculation
of the Lande subtraction with finite momentum grids. With
this recipe, the use of extremely large momenta is waived
and a highly accurate eigenspectrum can be constructed.
We demonstrated the applications of this numerical scheme
to atoms under intense laser pulses. The two prominent
processes, namely the above-threshold ionization and high-
order harmonic generations can be simulated in a P-TDSE
calculation. We model the continuous and bound parts of
a dressed wave function by employing the ponderomotive

energy concept. The HHG spectra hence can be decomposed
into continuous-continuous, continuous-bound, and bound-
bound transitions. The continuous-bound contributes to the R-
TDSE HHG results, while continuous-continuous contributes
to the higher-frequency continuous spectrum, which has not
been calculated by use of the R-TDSE method. We aim in this
paper to demonstrate that the P-TDSE method with our recipe
can serve as a practical tool for strong-field problems. Other
interested strong-field attosecond processes will be studied by
use of this method in the future.
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