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Image Saturation Improvement for 180 Hz
Stencil-FSC LCD With Side-Lit LED Backlight

Fang-Cheng Lin, Yi-Pai Huang, Chang-Yi Teng, and Han-Ping D. Shieh

Abstract—The green-based 180Hz Stencil-FSCmethodwas pro-
posed to effectively suppress color breakup for a field-sequential-
color liquid crystal display (FSC-LCD). Nevertheless, this method
has an issue on green color desaturation. Therefore, we further
propose the “limited backlight signal ratio” (LBSR) to determine a
proper backlight signal to increase image color saturation and si-
multaneously suppress color breakup. To realize a thin and high
image quality eco-display, in addition, the light spread function
model and the number of backlight divisions for a side-lit backlight
are optimized and combined with the LBSR stencil-FSC method.

Index Terms—Color breakup, color filter-less, field-sequential
color (FSC), light spread function, side-lit, stencil-FSC, Taguchi
method.

I. INTRODUCTION

N OWADAYS, liquid crystal displays (LCDs) are widely
applied in our display products because of their high

screen resolution, high brightness, light weight, and thin profile.
However, conventional LCDs using cold cathode fluorescent
lamps backlight are thick and power consuming. Therefore,
the development of display technologies aims at thin and low
power consumption using locally controllable light-emitting
diodes (LEDs) as a backlight module.
A conventional LCD with color filters uses spatial color

mixing mechanism to yield full-color images. However, the
optical throughput of this kind LCD is between 5%–10% only.
In contrast, a field-sequential color (FSC) LCD without color
filters is developed by sequentially displaying three primary
R, G, and B field-images to yield a full-color image [1]–[3].
Consequently, an FSC-LCD benefits from higher optical
throughput, lower material cost, wider color gamut, and three
times possibly higher image resolution compared to a color-
filter LCD. Besides, a side-lit panel using an LED backlight
module is developed to make the panel thinner [4]. The ad-
vantages of thinner and lower power consumption LCDs are
attractive to consumers and friendlier to our environments.
However, FSC-LCDs suffer from the color breakup phenom-

enon when there has relative velocity between human eyes and
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the displayed images [5]. Color breakup causes discomfort and
degrades image clarity. In the past years, several color breakup
suppression methods have been reported [6]–[16]. Considering
the current LC response time, the “green-based 180 Hz Stencil-
FSC”method (Fig. 1) was proposed to efficiently suppress color
breakup with three fields only [13]. Since human eye is more
sensitive to green primary color, the concept of green-based 180
Hz Stencil-FSC displayed high luminance and rough color with
whole green information in the first field to yield a “greenish
field-image.” Consequently, the luminances of the rest red and
blue field-images were substantially reduced. When the sepa-
rated color fields did not contain the pure and high intensity
color information, color breakup was suppressed. However, if a
displayed image contains plenty of green information, the green
color is desaturated while using green-based 180 Hz Stencil-
FSC, as shown in Fig. 2. The main reason is due to the back-
light signal of the first-field (multi-color field) is determined for
minimizing the color breakup. Thus, the red and blue compen-
sated LC signals or in Fig. 1(c) might be a negative value,
which means too much red or blue light are displayed in the first
field and desaturated green color, as shown in Fig. 2.
Therefore, we propose a method, limited backlight signal

ratio (LBSR), to determine optimized backlight signals for the
first field. By further combining the proposed LBSR method
and side-lit multi-color LED backlights, Stencil-FSC is more
promising for high image quality and slim large-sized eco-LCD
applications.

II. CONCEPT AND ALGORITHM

A. Limited Backlight Signal Ratio (LBSR) Method for
Direct-Lit Backlight

To prevent redundant light from propagating to the first field
and desaturating green color, the LBSR method is proposed for
180 Hz Stencil-FSC to provide proper backlight signals and
avoid redundant colors displaying in the first field and clipping
phenomenon [17] in other fields, as shown in Fig. 3.
Utilizing the local color-backlight-dimming technology [18],

[19], the signals of backlight and compensated LC are recal-
culated by (1), where and are the luminance of an
input image and a full-on backlight, respectively. and
are each R, G, and B sub-pixels transmittance of an input image
and a compensated image while locally dimming the color back-
light. To prevent the clipping effect and redundant light from
displaying in the first field, green backlight signals are deter-
mined by the maximum of each backlight division, as
shown in (2-1). The compensated LC signals are calculated by
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Fig. 1. Green-based 180 Hz Stencil-FSC algorithm [13]. (a) Target image, girl (©Microsoft). (b) Backlight images. (c) LC signals. (d) Three yielded field images.

TABLE I
FORMULA OF LIMITED BACKLIGHT SIGNAL RATIO METHOD

(WHERE AND ARE THE SIGNALS OF RED AND BLUE BACKLIGHT LUMINANCE IN EACH BL DIVISION)

Fig. 2. Redundant red and blue colors propagate through the first field resulting
in green color desaturation while using green-based 180 Hz Stencil-FSC.

(2-2), which guarantees that all green information can be dis-
played in the first field with less compensated LC signals

(1)

(2-1)

(2-2)

where (conventional full-on backlight signals),
is the green backlight signal using LBSR in each BL division,
and is the compensated LC signal of each green sub-pixel.
Using the LBSR Stencil-FSC method, the new LC signals of

the second and third fields, and , were derived the same
as those in green-based Stencil-FSC as shown in Fig. 1(c). To
prevent or from being a negative value which denotes

Fig. 3. Two backlight images, LC driving signals, and front-of-screen images
for the first field of a test image-Red Leaf, using: (a) original green-based and
(b) proposed LBSR Stencil-FSC methods.

redundant light results in green color desaturation, the and
should be larger than zero. Meanwhile, to prevent the clip-

ping phenomenon, the and should be equal or smaller
than one. Therefore, the backlight signals are derived by the re-
lationships of the formula in (3-1) and (3-2), as shown in Table I.

B. LBSR for Side-Lit LED Backlight

Comparing direct-lit with side-lit backlight types, the side-lit
backlight is promising to make panel thinner. A side-lit light
spread function (LSF) model is essential to simulate the light
intensity distribution for each backlight division. Different
from a direct-lit type using a 2D Gaussian LSF [13], the pro-
posed side-lit LSF model used one horizontal Gaussian profile
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Fig. 4. Different axes intensity distribution of a side-lit LSF using (a) Gaussian
profile with various standard deviation in horizontal direction and (b) half
Gaussian profile in vertical direction. Intensity distribution of a side-lit LSF (c)
mesh LSF and (d) illustration of a side-lit LED backlight spreading.

Fig. 5. Side-lit 180 Hz LBSR Stencil-FSC algorithm.

TABLE II
PARAMETERS OF A SIDE-LIT LSF WITH FIVE LEVELS OF EACH FACTOR

(% OF PANEL WIDTH)

with various standard deviation (4-1), and multiplied a
half Gaussian profile in -direction (4-2) to simulate a side-lit
dispersed light, where and represent the width and height of
a panel (in an unit of pixels), respectively. An LSF of a side-lit
LED backlight is given and shown in Fig. 4. Consequently,
combining the LBSR method with a side-lit LSF in the algo-
rithm, as shown in Fig. 5, the Stencil-FSC is more promising
for a slim color filter-less LCD.

(4-1)

(4-2)

According to (4-1) and (4-2), the parameters , ,
and were optimized and modulated to change the intensity

Fig. 6. (a) 8 simulated backlight divisions; (b) 12 test images: Butterfly
( : taken by Jacky Lee, http://jac3158.com/blog), Aircraft, Basketball,
Girl©Microsoft, Flower, Coast, Lighthouse, Racing, Pattern, Wood, Ocean,
and Snow.

distribution of an LSF. Table II lists each factors of an LSF with
five levels which are chosen to be satisfied the luminance uni-
formity being larger than 80% for a backlight panel requirement
[20]. The luminance uniformity requirement is calculated by (5)

(5)
Using a parameter-design of the Taguchi method [21], the

table of an orthogonal array was utilized to
determine the optimal hardware parameters in the simulation.
The analytical standard is to find the largest signal-to-noise (SN)
ratio of the larger-the-better characteristic defined as (6) in the
Taguchi method

(6)

where is the percentage of less than 3 which means an
acceptable color difference to human eye [22], [23].

III. OPTIMIZATION AND SIMULATION

The maximum number of LEDs used in the simulation was
supposed to be 128 pcs, and the maximum backlight divi-
sion was supposed to be 2 (top-down) by 64 (left-right) [see
Fig. 6(a)], which meant the maximum division was 128 with
1 pcs LED in each division. Twelve images with different color
saturation and image detail were tested, as shown in Fig. 6(b).

A. Evaluation Indices

The color difference of CIEDE2000 was calculated
to evaluate the image fidelity and color breakup reduction.
To quantify the image distortion, a pixel distortion ratio,

, is defined by (7). is a ratio of the
number of distorted pixels divided by the number of total pixels,
where a distorted pixel means that its pixel color difference is
larger than an acceptable threshold value, [22], [23].
The less represents the higher image fidelity. Addition-
ally, after summing up of each pixel between a test image
and its color breakup image , a relative CBU index
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Fig. 7. Simulation results using the 12 test images of the number of back-
light divisions versus (a) pixel distortion ratio and (b) relative CBU.
(a) Image distortion. (b) Color breakup reduction.

is defined as the ratio of total color difference between
backlight divisions and the conventional RGB-driving method,
as shown in (8); the less value represents the less color breakup

(7)

(8)

where is the number of backlight divisions.

B. Optimization and Simulation Results

The optimization results are shown in Fig. 7, both image dis-
tortion and color breakup reduction reach asymptotic end values

Fig. 8. Comparison of PDR between direct-lit green-based and proposed LBSR
methods in direct-lit and side-lit Stencil-FSC methods.

TABLE III
OPTIMAL LSF HARDWARE PARAMETERS OF THE SIDE-LIT

BACKLIGHT DIVISION

at 2 16 backlight divisions in these 12 various test images. To
effectively maintain image fidelity and suppress color breakup,
therefore, the optimal backlight division was 2 16 using the
proposed LBSR method on a side-lit backlight module. The op-
timal side-lit LSF parameters of a backlight division were de-
termined to satisfy a uniformity of 91%, as shown in Table III.
Using the optimized LSF and 2 16 backlight divi-

sions, the proposed side-lit LBSR Stencil-FSC is compared
to direct-lit (24 32 backlight divisions) green-based and
LBSR Stencil-FSC methods. Here, the LSFs of both direct-lit
Stencil-FSC are assumed aGaussian profile with pixels
and pixels, respectively. From Fig. 8, the average
PDRs of side-lit and direct-lit LBSR are as low as 1.6% and
0.1%, respectively. The data are much less than that of using
the green-based Stencil-FSC method (12.2%). Furthermore, a
plenty of green information image, Red Leaf, was simulated
as shown in Fig. 9. The images using LBSR are much
darker than that of using green-based Stencil-FSC. In
histograms, the larger distribution using green-based
Stencil-FSC is much reduced and redistributed at the lower

region when using the LBSR Stencil-FSC methods. In
other words, the proposed LBSR method can greatly improve
the color distortion.
For color breakup suppression, additionally, the proposed

LBSR in direct-lit and side-lit Stencil-FSC methods reduce
relative CBU to 57.3% and 64.4%, respectively. The CBU
suppression is slightly less than that of using the green-based
Stencil-FSC method (average ), as
shown in Fig. 10. The reason is the red and blue luminance
in the first field using the proposed method is less than that
of the green-based method. These results in higher luminance
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Fig. 9. Simulation results of image fidelity. (a) Target image Red Leaf. FSC
images, distortion images and histograms of CIEDE2000 by the three modes
of Stencil-FSC methods: (b) direct-lit green-based, (c) direct-lit LBSR, and (d)
side-lit LBSR.

Fig. 10. Comparison relative CBU between prior color breakup suppression
methods (RGBRGB [8], RGBKKK [8], and direct-lit green-based Stencil-FSC
[13]) and the proposed LBSR methods in direct-lit and side-lit Stencil-FSC
methods.

displaying in the rest red and blue fields. Therefore, the color
breakup is less suppressed but is still acceptable from the
experimental photos verified on a 120-Hz 46-inch LCD as
discussed in next section.

IV. EXPERIMENTAL RESULTS

Since a 180 Hz side-lit color filter-less LCD was lacked, the
proposed method was emulated by flashing three field-images
on a 120 Hz 46-inch MVA LCD, i.e., with a frame rate of 40
Hz, as shown in the left images of Fig. 11. Color breakup images
were captured by a shaking camera to simulate eye movement,
and the exposure time of the camera was set to 1/40 seconds to
capture a complete frame image. Using this emulation, since the
exposure time of the camera was set to 1/40 seconds which was
correspondence to the frame rate to capture a complete frame
image, the color breakup result would be almost the same com-
pared to a real 180 Hz color filter-less LCD without considering
the LC response time. If the LC response time is insufficient

Fig. 11. Three field-images (left) and experimental color breakup photos
(right). Lily and Gallery using (a), (c) the conventional RGB-driving method
and (b), (d) the side-lit LBSR Stencil-FSC method.

for a 180 Hz field rate (with the same frame rate), the color sat-
uration will be decreased (lower image quality) and less color
breakup is seen.
Using the proposed side-lit LBSR Stencil-FSC method,

color breakup was effectively suppressed compared to using
the conventional RGB-driving method. Moreover, utilizing the
LBSR method in the direct-lit Stencil-FSC algorithm, the color
breakup reduction was also better than that in side-lit condition
because of the more flexibility of the backlight divisions, as
shown in Fig. 12. Therefore, we concluded that the proposed
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TABLE IV
COMPARISON BETWEEN THE DIRECT-LIT GREEN-BASED STENCIL-FSC METHOD AND LBSR STENCIL-FSC IN DIRECT-LIT AND SIDE-LIT TYPES

Evaluated using the video of IEC 62087 for a 65-inch LCD

Note: Power consumption of a 65-inch white light LED backlight LCD is around 150 W

Fig. 12. Experimental color breakup photos of LBSR method in: (a) side-lit
and (b) direct-lit Stencil-FSC methods.

LBSR method in direct-lit and side-lit Stencil-FSC methods
well maintained image fidelity and effectively suppressed color
breakup simultaneously.
To evaluate the power consumption of the LBSR method,

the IEC: 62087 video (around 10 min long) was utilized. The
power consumptions of all frames were computed according
to driving values of backlight signals. From the calculating
results in Fig. 13, the average power consumption of the
direct-lit green-based, direct-lit LBSR, and side-lit LBSR
Stencil-FSC methods were 52, 23, and 38 W, respectively.

The average power consumptions of the direct-lit and side-lit
LBSR Stencil-FSC methods were lower because the deter-
mined backlight signals in the second and the third fields of
the LBSR method were lower than those of using the direct-lit
green-based Stencil-FSC method.
Finally, the characteristics of direct-lit green-based, direct-lit

LBSR, and side-lit LBSR Stencil-FSCmethods are summarized
in Table IV. The panel thickness of the proposed side-lit method
was promising less than 10 mm with only 2 16 backlight di-
visions. The side-lit LBSR method much reduced image distor-
tion to a of 1.6%. It also further saved around
20% power consumption compared to green-based Stencil-FSC.
From the experimental photos, color breakup was also well sup-
pressed. Therefore, the proposed LBSR method is good to be
applied on the Stencil-FSC concept.

V. CONCLUSION

We proposed a thin and low power consumption side-lit
technology on a color filter-less LCD. To prevent redundant
light and clipping phenomenon while using the green-based
180 Hz Stencil-FSC method, the limited backlight signal ratio
(LBSR) method was proposed to further improve the image
quality and simultaneously suppress color breakup. Addition-
ally, the model of a side-lit LED light spread function (LSF)
was utilized to simulate the intensity distribution of a slim
LED backlight. From simulation results, the optimal backlight
divisions was 2 16 and the LSF parameters were obtained
as , , of panel width and
reached a 91% backlight luminance uniformity. The proposed
method improved image fidelity by more than a factor of 7
compared to prior green-based 180 Hz Stencil-FSC. Color
breakup was almost imperceptible via experimental results as
well. Moreover, the average power consumption was 38W only
which was equipment to 50% of a conventional RGB-driving
FSC-LCD. As a result, the novel LBSR method applied on a
side-lit 180 Hz Stencil-FSC is promising for slim eco-display
applications.
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Fig. 13. Evaluated backlight power consumption of each frame using the IEC: 62087 video for three color breakup suppression methods.
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